blob: 17f3e19ad5b05a2ad84260b4a8c2af5158684b49 [file] [log] [blame]
// Copyright lowRISC contributors.
// Licensed under the Apache License, Version 2.0, see LICENSE for details.
// SPDX-License-Identifier: Apache-2.0
//
// N:1 arbiter module
//
// Verilog parameter
// N: Number of request ports
// DW: Data width
// DataPort: Set to 1 to enable the data port. Otherwise that port will be ignored.
//
// This is the original implementation of the arbiter which relies on parallel prefix computing
// optimization to optimize the request / arbiter tree. Not all synthesis tools may support this.
//
// Note that the currently winning request is held if the data sink is not ready. This behavior is
// required by some interconnect protocols (AXI, TL). The module contains an assertion that checks
// this behavior.
//
// Also, this module contains a request stability assertion that checks that requests stay asserted
// until they have been served. This assertion can be gated by driving the req_chk_i low. This is
// a non-functional input and does not affect the designs behavior.
//
// See also: prim_arbiter_tree
`include "prim_assert.sv"
module prim_arbiter_ppc #(
parameter int unsigned N = 8,
parameter int unsigned DW = 32,
// Configurations
// EnDataPort: {0, 1}, if 0, input data will be ignored
parameter bit EnDataPort = 1,
// Derived parameters
localparam int IdxW = $clog2(N)
) (
input clk_i,
input rst_ni,
input req_chk_i, // Used for gating assertions. Drive to 1 during normal
// operation.
input [ N-1:0] req_i,
input [DW-1:0] data_i [N],
output logic [ N-1:0] gnt_o,
output logic [IdxW-1:0] idx_o,
output logic valid_o,
output logic [DW-1:0] data_o,
input ready_i
);
// req_chk_i is used for gating assertions only.
logic unused_req_chk;
assign unused_req_chk = req_chk_i;
`ASSERT_INIT(CheckNGreaterZero_A, N > 0)
// this case is basically just a bypass
if (N == 1) begin : gen_degenerate_case
assign valid_o = req_i[0];
assign data_o = data_i[0];
assign gnt_o[0] = valid_o & ready_i;
assign idx_o = '0;
end else begin : gen_normal_case
logic [N-1:0] masked_req;
logic [N-1:0] ppc_out;
logic [N-1:0] arb_req;
logic [N-1:0] mask, mask_next;
logic [N-1:0] winner;
assign masked_req = mask & req_i;
assign arb_req = (|masked_req) ? masked_req : req_i;
// PPC
// Even below code looks O(n) but DC optimizes it to O(log(N))
// Using Parallel Prefix Computation
always_comb begin
ppc_out[0] = arb_req[0];
for (int i = 1 ; i < N ; i++) begin
ppc_out[i] = ppc_out[i-1] | arb_req[i];
end
end
// Grant Generation: Leading-One detector
assign winner = ppc_out ^ {ppc_out[N-2:0], 1'b0};
assign gnt_o = (ready_i) ? winner : '0;
assign valid_o = |req_i;
// Mask Generation
assign mask_next = {ppc_out[N-2:0], 1'b0};
always_ff @(posedge clk_i or negedge rst_ni) begin
if (!rst_ni) begin
mask <= '0;
end else if (valid_o && ready_i) begin
// Latch only when requests accepted
mask <= mask_next;
end else if (valid_o && !ready_i) begin
// Downstream isn't yet ready so, keep current request alive. (First come first serve)
mask <= ppc_out;
end
end
if (EnDataPort == 1) begin: gen_datapath
always_comb begin
data_o = '0;
for (int i = 0 ; i < N ; i++) begin
if (winner[i]) begin
data_o = data_i[i];
end
end
end
end else begin: gen_nodatapath
assign data_o = '1;
// The following signal is used to avoid possible lint errors.
logic [DW-1:0] unused_data [N];
assign unused_data = data_i;
end
always_comb begin
idx_o = '0;
for (int unsigned i = 0 ; i < N ; i++) begin
if (winner[i]) begin
idx_o = i[IdxW-1:0];
end
end
end
end
////////////////
// assertions //
////////////////
// KNOWN assertions on outputs, except for data as that may be partially X in simulation
// e.g. when used on a BUS
`ASSERT_KNOWN(ValidKnown_A, valid_o)
`ASSERT_KNOWN(GrantKnown_A, gnt_o)
`ASSERT_KNOWN(IdxKnown_A, idx_o)
// grant index shall be higher index than previous index, unless no higher requests exist.
`ASSERT(RoundRobin_A,
##1 valid_o && ready_i && $past(ready_i) && $past(valid_o) &&
|(req_i & ~((N'(1) << $past(idx_o)+1) - 1)) |->
idx_o > $past(idx_o))
// we can only grant one requestor at a time
`ASSERT(CheckHotOne_A, $onehot0(gnt_o))
// A grant implies that the sink is ready
`ASSERT(GntImpliesReady_A, |gnt_o |-> ready_i)
// A grant implies that the arbiter asserts valid as well
`ASSERT(GntImpliesValid_A, |gnt_o |-> valid_o)
// A request and a sink that is ready imply a grant
`ASSERT(ReqAndReadyImplyGrant_A, |req_i && ready_i |-> |gnt_o)
// A request and a sink that is ready imply a grant
`ASSERT(ReqImpliesValid_A, |req_i |-> valid_o)
// Both conditions above combined and reversed
`ASSERT(ReadyAndValidImplyGrant_A, ready_i && valid_o |-> |gnt_o)
// Both conditions above combined and reversed
`ASSERT(NoReadyValidNoGrant_A, !(ready_i || valid_o) |-> gnt_o == 0)
// check index / grant correspond
`ASSERT(IndexIsCorrect_A, ready_i && valid_o |-> gnt_o[idx_o] && req_i[idx_o])
if (EnDataPort) begin: gen_data_port_assertion
// data flow
`ASSERT(DataFlow_A, ready_i && valid_o |-> data_o == data_i[idx_o])
end
// requests must stay asserted until they have been granted
`ASSUME(ReqStaysHighUntilGranted0_M, |req_i && !ready_i |=>
(req_i & $past(req_i)) == $past(req_i), clk_i, !rst_ni || !req_chk_i)
// check that the arbitration decision is held if the sink is not ready
`ASSERT(LockArbDecision_A, |req_i && !ready_i |=> idx_o == $past(idx_o),
clk_i, !rst_ni || !req_chk_i)
// FPV-only assertions with symbolic variables
`ifdef FPV_ON
// symbolic variables
int unsigned k;
bit ReadyIsStable;
bit ReqsAreStable;
// constraints for symbolic variables
`ASSUME(KStable_M, ##1 $stable(k))
`ASSUME(KRange_M, k < N)
// this is used enable checking for stable and unstable ready_i and req_i signals in the same run.
// the symbolic variables act like a switch that the solver can trun on and off.
`ASSUME(ReadyIsStable_M, ##1 $stable(ReadyIsStable))
`ASSUME(ReqsAreStable_M, ##1 $stable(ReqsAreStable))
`ASSUME(ReadyStable_M, ##1 !ReadyIsStable || $stable(ready_i))
`ASSUME(ReqsStable_M, ##1 !ReqsAreStable || $stable(req_i))
// A grant implies a request
`ASSERT(GntImpliesReq_A, gnt_o[k] |-> req_i[k])
// if request and ready are constantly held at 1, we should eventually get a grant
`ASSERT(NoStarvation_A,
ReqsAreStable && ReadyIsStable && ready_i && req_i[k] |->
strong(##[0:$] gnt_o[k]))
// if N requests are constantly asserted and ready is constant 1, each request must
// be granted exactly once over a time window of N cycles for the arbiter to be fair.
for (genvar n = 1; n <= N; n++) begin : gen_fairness
integer gnt_cnt;
`ASSERT(Fairness_A,
ReqsAreStable && ReadyIsStable && ready_i && req_i[k] &&
$countones(req_i) == n |->
##n gnt_cnt == $past(gnt_cnt, n) + 1)
always_ff @(posedge clk_i or negedge rst_ni) begin : p_cnt
if (!rst_ni) begin
gnt_cnt <= 0;
end else begin
gnt_cnt <= gnt_cnt + gnt_o[k];
end
end
end
// requests must stay asserted until they have been granted
`ASSUME(ReqStaysHighUntilGranted1_M, req_i[k] && !gnt_o[k] |=>
req_i[k], clk_i, !rst_ni || !req_chk_i)
`endif
endmodule : prim_arbiter_ppc