blob: 78d7762c480215b02e1d7e272fccee0caf16a6d2 [file] [log] [blame]
// Copyright lowRISC contributors.
// Licensed under the Apache License, Version 2.0, see LICENSE for details.
// SPDX-License-Identifier: Apache-2.0
//
// Register Top module auto-generated by `reggen`
`include "prim_assert.sv"
module rstmgr_reg_top (
input clk_i,
input rst_ni,
input tlul_pkg::tl_h2d_t tl_i,
output tlul_pkg::tl_d2h_t tl_o,
// To HW
output rstmgr_reg_pkg::rstmgr_reg2hw_t reg2hw, // Write
input rstmgr_reg_pkg::rstmgr_hw2reg_t hw2reg, // Read
// Integrity check errors
output logic intg_err_o,
// Config
input devmode_i // If 1, explicit error return for unmapped register access
);
import rstmgr_reg_pkg::* ;
localparam int AW = 5;
localparam int DW = 32;
localparam int DBW = DW/8; // Byte Width
// register signals
logic reg_we;
logic reg_re;
logic [AW-1:0] reg_addr;
logic [DW-1:0] reg_wdata;
logic [DBW-1:0] reg_be;
logic [DW-1:0] reg_rdata;
logic reg_error;
logic addrmiss, wr_err;
logic [DW-1:0] reg_rdata_next;
tlul_pkg::tl_h2d_t tl_reg_h2d;
tlul_pkg::tl_d2h_t tl_reg_d2h;
// incoming payload check
logic intg_err;
tlul_cmd_intg_chk u_chk (
.tl_i,
.err_o(intg_err)
);
logic intg_err_q;
always_ff @(posedge clk_i or negedge rst_ni) begin
if (!rst_ni) begin
intg_err_q <= '0;
end else if (intg_err) begin
intg_err_q <= 1'b1;
end
end
// integrity error output is permanent and should be used for alert generation
// register errors are transactional
assign intg_err_o = intg_err_q | intg_err;
// outgoing integrity generation
tlul_pkg::tl_d2h_t tl_o_pre;
tlul_rsp_intg_gen #(
.EnableRspIntgGen(1),
.EnableDataIntgGen(1)
) u_rsp_intg_gen (
.tl_i(tl_o_pre),
.tl_o
);
assign tl_reg_h2d = tl_i;
assign tl_o_pre = tl_reg_d2h;
tlul_adapter_reg #(
.RegAw(AW),
.RegDw(DW),
.EnableDataIntgGen(0)
) u_reg_if (
.clk_i,
.rst_ni,
.tl_i (tl_reg_h2d),
.tl_o (tl_reg_d2h),
.we_o (reg_we),
.re_o (reg_re),
.addr_o (reg_addr),
.wdata_o (reg_wdata),
.be_o (reg_be),
.rdata_i (reg_rdata),
.error_i (reg_error)
);
assign reg_rdata = reg_rdata_next ;
assign reg_error = (devmode_i & addrmiss) | wr_err | intg_err;
// Define SW related signals
// Format: <reg>_<field>_{wd|we|qs}
// or <reg>_{wd|we|qs} if field == 1 or 0
logic reset_info_por_qs;
logic reset_info_por_wd;
logic reset_info_por_we;
logic reset_info_low_power_exit_qs;
logic reset_info_low_power_exit_wd;
logic reset_info_low_power_exit_we;
logic reset_info_ndm_reset_qs;
logic reset_info_ndm_reset_wd;
logic reset_info_ndm_reset_we;
logic reset_info_hw_req_qs;
logic reset_info_hw_req_wd;
logic reset_info_hw_req_we;
logic alert_info_ctrl_en_qs;
logic alert_info_ctrl_en_wd;
logic alert_info_ctrl_en_we;
logic [3:0] alert_info_ctrl_index_qs;
logic [3:0] alert_info_ctrl_index_wd;
logic alert_info_ctrl_index_we;
logic [3:0] alert_info_attr_qs;
logic alert_info_attr_re;
logic [31:0] alert_info_qs;
logic alert_info_re;
logic sw_rst_regen_en_0_qs;
logic sw_rst_regen_en_0_wd;
logic sw_rst_regen_en_0_we;
logic sw_rst_regen_en_1_qs;
logic sw_rst_regen_en_1_wd;
logic sw_rst_regen_en_1_we;
logic sw_rst_ctrl_n_val_0_qs;
logic sw_rst_ctrl_n_val_0_wd;
logic sw_rst_ctrl_n_val_0_we;
logic sw_rst_ctrl_n_val_0_re;
logic sw_rst_ctrl_n_val_1_qs;
logic sw_rst_ctrl_n_val_1_wd;
logic sw_rst_ctrl_n_val_1_we;
logic sw_rst_ctrl_n_val_1_re;
// Register instances
// R[reset_info]: V(False)
// F[por]: 0:0
prim_subreg #(
.DW (1),
.SWACCESS("W1C"),
.RESVAL (1'h1)
) u_reset_info_por (
.clk_i (clk_i),
.rst_ni (rst_ni),
// from register interface
.we (reset_info_por_we),
.wd (reset_info_por_wd),
// from internal hardware
.de (1'b0),
.d ('0),
// to internal hardware
.qe (),
.q (),
// to register interface (read)
.qs (reset_info_por_qs)
);
// F[low_power_exit]: 1:1
prim_subreg #(
.DW (1),
.SWACCESS("W1C"),
.RESVAL (1'h0)
) u_reset_info_low_power_exit (
.clk_i (clk_i),
.rst_ni (rst_ni),
// from register interface
.we (reset_info_low_power_exit_we),
.wd (reset_info_low_power_exit_wd),
// from internal hardware
.de (hw2reg.reset_info.low_power_exit.de),
.d (hw2reg.reset_info.low_power_exit.d),
// to internal hardware
.qe (),
.q (),
// to register interface (read)
.qs (reset_info_low_power_exit_qs)
);
// F[ndm_reset]: 2:2
prim_subreg #(
.DW (1),
.SWACCESS("W1C"),
.RESVAL (1'h0)
) u_reset_info_ndm_reset (
.clk_i (clk_i),
.rst_ni (rst_ni),
// from register interface
.we (reset_info_ndm_reset_we),
.wd (reset_info_ndm_reset_wd),
// from internal hardware
.de (hw2reg.reset_info.ndm_reset.de),
.d (hw2reg.reset_info.ndm_reset.d),
// to internal hardware
.qe (),
.q (),
// to register interface (read)
.qs (reset_info_ndm_reset_qs)
);
// F[hw_req]: 3:3
prim_subreg #(
.DW (1),
.SWACCESS("W1C"),
.RESVAL (1'h0)
) u_reset_info_hw_req (
.clk_i (clk_i),
.rst_ni (rst_ni),
// from register interface
.we (reset_info_hw_req_we),
.wd (reset_info_hw_req_wd),
// from internal hardware
.de (hw2reg.reset_info.hw_req.de),
.d (hw2reg.reset_info.hw_req.d),
// to internal hardware
.qe (),
.q (reg2hw.reset_info.hw_req.q),
// to register interface (read)
.qs (reset_info_hw_req_qs)
);
// R[alert_info_ctrl]: V(False)
// F[en]: 0:0
prim_subreg #(
.DW (1),
.SWACCESS("RW"),
.RESVAL (1'h0)
) u_alert_info_ctrl_en (
.clk_i (clk_i),
.rst_ni (rst_ni),
// from register interface
.we (alert_info_ctrl_en_we),
.wd (alert_info_ctrl_en_wd),
// from internal hardware
.de (hw2reg.alert_info_ctrl.en.de),
.d (hw2reg.alert_info_ctrl.en.d),
// to internal hardware
.qe (),
.q (reg2hw.alert_info_ctrl.en.q),
// to register interface (read)
.qs (alert_info_ctrl_en_qs)
);
// F[index]: 7:4
prim_subreg #(
.DW (4),
.SWACCESS("RW"),
.RESVAL (4'h0)
) u_alert_info_ctrl_index (
.clk_i (clk_i),
.rst_ni (rst_ni),
// from register interface
.we (alert_info_ctrl_index_we),
.wd (alert_info_ctrl_index_wd),
// from internal hardware
.de (1'b0),
.d ('0),
// to internal hardware
.qe (),
.q (reg2hw.alert_info_ctrl.index.q),
// to register interface (read)
.qs (alert_info_ctrl_index_qs)
);
// R[alert_info_attr]: V(True)
prim_subreg_ext #(
.DW (4)
) u_alert_info_attr (
.re (alert_info_attr_re),
.we (1'b0),
.wd ('0),
.d (hw2reg.alert_info_attr.d),
.qre (),
.qe (),
.q (),
.qs (alert_info_attr_qs)
);
// R[alert_info]: V(True)
prim_subreg_ext #(
.DW (32)
) u_alert_info (
.re (alert_info_re),
.we (1'b0),
.wd ('0),
.d (hw2reg.alert_info.d),
.qre (),
.qe (),
.q (),
.qs (alert_info_qs)
);
// Subregister 0 of Multireg sw_rst_regen
// R[sw_rst_regen]: V(False)
// F[en_0]: 0:0
prim_subreg #(
.DW (1),
.SWACCESS("W0C"),
.RESVAL (1'h1)
) u_sw_rst_regen_en_0 (
.clk_i (clk_i),
.rst_ni (rst_ni),
// from register interface
.we (sw_rst_regen_en_0_we),
.wd (sw_rst_regen_en_0_wd),
// from internal hardware
.de (1'b0),
.d ('0),
// to internal hardware
.qe (),
.q (reg2hw.sw_rst_regen[0].q),
// to register interface (read)
.qs (sw_rst_regen_en_0_qs)
);
// F[en_1]: 1:1
prim_subreg #(
.DW (1),
.SWACCESS("W0C"),
.RESVAL (1'h1)
) u_sw_rst_regen_en_1 (
.clk_i (clk_i),
.rst_ni (rst_ni),
// from register interface
.we (sw_rst_regen_en_1_we),
.wd (sw_rst_regen_en_1_wd),
// from internal hardware
.de (1'b0),
.d ('0),
// to internal hardware
.qe (),
.q (reg2hw.sw_rst_regen[1].q),
// to register interface (read)
.qs (sw_rst_regen_en_1_qs)
);
// Subregister 0 of Multireg sw_rst_ctrl_n
// R[sw_rst_ctrl_n]: V(True)
// F[val_0]: 0:0
prim_subreg_ext #(
.DW (1)
) u_sw_rst_ctrl_n_val_0 (
.re (sw_rst_ctrl_n_val_0_re),
.we (sw_rst_ctrl_n_val_0_we),
.wd (sw_rst_ctrl_n_val_0_wd),
.d (hw2reg.sw_rst_ctrl_n[0].d),
.qre (),
.qe (reg2hw.sw_rst_ctrl_n[0].qe),
.q (reg2hw.sw_rst_ctrl_n[0].q),
.qs (sw_rst_ctrl_n_val_0_qs)
);
// F[val_1]: 1:1
prim_subreg_ext #(
.DW (1)
) u_sw_rst_ctrl_n_val_1 (
.re (sw_rst_ctrl_n_val_1_re),
.we (sw_rst_ctrl_n_val_1_we),
.wd (sw_rst_ctrl_n_val_1_wd),
.d (hw2reg.sw_rst_ctrl_n[1].d),
.qre (),
.qe (reg2hw.sw_rst_ctrl_n[1].qe),
.q (reg2hw.sw_rst_ctrl_n[1].q),
.qs (sw_rst_ctrl_n_val_1_qs)
);
logic [5:0] addr_hit;
always_comb begin
addr_hit = '0;
addr_hit[0] = (reg_addr == RSTMGR_RESET_INFO_OFFSET);
addr_hit[1] = (reg_addr == RSTMGR_ALERT_INFO_CTRL_OFFSET);
addr_hit[2] = (reg_addr == RSTMGR_ALERT_INFO_ATTR_OFFSET);
addr_hit[3] = (reg_addr == RSTMGR_ALERT_INFO_OFFSET);
addr_hit[4] = (reg_addr == RSTMGR_SW_RST_REGEN_OFFSET);
addr_hit[5] = (reg_addr == RSTMGR_SW_RST_CTRL_N_OFFSET);
end
assign addrmiss = (reg_re || reg_we) ? ~|addr_hit : 1'b0 ;
// Check sub-word write is permitted
always_comb begin
wr_err = (reg_we &
((addr_hit[0] & (|(RSTMGR_PERMIT[0] & ~reg_be))) |
(addr_hit[1] & (|(RSTMGR_PERMIT[1] & ~reg_be))) |
(addr_hit[2] & (|(RSTMGR_PERMIT[2] & ~reg_be))) |
(addr_hit[3] & (|(RSTMGR_PERMIT[3] & ~reg_be))) |
(addr_hit[4] & (|(RSTMGR_PERMIT[4] & ~reg_be))) |
(addr_hit[5] & (|(RSTMGR_PERMIT[5] & ~reg_be)))));
end
assign reset_info_por_we = addr_hit[0] & reg_we & !reg_error;
assign reset_info_por_wd = reg_wdata[0];
assign reset_info_low_power_exit_we = addr_hit[0] & reg_we & !reg_error;
assign reset_info_low_power_exit_wd = reg_wdata[1];
assign reset_info_ndm_reset_we = addr_hit[0] & reg_we & !reg_error;
assign reset_info_ndm_reset_wd = reg_wdata[2];
assign reset_info_hw_req_we = addr_hit[0] & reg_we & !reg_error;
assign reset_info_hw_req_wd = reg_wdata[3];
assign alert_info_ctrl_en_we = addr_hit[1] & reg_we & !reg_error;
assign alert_info_ctrl_en_wd = reg_wdata[0];
assign alert_info_ctrl_index_we = addr_hit[1] & reg_we & !reg_error;
assign alert_info_ctrl_index_wd = reg_wdata[7:4];
assign alert_info_attr_re = addr_hit[2] & reg_re & !reg_error;
assign alert_info_re = addr_hit[3] & reg_re & !reg_error;
assign sw_rst_regen_en_0_we = addr_hit[4] & reg_we & !reg_error;
assign sw_rst_regen_en_0_wd = reg_wdata[0];
assign sw_rst_regen_en_1_we = addr_hit[4] & reg_we & !reg_error;
assign sw_rst_regen_en_1_wd = reg_wdata[1];
assign sw_rst_ctrl_n_val_0_we = addr_hit[5] & reg_we & !reg_error;
assign sw_rst_ctrl_n_val_0_wd = reg_wdata[0];
assign sw_rst_ctrl_n_val_0_re = addr_hit[5] & reg_re & !reg_error;
assign sw_rst_ctrl_n_val_1_we = addr_hit[5] & reg_we & !reg_error;
assign sw_rst_ctrl_n_val_1_wd = reg_wdata[1];
assign sw_rst_ctrl_n_val_1_re = addr_hit[5] & reg_re & !reg_error;
// Read data return
always_comb begin
reg_rdata_next = '0;
unique case (1'b1)
addr_hit[0]: begin
reg_rdata_next[0] = reset_info_por_qs;
reg_rdata_next[1] = reset_info_low_power_exit_qs;
reg_rdata_next[2] = reset_info_ndm_reset_qs;
reg_rdata_next[3] = reset_info_hw_req_qs;
end
addr_hit[1]: begin
reg_rdata_next[0] = alert_info_ctrl_en_qs;
reg_rdata_next[7:4] = alert_info_ctrl_index_qs;
end
addr_hit[2]: begin
reg_rdata_next[3:0] = alert_info_attr_qs;
end
addr_hit[3]: begin
reg_rdata_next[31:0] = alert_info_qs;
end
addr_hit[4]: begin
reg_rdata_next[0] = sw_rst_regen_en_0_qs;
reg_rdata_next[1] = sw_rst_regen_en_1_qs;
end
addr_hit[5]: begin
reg_rdata_next[0] = sw_rst_ctrl_n_val_0_qs;
reg_rdata_next[1] = sw_rst_ctrl_n_val_1_qs;
end
default: begin
reg_rdata_next = '1;
end
endcase
end
// Unused signal tieoff
// wdata / byte enable are not always fully used
// add a blanket unused statement to handle lint waivers
logic unused_wdata;
logic unused_be;
assign unused_wdata = ^reg_wdata;
assign unused_be = ^reg_be;
// Assertions for Register Interface
`ASSERT_PULSE(wePulse, reg_we)
`ASSERT_PULSE(rePulse, reg_re)
`ASSERT(reAfterRv, $rose(reg_re || reg_we) |=> tl_o.d_valid)
`ASSERT(en2addrHit, (reg_we || reg_re) |-> $onehot0(addr_hit))
// this is formulated as an assumption such that the FPV testbenches do disprove this
// property by mistake
//`ASSUME(reqParity, tl_reg_h2d.a_valid |-> tl_reg_h2d.a_user.chk_en == tlul_pkg::CheckDis)
endmodule