blob: 7ad88540bb5caef61c12d888875d762710036979 [file] [log] [blame]
// Copyright lowRISC contributors.
// Licensed under the Apache License, Version 2.0, see LICENSE for details.
// SPDX-License-Identifier: Apache-2.0
//
// Core Implemenation module for Serial Peripheral Interface (SPI) Host IP.
//
module spi_host_fsm
import spi_host_cmd_pkg::*;
#(
parameter int NumCS = 1
) (
input clk_i,
input rst_ni,
input en_i,
input command_t command_i,
input command_valid_i,
output logic command_ready_o,
output logic sck_o,
output logic [NumCS-1:0] csb_o,
output logic [3:0] sd_en_o,
output logic cmd_end_o,
output logic wr_en_o,
input sr_wr_ready_i,
output logic rd_en_o,
input sr_rd_ready_i,
output logic sample_en_o,
output logic shift_en_o,
output logic [1:0] speed_o,
output logic full_cyc_o,
output logic rx_stall_o,
output logic tx_stall_o,
output logic active_o,
input sw_rst_i
);
logic isIdle;
logic [15:0] clkdiv, clkdiv_q;
logic [15:0] clk_cntr_q, clk_cntr_d;
logic clk_cntr_en;
logic [CSW-1:0] csid;
logic [CSW-1:0] csid_q;
logic [3:0] csnidle, csntrail, csnlead;
logic [3:0] csnidle_q, csntrail_q, csnlead_q;
logic full_cyc, cpha, cpol;
logic full_cyc_q, cpha_q, cpol_q;
logic [1:0] cmd_speed;
logic [1:0] cmd_speed_q;
logic cmd_wr_en, cmd_wr_en_q;
logic cmd_rd_en, cmd_rd_en_q;
// cmd_len needs no data latching as it is only used at the very start of a command.
// The corresponding register, cmd_len_q, would create a warning at synthesis
logic [8:0] cmd_len;
logic csaat;
logic csaat_q;
logic [2:0] bit_cntr_d, bit_cntr_q;
logic [8:0] byte_cntr_d, byte_cntr_q;
logic [3:0] lead_cntr_d, idle_cntr_d, trail_cntr_d;
logic [3:0] lead_cntr_q, idle_cntr_q, trail_cntr_q;
logic last_bit, last_byte;
logic state_changing;
logic byte_starting, byte_starting_cpha0, byte_starting_cpha1;
logic bit_shifting, bit_shifting_cpha0, bit_shifting_cpha1;
logic byte_ending, byte_ending_cpha0, byte_ending_cpha1;
logic lead_starting;
logic trail_starting;
logic idle_starting;
logic sample_en_d, sample_en_q, sample_en_q2;
logic switch_required;
logic fsm_en;
logic new_command;
logic csb_single_d;
logic [NumCS-1:0] csb_q;
logic sck_d, sck_q;
logic wr_en_internal, rd_en_internal, sample_en_internal, shift_en_internal;
logic stall;
assign stall = rx_stall_o | tx_stall_o;
// suppress output pulses if stalled.
assign wr_en_o = wr_en_internal & ~stall;
assign rd_en_o = rd_en_internal & ~stall;
assign sample_en_o = sample_en_internal & ~stall;
assign shift_en_o = shift_en_internal & ~stall;
typedef enum logic [2:0] {
Idle,
WaitLead,
InternalClkLow,
InternalClkHigh,
WaitTrail,
WaitIdle,
CSBSwitch,
IdleCSBActive
} spi_host_st_e;
spi_host_st_e spi_host_st_q, spi_host_st_d;
assign new_command = command_valid_i && command_ready_o;
assign switch_required = command_valid_i && (command_i.csid != csid_q);
always_comb begin
csid = new_command ? command_i.csid : csid_q;
cpol = new_command ? command_i.configopts.cpol : cpol_q;
cpha = new_command ? command_i.configopts.cpha : cpha_q;
full_cyc = new_command ? command_i.configopts.full_cyc : full_cyc_q;
csnidle = new_command ? command_i.configopts.csnidle : csnidle_q;
csnlead = new_command ? command_i.configopts.csnlead : csnlead_q;
csntrail = new_command ? command_i.configopts.csntrail : csntrail_q;
clkdiv = new_command ? command_i.configopts.clkdiv : clkdiv_q;
csaat = new_command ? command_i.segment.csaat : csaat_q;
// cmd_len needs no data latching as it is only used at the very start of a command.
cmd_len = command_i.segment.len;
cmd_rd_en = new_command ? command_i.segment.cmd_rd_en : cmd_rd_en_q;
cmd_wr_en = new_command ? command_i.segment.cmd_wr_en : cmd_wr_en_q;
cmd_speed = new_command ? command_i.segment.speed : cmd_speed_q;
end
always_ff @(posedge clk_i or negedge rst_ni) begin
if (!rst_ni) begin
csid_q <= {CSW{1'b0}};
cpol_q <= 1'b0;
cpha_q <= 1'b0;
full_cyc_q <= 1'b0;
csnidle_q <= 4'h0;
csnlead_q <= 4'h0;
csntrail_q <= 4'h0;
clkdiv_q <= 16'h0;
csaat_q <= 1'b0;
cmd_rd_en_q <= 1'b0;
cmd_wr_en_q <= 1'b0;
cmd_speed_q <= 2'b00;
end else begin
csid_q <= new_command ? csid : csid_q;
cpol_q <= new_command ? cpol : cpol_q;
cpha_q <= new_command ? cpha : cpha_q;
full_cyc_q <= new_command ? full_cyc : full_cyc_q;
csnidle_q <= new_command ? csnidle : csnidle_q;
csnlead_q <= new_command ? csnlead : csnlead_q;
csntrail_q <= new_command ? csntrail : csntrail_q;
clkdiv_q <= new_command ? clkdiv : clkdiv_q;
csaat_q <= new_command ? csaat : csaat_q;
cmd_rd_en_q <= new_command ? cmd_rd_en : cmd_rd_en_q;
cmd_wr_en_q <= new_command ? cmd_wr_en : cmd_wr_en_q;
cmd_speed_q <= new_command ? cmd_speed : cmd_speed_q;
end
end
assign isIdle = (spi_host_st_q == Idle) || (spi_host_st_q == IdleCSBActive);
assign active_o = ~isIdle;
assign clk_cntr_d = sw_rst_i ? 16'h0 :
!clk_cntr_en ? clk_cntr_q :
isIdle ? 16'h0 :
new_command ? clkdiv :
(clk_cntr_q == 16'h0) ? clkdiv :
clk_cntr_q - 1;
assign tx_stall_o = wr_en_internal & ~sr_wr_ready_i;
assign rx_stall_o = rd_en_internal & ~sr_rd_ready_i;
assign clk_cntr_en = en_i;
assign fsm_en = (clk_cntr_en && clk_cntr_q == 0);
always_comb begin
spi_host_st_d = spi_host_st_q;
command_ready_o = 1'b0;
if (sw_rst_i) begin
spi_host_st_d = Idle;
end else if (fsm_en) begin
unique case (spi_host_st_q)
Idle: begin
// Initial state, wait for commands.
command_ready_o = 1'b1;
if (command_valid_i) begin
if (command_i.csid != csid_q) begin
spi_host_st_d = CSBSwitch;
end else begin
spi_host_st_d = WaitLead;
end
end
end
WaitLead: begin
// Transaction lead: CSB is low, waiting to start sck pulses.
if (lead_cntr_q == 4'h0) begin
spi_host_st_d = InternalClkHigh;
end
end
InternalClkLow: begin
// One of two active clock states. sck is low when CPOL=0.
spi_host_st_d = InternalClkHigh;
end
InternalClkHigh: begin
// One of two active clock states. sck is low when CPOL=0.
// Typically often the last state in a command, and so the next state depends on CSAAT,
// and of CSAAT is asserted, the details of the subsequent command.
if (!last_bit || !last_byte) begin
spi_host_st_d = InternalClkLow;
end else if (command_i.segment.csaat) begin
spi_host_st_d = WaitTrail;
end else if (!command_valid_i) begin
spi_host_st_d = IdleCSBActive;
end else if (command_i.csid != csid_q) begin
spi_host_st_d = WaitTrail;
end else begin
command_ready_o = 1'b1;
spi_host_st_d = InternalClkLow;
end
end
WaitTrail: begin
// Prepare to enter CSB high idle state by waiting csntrail cycles.
if (trail_cntr_q == 4'h0) begin
spi_host_st_d = WaitIdle;
end
end
WaitIdle: begin
// Once CSB is high, wait for the designated number of cyclse before accepting commands.
if (idle_cntr_q == 4'h0) begin
// ready to accept new command
command_ready_o = 1'b1;
if (command_valid_i) begin
if (switch_required) begin
spi_host_st_d = CSBSwitch;
end else begin
spi_host_st_d = WaitLead;
end
end else begin
spi_host_st_d = Idle;
end
end
end
CSBSwitch: begin
// Insert extra idle cycles when swtiching between CSID, this allows time to switch CPHA,
// CPOL and clkdiv settings, as well as guarantee that the idle delay requirements have
// been observed for the new device.
if (idle_cntr_q == 4'h0) begin
spi_host_st_d = WaitLead;
end else begin
spi_host_st_d = WaitIdle;
end
end
IdleCSBActive: begin
// Wait for new commands, but with CSB held active low.
if (command_valid_i) begin
if (command_i.csid != csid_q) begin
// New command received, but for a different CSID than the last. Deactivate CSB,
// while still adhering to trail and idle time requirements
spi_host_st_d = WaitTrail;
// Explicitly delay command_ready until the end of WaitIdle. We need to observe
// the trail time requirements for the current CSID, so we can't update our
// configopts until CSB is high.
command_ready_o = 1'b0;
end else begin
command_ready_o = 1'b1;
spi_host_st_d = InternalClkLow;
end
end else begin
command_ready_o = 1'b1;
end
end
default: begin
command_ready_o = 1'b0;
spi_host_st_d = Idle;
end
endcase
end
end
// All register updates freeze when a stall is detected.
// The definition of the stall signal looks ahead to determine whether a conflict is looming.
// Thus stall depends on spi_host_st_d. Making spi_host_st_d depend on stall
// would create a circular logic loop, and lint errors. Therefore stall is applied here, not
// in the previous always_comb block;
always_ff @(posedge clk_i or negedge rst_ni) begin
if (!rst_ni) begin
spi_host_st_q <= Idle;
clk_cntr_q <= 16'h0;
end else begin
spi_host_st_q <= stall ? spi_host_st_q : spi_host_st_d;
clk_cntr_q <= stall ? clk_cntr_q : clk_cntr_d;
end
end
assign state_changing = (spi_host_st_q != spi_host_st_d);
assign byte_starting_cpha0 = ~sw_rst_i & state_changing &
((spi_host_st_d == WaitLead) |
(spi_host_st_d == InternalClkLow & bit_cntr_q==0));
assign bit_shifting_cpha0 = ~sw_rst_i & state_changing &
(spi_host_st_d == InternalClkLow & bit_cntr_q != 0);
assign byte_ending_cpha0 = ~sw_rst_i & state_changing &
(spi_host_st_q == InternalClkHigh & bit_cntr_q == 0);
// We can calculate byte transitions for CHPA=1 by noting
// that in this implmentation, the sck edges have a 1-1
// correspondence with FSM transitions.
// New bytes are loaded exactly one state transition behind the time
// when they would be loaded if CPHA=0
always_ff @(posedge clk_i or negedge rst_ni) begin
if (!rst_ni) begin
byte_starting_cpha1 <= 1'b0;
byte_ending_cpha1 <= 1'b0;
bit_shifting_cpha1 <= 1'b0;
end else begin
byte_ending_cpha1 <= (state_changing && !stall) ? byte_ending_cpha0 : 1'b0;
byte_starting_cpha1 <= (state_changing && !stall) ? byte_starting_cpha0 : 1'b0;
bit_shifting_cpha1 <= (state_changing && !stall) ? bit_shifting_cpha0 : 1'b0;
end
end
assign byte_starting = (cpha == 1'b0) ? byte_starting_cpha0 :
byte_starting_cpha1;
assign byte_ending = (cpha == 1'b0) ? byte_ending_cpha0 :
byte_ending_cpha1;
assign bit_shifting = (cpha == 1'b0) ? bit_shifting_cpha0 :
bit_shifting_cpha1;
logic [2:0] shift_size;
logic [2:0] start_bit;
always_comb begin
if (!cmd_rd_en && !cmd_wr_en) begin
// direction == 0, means to send out
// a fixed number of pulses, NOT bytes.
// thus "last_bit" is always asserted,
// and the number of pulses is counted
// by byte_cntr_d.
shift_size = 0;
start_bit = 3'h0;
end else begin
unique case (cmd_speed)
Standard: begin
shift_size = 3'h1;
start_bit = 3'h7;
end
Dual: begin
shift_size = 3'h2;
start_bit = 3'h6;
end
Quad: begin
shift_size = 3'h4;
start_bit = 3'h4;
end
default: begin
// Invalid_speed;
shift_size = 3'h1;
start_bit = 3'h1;
end
endcase
end
end
assign bit_cntr_d = sw_rst_i ? 3'h0 :
!fsm_en ? bit_cntr_q :
byte_starting ? start_bit :
bit_shifting ? bit_cntr_q - shift_size :
bit_cntr_q;
assign last_bit = (bit_cntr_q == 3'h0);
assign last_byte = (byte_cntr_q == 9'h0);
assign byte_cntr_d = sw_rst_i ? 9'h0 :
!fsm_en ? byte_cntr_q :
new_command ? cmd_len :
byte_ending ? byte_cntr_q - 1 :
byte_cntr_q;
assign lead_starting = state_changing && spi_host_st_d == WaitLead;
assign lead_cntr_d = sw_rst_i ? 4'h0 :
!fsm_en ? lead_cntr_q :
lead_starting ? csnlead :
lead_cntr_q == 0 ? 4'h0 :
lead_cntr_q - 1;
assign trail_starting = state_changing && spi_host_st_d == WaitTrail;
assign trail_cntr_d = sw_rst_i ? 4'h0 :
!fsm_en ? trail_cntr_q :
trail_starting ? csntrail :
trail_cntr_q == 0 ? 4'h0 :
trail_cntr_q - 1;
assign idle_starting = state_changing &&
(spi_host_st_d == WaitIdle ||
spi_host_st_d == CSBSwitch);
assign idle_cntr_d = sw_rst_i ? 4'h0 :
!fsm_en ? idle_cntr_q :
idle_starting ? csnidle :
idle_cntr_q == 0 ? 4'h0 :
idle_cntr_q - 1;
always_ff @(posedge clk_i or negedge rst_ni) begin
if (!rst_ni) begin
bit_cntr_q <= 3'h0;
byte_cntr_q <= 9'h0;
idle_cntr_q <= 4'h0;
lead_cntr_q <= 4'h0;
trail_cntr_q <= 4'h0;
end else begin
bit_cntr_q <= stall ? bit_cntr_q : bit_cntr_d;
byte_cntr_q <= stall ? byte_cntr_q : byte_cntr_d;
idle_cntr_q <= stall ? idle_cntr_q : idle_cntr_d;
lead_cntr_q <= stall ? lead_cntr_q : lead_cntr_d;
trail_cntr_q <= stall ? trail_cntr_q : trail_cntr_d;
end
end
assign wr_en_internal = byte_starting & cmd_wr_en;
assign shift_en_internal = bit_shifting;
assign rd_en_internal = byte_ending & cmd_rd_en;
assign speed_o = cmd_speed;
assign sample_en_d = byte_starting | shift_en_o;
assign full_cyc_o = full_cyc;
assign cmd_end_o = (byte_cntr_q == 'h0);
always_ff @(posedge clk_i or negedge rst_ni) begin
if (!rst_ni) begin
sample_en_q <= 1'b0;
sample_en_q2 <= 1'b00;
end else begin
sample_en_q <= (fsm_en && !stall) ? sample_en_d : sample_en_q;
sample_en_q2 <= (fsm_en && !stall) ? sample_en_q : sample_en_q2;
end
end
assign sample_en_internal = full_cyc_o ? sample_en_q2 : sample_en_q;
always_comb begin
unique case (spi_host_st_d)
WaitLead, InternalClkLow, InternalClkHigh, IdleCSBActive, WaitTrail:
csb_single_d = 1'b0;
default:
csb_single_d = 1'b1;
endcase
end
assign sck_d = cpol ? (spi_host_st_d != InternalClkHigh) :
(spi_host_st_d == InternalClkHigh);
assign sck_o = sck_q;
for (genvar ii = 0; ii < NumCS; ii = ii + 1) begin : gen_csb_gen
always_ff @(posedge clk_i or negedge rst_ni) begin
if (!rst_ni) begin
csb_q[ii] <= 1'b1;
sck_q <= 1'b0;
end else begin
csb_q[ii] <= (csid != ii) ? 1'b1 :
!stall ? csb_single_d :
csb_q[ii];
sck_q <= !stall ? sck_d : sck_q;
end
end
end : gen_csb_gen
assign csb_o = csb_q;
always_comb begin
if (&csb_o) begin
sd_en_o[3:0] = 4'h0;
end else begin
unique case (cmd_speed)
Standard: begin
sd_en_o[0] = 1'b1;
sd_en_o[1] = 1'b0;
sd_en_o[3:2] = 2'b00;
end
Dual: begin
sd_en_o[1:0] = {2{cmd_wr_en}};
sd_en_o[3:2] = 2'b00;
end
Quad: begin
sd_en_o[3:0] = {4{cmd_wr_en}};
end
default: begin
// invalid speed
sd_en_o[3:0] = 4'h0;
end
endcase
end
end
//
// Assertions confirming valid user input.
//
`ASSERT(BidirOnlyInStdMode_A, cmd_speed == Standard || !(cmd_rd_en && cmd_wr_en), clk_i, rst_ni)
`ASSERT(ValidSpeed_A, cmd_speed != RsvdSpd, clk_i, rst_ni)
`ASSERT(ValidCSID_A, csid < NumCS, clk_i, rst_ni)
endmodule