| /* Copyright lowRISC contributors. */ |
| /* Licensed under the Apache License, Version 2.0, see LICENSE for details. */ |
| /* SPDX-License-Identifier: Apache-2.0 */ |
| /* |
| * P-384 specific routines for ECDSA signature generation and constant-time |
| * scalar multiplication. |
| */ |
| |
| .section .text |
| |
| /** |
| * Convert projective coordinates of a P-384 curve point to affine coordinates |
| * |
| * returns P = (x_a, y_a) = (x/z mod p, y/z mod p) |
| * where P is a valid P-384 curve point, |
| * x_a and y_a are the resulting affine coordinates of the |
| * curve point, |
| * x,y and z are a set of projective coordinates of the |
| * point and |
| * p is the modulus of the P-384 underlying finite field. |
| * |
| * This routine computes the affine coordinates for a set of projective |
| * coordinates of a valid P-384 curve point. The routine performs the required |
| * divisions by computing the multiplicative modular inverse of the |
| * projective z-coordinate in the underlying finite field of the P-384 curve. |
| * For inverse computation Fermat's little theorem is used, i.e. |
| * we compute z^-1 = z^(p-2) mod p. |
| * For exponentiation a 16 step addition chain is used. |
| * Source of the addition chain is the addchain project: |
| * https://github.com/mmcloughlin/addchain/ |
| * |
| * Flags: Flags have no meaning beyond the scope of this subroutine. |
| * |
| * @param[in] [w26,w25]: x, x-coordinate of curve point (projective). |
| * @param[in] [w26,w25]: y, y-coordinate of curve point (projective). |
| * @param[in] [w30,w29]: z, z-coordinate of curve point (projective). |
| * @param[in] [w13, w12]: p, modulus of P-384. |
| * @param[in] w31: all-zero. |
| * @param[out] [w26, w25]: x_a, affine x-coordinate of resulting point. |
| * @param[out] [w28, w27]: y_a, affine y-coordinate of resulting point. |
| * |
| * clobbered registers: w0 to w28 |
| * clobbered flag groups: FG0 |
| */ |
| proj_to_affine_p384: |
| |
| /* Exp: 0b10 = 2*0b1 |
| Val: r10 = z^2 mod p |
| [w17,w16] <= [w30,w29]^2 mod [w13,w12] */ |
| bn.mov w10, w29 |
| bn.mov w11, w30 |
| bn.mov w16, w29 |
| bn.mov w17, w30 |
| jal x1, p384_mulmod_p |
| |
| /* Exp: 0b11 = 0b1+0b10 |
| Val: r11 <= z*r10 mod p |
| [w17,w16] <= [w30,w29]*[w17,w16] mod [w13,w12] */ |
| bn.mov w10, w29 |
| bn.mov w11, w30 |
| jal x1, p384_mulmod_p |
| |
| /* Exp: 0b110 = 2*0b11 |
| Val: r110 = r11^2 mod p |
| [w17,w16] <= [w17,w16]^2 mod [w13,w12] */ |
| bn.mov w10, w16 |
| bn.mov w11, w17 |
| jal x1, p384_mulmod_p |
| |
| /* Exp: 0b111 = 0b1+0b110 |
| Val: r111 <= z*r110 mod p |
| [w1,w0] = [w17,w16] <= [w30,w29]*[w17,w16] mod [w13,w12] */ |
| bn.mov w10, w29 |
| bn.mov w11, w30 |
| jal x1, p384_mulmod_p |
| bn.mov w0, w16 |
| bn.mov w1, w17 |
| |
| /* Exp: 0b111000 = 0b111<<3 |
| Val: r111000 <= r111^(2^3) mod p |
| [w17,w16] <= [w17,w16]^(2^3) mod [w13,w12] */ |
| loopi 3, 4 |
| bn.mov w10, w16 |
| bn.mov w11, w17 |
| jal x1, p384_mulmod_p |
| nop |
| |
| /* Exp: 0b1111111 = 0b111+0b111000 |
| Val: r1111111 <= r111*r111000 mod p |
| [w3,w2] = [w17,w16] <= [w1,w0]*[w17,w16] mod [w13,w12] */ |
| bn.mov w10, w0 |
| bn.mov w11, w1 |
| jal x1, p384_mulmod_p |
| bn.mov w2, w16 |
| bn.mov w3, w17 |
| |
| /* Exp: 2^12-1 = (0b1111111<<6)+0b111111 |
| Val: r_12_1 <= r111111^(2^6)*r111111 mod p |
| [w5,w4] = [w17,w16] <= [w17,w16]^(2^6)*[w17,w16] mod [w13,w12] */ |
| loopi 6, 4 |
| bn.mov w10, w16 |
| bn.mov w11, w17 |
| jal x1, p384_mulmod_p |
| nop |
| bn.mov w10, w2 |
| bn.mov w11, w3 |
| jal x1, p384_mulmod_p |
| bn.mov w4, w16 |
| bn.mov w5, w17 |
| |
| /* Exp: 2^24-1 = ((2^12-1)<<12)+(2^12-1) |
| Val: r_24_1 <= r_12_1^(2^12)*r12_1 mod p |
| [w17,w16] <= [w17,w16]^(2^12)*[w5,w4] mod [w13,w12] */ |
| loopi 12, 4 |
| bn.mov w10, w16 |
| bn.mov w11, w17 |
| jal x1, p384_mulmod_p |
| nop |
| bn.mov w10, w4 |
| bn.mov w11, w5 |
| jal x1, p384_mulmod_p |
| |
| /* Exp: 2^30-1 = ((2^24-1)<<6)+0b111111 |
| Val: r_30_1 <= r_24_1^(2^6)*r111111 mod p |
| [w3, w2] = [w17,w16] <= [w17,w16]^(2^6)*[w3,w2] mod [w13,w12] */ |
| loopi 6, 4 |
| bn.mov w10, w16 |
| bn.mov w11, w17 |
| jal x1, p384_mulmod_p |
| nop |
| bn.mov w10, w2 |
| bn.mov w11, w3 |
| jal x1, p384_mulmod_p |
| bn.mov w2, w16 |
| bn.mov w3, w17 |
| |
| /* Exp: 2^31-1 <= (2^30-1)*2+0b1 |
| Val: r_31_1 <= r30_1^2*z mod p |
| [w7,w6] = [w17,w16] <= [w17,w16]^2*[w30,w29] mod [w13,w12] */ |
| bn.mov w10, w16 |
| bn.mov w11, w17 |
| jal x1, p384_mulmod_p |
| bn.mov w10, w29 |
| bn.mov w11, w30 |
| jal x1, p384_mulmod_p |
| bn.mov w6, w16 |
| bn.mov w7, w17 |
| |
| /* Exp: 2^32-1 <= (2^30-1)*2+0b1 |
| Val: r_32_1 <= r31_1^2*z mod p |
| [w9,w8] = [w17,w16] <= [w17,w16]^2*[w30,w29] mod [w13,w12] */ |
| bn.mov w10, w16 |
| bn.mov w11, w17 |
| jal x1, p384_mulmod_p |
| bn.mov w10, w29 |
| bn.mov w11, w30 |
| jal x1, p384_mulmod_p |
| bn.mov w9, w16 |
| bn.mov w8, w17 |
| |
| /* Exp: 2^63-1 <= ((2^32-1)<<31)+(2^31-1) |
| Val: r_63_1 <= r_32_1^(2^31)*r_31_1 mod p |
| [w7,w6] = [w17,w16] <= [w17,w16]^(2^31)*[w7,w6] mod [w13,w12] */ |
| loopi 31, 4 |
| bn.mov w10, w16 |
| bn.mov w11, w17 |
| jal x1, p384_mulmod_p |
| nop |
| bn.mov w10, w6 |
| bn.mov w11, w7 |
| jal x1, p384_mulmod_p |
| bn.mov w6, w16 |
| bn.mov w7,w17 |
| |
| /* Exp: 2^126-1 = ((2^63-1)<<63) + (2^63-1) |
| Val: r_126_1 <= r_63_1^(2^63)*r_63_1 mod p |
| [w7,w6] = [w17,w16] <= [w17,w16]^(2^63)*[w7,w6] mod [w13,w12] */ |
| loopi 63, 4 |
| bn.mov w10, w16 |
| bn.mov w11, w17 |
| jal x1, p384_mulmod_p |
| nop |
| bn.mov w10, w6 |
| bn.mov w11, w7 |
| jal x1, p384_mulmod_p |
| bn.mov w6, w16 |
| bn.mov w7, w17 |
| |
| /* Exp: 2^252-1 = ((2^126-1)<<126)+(2^126-1) |
| Val: r_252_1 <= r_126_1^(2^63)*r_126_1 mod p |
| [w17,w16] <= [w17,w16]^(2^126)*[w7,w6] mod [w13,w12] */ |
| loopi 126, 4 |
| bn.mov w10, w16 |
| bn.mov w11, w17 |
| jal x1, p384_mulmod_p |
| nop |
| bn.mov w10, w6 |
| bn.mov w11, w7 |
| jal x1, p384_mulmod_p |
| |
| /* Exp: 2^255-1 = ((2^252-1)<<3)+0b111 |
| Val: r_255_1 <= r_252_1^(2^3)*r111 mod p |
| [w17,w16] <= [w17,w16]^(2^3)*[w1,w0] mod [w13,w12] */ |
| loopi 3, 4 |
| bn.mov w10, w16 |
| bn.mov w11, w17 |
| jal x1, p384_mulmod_p |
| nop |
| bn.mov w10, w0 |
| bn.mov w11, w1 |
| jal x1, p384_mulmod_p |
| |
| /* Exp: p-2 = ((((((2^255-1)<<33)+(2^32-1))<<94)+(2^30-1))<<2)+0b1 |
| Val: x_inv <=((r_255_1^(2^33)*r_32_1)^(2^94)*r_30_1)^(2^2)*z mod p |
| [w17,w16] <= (([w17,w16]^(2^33)*[w9,w8])^(2^94)*[w3,w2])^(2^2) |
| *[w30,w29] mod [w13,w12] */ |
| loopi 33, 4 |
| bn.mov w10, w16 |
| bn.mov w11, w17 |
| jal x1, p384_mulmod_p |
| nop |
| bn.mov w10, w9 |
| bn.mov w11, w8 |
| jal x1, p384_mulmod_p |
| loopi 94, 4 |
| bn.mov w10, w16 |
| bn.mov w11, w17 |
| jal x1, p384_mulmod_p |
| nop |
| bn.mov w10, w2 |
| bn.mov w11, w3 |
| jal x1, p384_mulmod_p |
| loopi 2, 4 |
| bn.mov w10, w16 |
| bn.mov w11, w17 |
| jal x1, p384_mulmod_p |
| nop |
| bn.mov w10, w29 |
| bn.mov w11, w30 |
| jal x1, p384_mulmod_p |
| |
| /* store inverse [w1,w0] <= [w17,w16] = z_inv*/ |
| bn.mov w0, w16 |
| bn.mov w1, w17 |
| |
| /* convert x-coordinate to affine space |
| [w26,w25] <= [w17,w16] = x_a <= x/z = x*z_inv = [w26,w25]*[w1,w0] mod p */ |
| bn.mov w10, w25 |
| bn.mov w11, w26 |
| jal x1, p384_mulmod_p |
| bn.mov w25, w16 |
| bn.mov w26, w17 |
| |
| /* convert y-coordinate to affine space |
| [w28,w27] <= [w17,w16] = y_a <= y/z = y*z_inv = [w28,w27]*[w1,w0] mod p */ |
| bn.mov w10, w27 |
| bn.mov w11, w28 |
| bn.mov w16, w0 |
| bn.mov w17, w1 |
| jal x1, p384_mulmod_p |
| bn.mov w27, w16 |
| bn.mov w28, w17 |
| |
| ret |
| |
| |
| /** |
| * Fetch curve point from dmem, randomize z-coordinate and store point in dmem |
| * |
| * returns P = (x, y, z) = (x_a*z, y_a*z, z) |
| * with P being a valid P-384 curve point in projective coordinates |
| * x_a and y_a being the affine coordinates as fetched from dmem |
| * z being a randomized z-coordinate |
| * |
| * This routines fetches the affine x- and y-coordinates of a curve point from |
| * dmem and computes a valid set of projective coordinates. The z-coordinate is |
| * randomized and x and y are scaled appropriately. The resulting projective |
| * coordinates are stored at dmem[dptr_p_p] using 6 consecutive 256-bit cells, |
| * i.e. each coordinate is stored 512 bit aligned, little endian. |
| * This routine runs in constant time. |
| * |
| * @param[in] x20: dptr_x, pointer to dmem location containing affine |
| * x-coordinate of input point |
| * @param[in] x21: dptr_y, pointer to dmem location containing affine |
| * y-coordinate of input point |
| * @param[in] [w15, w14]: u[383:0] lower 384 bit of Barrett constant u for |
| * modulus p |
| * @param[in] [w13, w12]: p, modulus of P-384 underlying finite field |
| * @param[in] w31: all-zero |
| * @param[in] x18: dptr_p_p, pointer to dmem location to store resulting point |
| * in projective space |
| * |
| * Flags: When leaving this subroutine, the M, L and Z flags of FG0 depend on |
| * the upper limb of projective y-coordinate. |
| * |
| * clobbered registers: x10, x11 to x13 |
| * w2, w3, w8 to w11, w16 to w24, w29, w30 |
| * clobbered flag groups: FG0 |
| */ |
| store_proj_randomize: |
| |
| /* get a 384-bit random number from URND |
| [w3, w2] = random(384) */ |
| bn.wsrr w2, 2 |
| bn.wsrr w3, 2 |
| bn.rshi w3, w31, w3 >> 128 |
| |
| /* reduce random number |
| [w2, w3] = z <= [w2, w3] mod p */ |
| bn.sub w10, w2, w12 |
| bn.subb w11, w3, w13 |
| bn.sel w2, w2, w10, C |
| bn.sel w3, w3, w11, C |
| |
| bn.mov w10, w2 |
| bn.mov w11, w3 |
| |
| /* store z-coordinate |
| dmem[x20+128] = [w10, w11] */ |
| li x10, 10 |
| li x11, 11 |
| bn.sid x10, 128(x18) |
| bn.sid x11, 160(x18) |
| |
| /* fetch x-coordinate from dmem |
| [w16, w17] = x <= [dmem[dptr_x], dmem[dptr_x+32]] */ |
| li x12, 16 |
| li x13, 17 |
| bn.lid x12, 0(x20) |
| bn.lid x13, 32(x20) |
| |
| /* scale and store x-coordinate |
| [dmem[dptr_p_p], dmem[dptr_p_p+32]] = [w17, w16] = |
| x_p <= [w11, w10] * [w17, w16] = z*x mod p */ |
| |
| jal x1, p384_mulmod_p |
| bn.sid x12, 0(x18) |
| bn.sid x13, 32(x18) |
| |
| /* fetch y-coordinate from dmem |
| [w11, w10] = x <= [dmem[dptr_y], dmem[dptr_y+32]] */ |
| bn.lid x12, 0(x21) |
| bn.lid x13, 32(x21) |
| |
| /* scale and store y-coordinate |
| [dmem[dptr_p_p+64], dmem[dptr_p_p+96]] = [w17, w16] = |
| y_p <= [w11, w10] * [w17, w16] = z*y mod p */ |
| bn.mov w10, w2 |
| bn.mov w11, w3 |
| jal x1, p384_mulmod_p |
| bn.sid x12, 64(x18) |
| bn.sid x13, 96(x18) |
| |
| ret |
| |
| |
| /** |
| * P-384 scalar point multiplication in affine space |
| * |
| * returns R = k*P = k*(x_p, y_p) |
| * where R, P are valid P-384 curve points in affine coordinates, |
| * k is a 384-bit scalar. |
| * |
| * This routine performs scalar multiplication based on the group laws |
| * of Weierstrass curves. |
| * A constant time double-and-add algorithm (sometimes referred to as |
| * double-and-add-always) is used. |
| * Due to the P-384 optimized implementations of the internally called routines |
| * for point addition and doubling, this routine is limited to P-384 curves. |
| * The routine makes use of blinding by additive splitting the |
| * exponent/scalar d into two shares. The double-and-add loop operates on both |
| * shares in parallel applying Shamir's trick. |
| * |
| * @param[in] x9: dptr_rnd, pointer to location in dmem containing random |
| * number to be used for additive splitting of scalar |
| * @param[in] x19: dptr_k, pointer to scalar k (0 < k < n) in dmem |
| * @param[in] x20: dptr_x, pointer to affine x-coordinate in dmem |
| * @param[in] x21: dptr_y, pointer to affine y-coordinate in dmem |
| * @param[in] x28: dptr_b, pointer to domain parameter b of P-384 in dmem |
| * @param[in] x30: dptr_sp, pointer to 704 bytes of scratchpad memory in dmem |
| * @param[in] [w13, w12]: p, modulus of P-384 underlying finite field |
| * @param[in] [w11, w10]: n, domain parameter of P-384 curve |
| * (order of base point G) |
| * @param[in] w31: all-zero |
| * @param[out] [w26, w25]: x_a, affine x-coordinate of resulting point R. |
| * @param[out] [w28, w26]: y_a, affine y-coordinate of resulting point R. |
| * |
| * Scratchpad memory layout: |
| * The routine expects at least 704 bytes of scratchpad memory at dmem |
| * location 'scratchpad' (sp). Internally the scratchpad is used as follows: |
| * dptr_sp .. dptr_sp+191: point P, projective |
| * dptr_sp+192 .. dptr_sp+255: s0, 1st share of scalar |
| * dptr_sp+256 .. dptr_sp+447: point 2P, projective |
| * dptr_sp+448 .. dptr_sp+511: s1, 2nd share of scalar |
| * dptr_sp+512 .. dptr_sp+703: point Q, projective |
| * |
| * Projective coordinates of a point are kept in dmem in little endian format |
| * with the individual coordinates 512 bit aligned. The coordinates are stored |
| * in x,y,z order (i.e. x at lowest, z at highest address). Thus, a 384 bit |
| * curve point occupies 6 consecutive 256-bit dmem cells. |
| * |
| * Flags: When leaving this subroutine, the M, L and Z flags of FG0 depend on |
| * the computed affine y-coordinate. |
| * |
| * clobbered registers: x2, x10, x11 to x13, x18, x26, x27, w0 to w30 |
| * clobbered flag groups: FG0 |
| */ |
| scalar_mult_int_p384: |
| |
| /* set regfile pointers to in/out regs of Barrett routine. Set here to avoid |
| resetting in very call to point addition routine */ |
| li x22, 10 |
| li x23, 11 |
| li x24, 16 |
| li x25, 17 |
| |
| /* fetch externally supplied random number from dmem |
| [w1, w0] = dmem[dptr_rnd] = [dmem[x9], dmem[x9+32]] = rnd */ |
| li x2, 0 |
| bn.lid x2++, 0(x9) |
| bn.lid x2++, 32(x9) |
| |
| /* 1st share (reduced rnd) |
| s0 = [w1, w0] <= rnd mod n = [w1, w0] mod [w11, w10] */ |
| bn.sub w9, w0, w10 |
| bn.subb w8, w1, w11 |
| bn.sel w0, w0, w9, C |
| bn.sel w1, w1, w8, C |
| |
| /* load scalar k from dmem |
| [w3, w2] = k <= dmem[dptr_k] = [dmem[x19], dmem[x19+32]] */ |
| bn.lid x2++, 0(x19) |
| bn.lid x2, 32(x19) |
| |
| /* 2nd share (k-s0) |
| s1 = [w3, w2] <= k - s0 mod n = [w2, w3] - [w1, w0] mod [w11, w10] */ |
| bn.sub w2, w2, w0 |
| bn.subb w3, w3, w1 |
| bn.add w8, w2, w10 |
| bn.addc w9, w3, w11 |
| bn.sel w2, w8, w2, C |
| bn.sel w3, w9, w3, C |
| |
| /* left align both shares for probing of MSB in loop body */ |
| bn.rshi w1, w1, w0 >> 128 |
| bn.rshi w0, w0, w31 >> 128 |
| bn.rshi w3, w3, w2 >> 128 |
| bn.rshi w2, w2, w31 >> 128 |
| |
| /* store shares in scratchpad */ |
| li x2, 0 |
| bn.sid x2++, 192(x30) |
| bn.sid x2++, 224(x30) |
| bn.sid x2++, 448(x30) |
| bn.sid x2++, 480(x30) |
| |
| /* get randomized projective coodinates of curve point |
| P = (x_p, y_p, z_p) = dmem[dptr_sp] = (x*z mod p, y*z mod p, z) */ |
| add x18, x30, 0 |
| jal x1, store_proj_randomize |
| |
| /* double point P |
| 2P = ([w30,w29], [w28,w27], [w26, w25]) <= 2*P */ |
| add x27, x30, x0 |
| add x26, x30, x0 |
| jal x1, proj_add_p384 |
| |
| /* store point 2P in scratchpad @w30+256 |
| dmem[dptr_sc+256] = [w30:w25] = 2P */ |
| li x2, 25 |
| bn.sid x2++, 256(x30) |
| bn.sid x2++, 288(x30) |
| bn.sid x2++, 320(x30) |
| bn.sid x2++, 352(x30) |
| bn.sid x2++, 384(x30) |
| bn.sid x2++, 416(x30) |
| |
| /* init point Q = (0,1,0) for double-and-add in scratchpad */ |
| /* dmem[x26] = dmem[dptr_sc+512] = Q = (0,1,0) */ |
| addi x26, x30, 512 |
| li x2, 30 |
| bn.addi w30, w31, 1 |
| bn.sid x2++, 64(x26) |
| bn.sid x2, 0(x26) |
| bn.sid x2, 32(x26) |
| bn.sid x2, 96(x26) |
| bn.sid x2, 128(x26) |
| bn.sid x2, 160(x26) |
| |
| /* double-and-add loop with decreasing index */ |
| loopi 384, 85 |
| |
| /* double point Q |
| Q = ([w30,w29], [w28,w27], [w26, w25]) <= Q + dmem[x27] */ |
| add x27, x26, x0 |
| jal x1, proj_add_p384 |
| |
| /* store Q in dmem |
| dmem[x26] = dmem[dptr_sc+512] <= [w30:w25] */ |
| li x2, 25 |
| bn.sid x2++, 0(x26) |
| bn.sid x2++, 32(x26) |
| bn.sid x2++, 64(x26) |
| bn.sid x2++, 96(x26) |
| bn.sid x2++, 128(x26) |
| bn.sid x2++, 160(x26) |
| |
| /* Probe if MSb of either of the two scalars (rnd or d-rnd) but not both |
| is 1. |
| If only one MSb is set, select P for addition. |
| If both MSbs are set, select 2P for addition. |
| (If neither MSB is set, 2P will be selected but result discarded.) */ |
| li x2, 0 |
| bn.lid x2++, 224(x30) |
| bn.lid x2, 480(x30) |
| bn.xor w8, w0, w1 |
| /* Create conditional offeset into scratchpad. |
| if (s0[512] xor s1[512]) x27 <= x30 else x27 <= x30+256 */ |
| csrrs x3, 0x7c0, x0 |
| xori x3, x3, -1 |
| andi x3, x3, 2 |
| slli x27, x3, 7 |
| add x27, x27, x30 |
| |
| /* Reload randomized projective coodinates for curve point P. |
| P = (x_p, y_p, z_p) = dmem[dptr_sp] <= (x*z mod p, y*z mod p, z) */ |
| jal x1, store_proj_randomize |
| |
| /* Add points Q+P or Q+2P depending on offset in x27. |
| Q_a = ([w30,w29], [w28,w27], [w26, w25]) <= Q + dmem[x27] */ |
| jal x1, proj_add_p384 |
| |
| /* load shares from scratchpad |
| [w1, w0] = s0; [w3, w2] = s1 */ |
| li x2, 0 |
| bn.lid x2++, 192(x30) |
| bn.lid x2++, 224(x30) |
| bn.lid x2++, 448(x30) |
| bn.lid x2++, 480(x30) |
| |
| /* M = s0[511] | s1[511] */ |
| bn.or w8, w1, w3 |
| |
| /* load q from scratchpad |
| Q = ([w9,w8], [w7,w6], [w5,w4]) <= dmem[x26] */ |
| li x2, 4 |
| bn.lid x2++, 0(x26) |
| bn.lid x2++, 32(x26) |
| bn.lid x2++, 64(x26) |
| bn.lid x2++, 96(x26) |
| bn.lid x2++, 128(x26) |
| bn.lid x2++, 160(x26) |
| |
| /* select either Q or Q_a |
| if M: Q = ([w30,w29], [w28,w27], [w26, w25]) <= Q else: Q <= Q_a */ |
| bn.sel w25, w25, w4, M |
| bn.sel w26, w26, w5, M |
| bn.sel w27, w27, w6, M |
| bn.sel w28, w28, w7, M |
| bn.sel w29, w29, w8, M |
| bn.sel w30, w30, w9, M |
| |
| /* store Q in dmem |
| dmem[x26] = dmem[dptr_sc+512] <= [w30:w25] */ |
| li x2, 25 |
| bn.sid x2++, 0(x26) |
| bn.sid x2++, 32(x26) |
| bn.sid x2++, 64(x26) |
| bn.sid x2++, 96(x26) |
| bn.sid x2++, 128(x26) |
| bn.sid x2++, 160(x26) |
| |
| /* left shift both shares |
| s0 <= s0 << 1 ; s1 <= s1 << 1 */ |
| bn.add w0, w0, w0 |
| bn.addc w1, w1, w1 |
| bn.add w2, w2, w2 |
| bn.addc w3, w3, w3 |
| /* store both shares in scratchpad */ |
| li x2, 0 |
| bn.sid x2++, 192(x30) |
| bn.sid x2++, 224(x30) |
| bn.sid x2++, 448(x30) |
| bn.sid x2++, 480(x30) |
| |
| |
| /* Get a fresh random number from URND and scale the coordinates of 2P. |
| (scaling each proj. coordinate by same factor results in same point) */ |
| |
| /* get a 384-bit random number from URND */ |
| bn.wsrr w2, 2 |
| bn.wsrr w3, 2 |
| bn.rshi w3, w31, w3 >> 128 |
| |
| /* reduce random number |
| [w2, w3] = z <= [w2, w3] mod p */ |
| bn.sub w10, w2, w12 |
| bn.subb w11, w3, w13 |
| bn.sel w2, w2, w10, C |
| bn.sel w3, w3, w11, C |
| |
| /* scale all coordinates in scratchpad */ |
| li x2, 16 |
| li x3, 17 |
| /* x-coordinate */ |
| bn.mov w10, w2 |
| bn.mov w11, w3 |
| bn.lid x2, 256(x30) |
| bn.lid x3, 288(x30) |
| jal x1, p384_mulmod_p |
| bn.sid x2, 256(x30) |
| bn.sid x3, 288(x30) |
| /* y-coordinate */ |
| bn.mov w10, w2 |
| bn.mov w11, w3 |
| bn.lid x2, 320(x30) |
| bn.lid x3, 352(x30) |
| jal x1, p384_mulmod_p |
| bn.sid x2, 320(x30) |
| bn.sid x3, 352(x30) |
| /* z-coordinate */ |
| bn.mov w10, w2 |
| bn.mov w11, w3 |
| bn.lid x2, 384(x30) |
| bn.lid x3, 416(x30) |
| jal x1, p384_mulmod_p |
| bn.sid x2, 384(x30) |
| bn.sid x3, 416(x30) |
| |
| /* convert coordinates to affine space */ |
| jal x1, proj_to_affine_p384 |
| |
| ret |
| |
| |
| /** |
| * Externally callable wrapper for P-384 scalar point multiplication |
| * |
| * returns R = k*P = k*(x_p, y_p) |
| * where R, P are valid P-384 curve points in affine coordinates, |
| * k is a 384-bit scalar.. |
| * |
| * Sets up context and calls the internal scalar multiplication routine. |
| * This routine runs in constant time. |
| * |
| * @param[in] dmem[0]: dK, pointer to location in dmem containing scalar k |
| * @param[in] dmem[4]: dRnd, pointer to location in dmem containing random |
| * number for blinding |
| * @param[in] dmem[20]: dptr_x, pointer to affine x-coordinate in dmem |
| * @param[in] dmem[22]: dptr_y, pointer to affine y-coordinate in dmem |
| * |
| * 384-bit quantities have to be provided in dmem in little-endian format, |
| * 512 bit aligned, with the highest 128 bit set to zero. |
| * |
| * Flags: When leaving this subroutine, the M, L and Z flags of FG0 depend on |
| * the computed affine y-coordinate. |
| * |
| * clobbered registers: x2, x3, x9 to x13, x18 to x21, x26 to x30 |
| * w0 to w30 |
| * clobbered flag groups: FG0 |
| */ |
| .globl scalar_mult_p384 |
| scalar_mult_p384: |
| |
| /* set dmem pointer to point x-coordinate */ |
| la x20, dptr_x |
| lw x20, 0(x20) |
| |
| /* set dmem pointer to point y-coordinate */ |
| la x21, dptr_y |
| lw x21, 0(x21) |
| |
| /* set dmem pointer to scalar k */ |
| la x19, dptr_k |
| lw x19, 0(x19) |
| |
| /* set pointer to blinding parameter */ |
| la x9, dptr_rnd |
| lw x9, 0(x9) |
| |
| /* set dmem pointer to domain parameter b */ |
| la x28, p384_b |
| |
| /* set dmem pointer to scratchpad */ |
| la x30, scratchpad |
| |
| /* load domain parameter p (modulus) |
| [w13, w12] = p = dmem[p384_p] */ |
| li x2, 12 |
| la x3, p384_p |
| bn.lid x2++, 0(x3) |
| bn.lid x2++, 32(x3) |
| |
| /* load domain parameter n (order of base point) |
| [w11, w10] = n = dmem[p384_n] */ |
| li x2, 10 |
| la x3, p384_n |
| bn.lid x2++, 0(x3) |
| bn.lid x2++, 32(x3) |
| |
| /* init all-zero reg */ |
| bn.xor w31, w31, w31 |
| |
| jal x1, scalar_mult_int_p384 |
| |
| /* store result in dmem */ |
| li x2, 25 |
| bn.sid x2++, 0(x20) |
| bn.sid x2++, 32(x20) |
| bn.sid x2++, 0(x21) |
| bn.sid x2++, 32(x21) |
| |
| ret |
| |
| /** |
| * Externally callable routine for P-384 base point multiplication |
| * |
| * returns Q = d (*) G |
| * where Q is a resulting valid P-384 curve point in affine |
| * coordinates, |
| * G is the base point of curve P-384, and |
| * d is a 384-bit scalar. |
| * |
| * Sets up context and calls the internal scalar multiplication routine. |
| * This routine runs in constant time. |
| * |
| * @param[in] dmem[0]: dptr_d, pointer to location in dmem containing |
| * scalar d. |
| * @param[in] dmem[20]: dptr_x, pointer to result buffer for x-coordinate |
| * @param[in] dmem[24]: dptr_y, pointer to result buffer for y-coordinate |
| * @param[in] dmem[28]: dptr_rnd, pointer to location in dmem containing |
| * random number for blinding. |
| * |
| * 384-bit quantities have to be provided in dmem in little-endian format, |
| * 512 bit aligned, with the highest 128 bit set to zero. |
| * |
| * Flags: When leaving this subroutine, the M, L and Z flags of FG0 correspond |
| * to the computed affine y-coordinate. |
| * |
| * clobbered registers: x2, x3, x9 to x13, x18 to x21, x26 to x30 |
| * w0 to w30 |
| * clobbered flag groups: FG0 |
| */ |
| .globl p384_base_mult |
| p384_base_mult: |
| |
| /* set dmem pointer to x-coordinate of base point*/ |
| la x20, p384_gx |
| |
| /* set dmem pointer to y-coordinate of base point */ |
| la x21, p384_gy |
| |
| /* set dmem pointer to scalar d */ |
| la x19, dptr_d |
| lw x19, 0(x19) |
| |
| /* set pointer to blinding parameter */ |
| la x9, dptr_rnd |
| lw x9, 0(x9) |
| |
| /* set dmem pointer to domain parameter b */ |
| la x28, p384_b |
| |
| /* set dmem pointer to scratchpad */ |
| la x30, scratchpad |
| |
| /* load domain parameter p (modulus) |
| [w13, w12] = p = dmem[p384_p] */ |
| li x2, 12 |
| la x3, p384_p |
| bn.lid x2++, 0(x3) |
| bn.lid x2++, 32(x3) |
| |
| /* load domain parameter n (order of base point) |
| [w11, w10] = n = dmem[p384_n] */ |
| li x2, 10 |
| la x3, p384_n |
| bn.lid x2++, 0(x3) |
| bn.lid x2++, 32(x3) |
| |
| /* init all-zero reg */ |
| bn.xor w31, w31, w31 |
| |
| jal x1, scalar_mult_int_p384 |
| |
| /* set dmem pointer to point x-coordinate */ |
| la x20, dptr_x |
| lw x20, 0(x20) |
| |
| /* set dmem pointer to point y-coordinate */ |
| la x21, dptr_y |
| lw x21, 0(x21) |
| |
| /* store result in dmem */ |
| li x2, 25 |
| bn.sid x2++, 0(x20) |
| bn.sid x2++, 32(x20) |
| bn.sid x2++, 0(x21) |
| bn.sid x2++, 32(x21) |
| |
| ret |
| |
| |
| /** |
| * Variable-time modular multiplicative inverse computation |
| * |
| * returns x_inv = x^-1 mod m |
| * |
| * This routine computes the modular multiplicative inverse for any x < m in |
| * the finite field GF(m) where m is prime. |
| * |
| * For inverse computation, Fermat's little theorem is used, i.e. |
| * we compute x^-1 = x^(m-2) mod m. |
| * For exponentiation we use a standard, variable-time (!) square and multiply |
| * algorithm. |
| * |
| * This routine is mainly intended to be used for inversion of scalars in |
| * context of the P-384 curve. In theory, it can be used with any 384-bit |
| * modulus m with a corresponding 385-bit Barrett constant u, |
| * where u[383:192] = 0. |
| * |
| * Note: When used for P-384 scalar inversion, the routine will need 672 calls |
| * to the multiplication routine. By using an adder chain this could be reduced |
| * to ~433 multiplications, however, at the cost of a significant codes size |
| * increase. |
| * |
| * Note: This routine runs in variable-time w.r.t. the modulus. It should only |
| * be used with a non-secret modulus. |
| * |
| * @param[in] [w13, w12]: m, 384 bit modulus |
| * @param[in] w14: k, Solinas constant (2^384 - m) (max. length 191 bits). |
| * @param[in] [w30, w29]: x, 384 bit operand |
| * @param[in] w31, all-zero |
| * @param[out] [w17, w16]: x_inv, modular multiplicative inverse |
| * |
| * Flags: Flags have no meaning beyond the scope of this subroutine. |
| * |
| * clobbered registers: x2, w2, w3, w10, w11, w16 to w24 |
| * clobbered flag groups: FG0 |
| */ |
| mod_inv_n_p384: |
| |
| /* subtract 2 from modulus for Fermat's little theorem |
| [w13,w12] <= m - 2 = [w11,w10]-2 (left aligned) */ |
| bn.subi w2, w12, 2 |
| bn.subb w3, w13, w31 |
| bn.rshi w3, w3, w2 >> 128 |
| bn.rshi w2, w2, w31 >> 128 |
| |
| /* init square and multiply: [w17,w16] = 1 */ |
| bn.addi w16, w31, 1 |
| bn.mov w17, w31 |
| |
| /* square and multiply loop */ |
| loopi 384, 12 |
| |
| /* square: [w17,w16] <= [w17, w16]*[w11,w10] mod [w13, w12] */ |
| bn.mov w10, w16 |
| bn.mov w11, w17 |
| jal x1, p384_mulmod_n |
| |
| /* shift MSB into carry flag |
| [w3,w2] = 2*[w3,w2] = [w3,w2] << 1 */ |
| bn.add w2, w2, w2 |
| bn.addc w3, w3, w3 |
| |
| /* skip multiplication if C flag not set */ |
| csrrs x2, 0x7c0, x0 |
| andi x2, x2, 1 |
| beq x2, x0, nomul |
| |
| /* multiply: [w17,w16] <= [w17, w16]*[w30,w29] mod [w13, w12] */ |
| bn.mov w10, w29 |
| bn.mov w11, w30 |
| jal x1, p384_mulmod_n |
| |
| nomul: |
| nop |
| |
| ret |
| |
| |
| /** |
| * P-384 ECDSA signature generation |
| * |
| * returns the signature as the pair r, s with |
| * r = x_1 mod n |
| * and s = k^(-1)(msg + r*d) mod n |
| * where x_1 is the affine x-coordinate of the curve point k*G, |
| * G is the curve's base point, |
| * k is a supplied secret random number, |
| * n is the order of the base point G of P-256, |
| * msg is the message to be signed, and |
| * d is the private key. |
| * |
| * This routine runs in constant time. |
| * |
| * @param[in] dmem[0]: dptr_k, pointer to a 384 bit random secret in dmem |
| * @param[in] dmem[4]: dptr_rnd, pointer to location in dmem containing |
| * a 384-bit random number for blinding |
| * @param[in] dmem[8]: dptr_msg, pointer to the message to be signed in dmem |
| * @param[in] dmem[12]: dptr_r, pointer to dmem location where s component |
| * of signature will be placed |
| * @param[in] dmem[16]: dptr_s, pointer to dmem location where r component |
| * of signature will be placed |
| * @param[in] dmem[28]: dptr_d, pointer to private key d in dmem |
| * |
| * Flags: Flags have no meaning beyond the scope of this subroutine. |
| * |
| * clobbered registers: x2, x3, x9 to x13, x18 to x28, x30 |
| * w0 to w31 |
| * clobbered flag groups: FG0 |
| */ |
| .globl p384_sign |
| p384_sign: |
| /* init all-zero reg */ |
| bn.xor w31, w31, w31 |
| |
| /* set dmem pointer to domain parameter b */ |
| la x28, p384_b |
| |
| /* set dmem pointer to base point x-coordinate */ |
| la x20, p384_gx |
| |
| /* set dmem pointer to base point y-coordinate */ |
| la x21, p384_gy |
| |
| /* set dmem pointer to secret random scalar k */ |
| la x19, dptr_k |
| lw x19, 0(x19) |
| |
| /* set pointer to blinding parameter */ |
| la x9, dptr_rnd |
| lw x9, 0(x9) |
| |
| /* set dmem pointer to scratchpad */ |
| la x30, scratchpad |
| |
| /* load domain parameter p (modulus) |
| [w13, w12] <= p = dmem[dptr_p] */ |
| li x2, 12 |
| la x3, p384_p |
| bn.lid x2++, 0(x3) |
| bn.lid x2++, 32(x3) |
| |
| /* load domain parameter n (order of base point) |
| [w11, w10] = n = dmem[p384_n] */ |
| li x2, 10 |
| la x3, p384_n |
| bn.lid x2++, 0(x3) |
| bn.lid x2++, 32(x3) |
| |
| /* scalar multiplication with base point |
| [w28:w25] <= (x_1, y_1) = k*G */ |
| jal x1, scalar_mult_int_p384 |
| |
| /* store r of signature in dmem: dmem[dptr_r] <= r = [w26,w25] */ |
| li x2, 25 |
| la x3, dptr_r |
| lw x3, 0(x3) |
| bn.sid x2++, 0(x3) |
| bn.sid x2++, 32(x3) |
| |
| /* load secret random number k from dmem |
| [w30,w29] <= k = dmem[dptr_k] */ |
| li x2, 29 |
| bn.lid x2++, 0(x19) |
| bn.lid x2++, 32(x19) |
| |
| /* load domain parameter n (order of base point) |
| [w13, w12] <= p = dmem[p384_n] */ |
| li x2, 12 |
| la x3, p384_n |
| bn.lid x2++, 0(x3) |
| bn.lid x2++, 32(x3) |
| |
| /* Compute Solinas constant k for modulus n (we know it is only 191 bits, so |
| no need to compute the high part): |
| w14 <= 2^256 - n[255:0] = (2^384 - n) mod (2^256) = 2^384 - n */ |
| bn.sub w14, w31, w12 |
| |
| /* modular multiplicative inverse of k |
| [w3, w2] <= [w17, w16] <= k^(-1) mod n */ |
| jal x1, mod_inv_n_p384 |
| bn.mov w2, w16 |
| bn.mov w3, w17 |
| |
| /* load private key d from dmem |
| [w11,w10] <= d = dmem[dptr_d] */ |
| li x2, 10 |
| la x3, dptr_d |
| lw x3, 0(x3) |
| bn.lid x2++, 0(x3) |
| bn.lid x2++, 32(x3) |
| |
| /* [w17, w16] <= k^(-1)*d mod n = [w17, w16] * [w11, w10] mod [w13, w12] */ |
| jal x1, p384_mulmod_n |
| |
| /* [w5, w4] <= [w17, w16] |
| <= r * (k^(-1)*d) mod n = [w26, w25] * [w17, w16] mod [w13, w12] */ |
| bn.mov w10, w25 |
| bn.mov w11, w26 |
| jal x1, p384_mulmod_n |
| bn.mov w4, w16 |
| bn.mov w5, w17 |
| |
| /* load message from dmem |
| [w11, w10] <= msg = dmem[dptr_msg] */ |
| li x2, 10 |
| la x3, dptr_msg |
| lw x3, 0(x3) |
| bn.lid x2++, 0(x3) |
| bn.lid x2++, 32(x3) |
| |
| /* [w17, w16] <= k^(-1) * msg = [w3, w2]*[w17, w16] mod n */ |
| bn.mov w16, w2 |
| bn.mov w17, w3 |
| jal x1, p384_mulmod_n |
| |
| /* [w28, w27] <= s' = k^(-1)*msg + k^(-1)*r*d = [w17, w16] + [w5, w4]*/ |
| bn.add w27, w16, w4 |
| bn.addc w28, w17, w5 |
| |
| /* reduce s: [w28, w27] <= s <= s' mod n = [w28, w27] mod [w13, w12] */ |
| bn.sub w10, w27, w12 |
| bn.subb w11, w28, w13 |
| bn.sel w27, w27, w10, C |
| bn.sel w28, w28, w11, C |
| |
| /* store s of signature in dmem: dmem[dptr_s] <= s = [w28, w27] */ |
| li x2, 27 |
| la x3, dptr_s |
| lw x3, 0(x3) |
| bn.sid x2++, 0(x3) |
| bn.sid x2++, 32(x3) |
| |
| ret |
| |
| |
| /* pointers and scratchpad memory */ |
| .section .data |
| |
| /* pointer to k (dptr_k) */ |
| .globl dptr_k |
| dptr_k: |
| .zero 4 |
| |
| /* pointer to rnd (dptr_rnd) */ |
| .globl dptr_rnd |
| dptr_rnd: |
| .zero 4 |
| |
| /* pointer to msg (dptr_msg) */ |
| .globl dptr_msg |
| dptr_msg: |
| .zero 4 |
| |
| /* pointer to R (dptr_r) */ |
| .globl dptr_r |
| dptr_r: |
| .zero 4 |
| |
| /* pointer to S (dptr_s) */ |
| .globl dptr_s |
| dptr_s: |
| .zero 4 |
| |
| /* pointer to X (dptr_x) */ |
| .globl dptr_x |
| dptr_x: |
| .zero 4 |
| |
| /* pointer to Y (dptr_y) */ |
| .globl dptr_y |
| dptr_y: |
| .zero 4 |
| |
| /* pointer to D (dptr_d) */ |
| .globl dptr_d |
| dptr_d: |
| .zero 4 |
| |
| /* 704 bytes of scratchpad memory */ |
| scratchpad: |
| .zero 704 |