blob: cf686779aa44bcde5fc35b28bcbf4c4c6971cd44 [file] [log] [blame]
// Copyright lowRISC contributors.
// Licensed under the Apache License, Version 2.0, see LICENSE for details.
// SPDX-License-Identifier: Apache-2.0
//
// Register Top module auto-generated by `reggen`
`include "prim_assert.sv"
module otbn_reg_top (
input clk_i,
input rst_ni,
input tlul_pkg::tl_h2d_t tl_i,
output tlul_pkg::tl_d2h_t tl_o,
// Output port for window
output tlul_pkg::tl_h2d_t tl_win_o [2],
input tlul_pkg::tl_d2h_t tl_win_i [2],
// To HW
output otbn_reg_pkg::otbn_reg2hw_t reg2hw, // Write
input otbn_reg_pkg::otbn_hw2reg_t hw2reg, // Read
// Integrity check errors
output logic intg_err_o,
// Config
input devmode_i // If 1, explicit error return for unmapped register access
);
import otbn_reg_pkg::* ;
localparam int AW = 16;
localparam int DW = 32;
localparam int DBW = DW/8; // Byte Width
// register signals
logic reg_we;
logic reg_re;
logic [AW-1:0] reg_addr;
logic [DW-1:0] reg_wdata;
logic [DBW-1:0] reg_be;
logic [DW-1:0] reg_rdata;
logic reg_error;
logic addrmiss, wr_err;
logic [DW-1:0] reg_rdata_next;
tlul_pkg::tl_h2d_t tl_reg_h2d;
tlul_pkg::tl_d2h_t tl_reg_d2h;
// incoming payload check
logic intg_err;
tlul_cmd_intg_chk u_chk (
.tl_i,
.err_o(intg_err)
);
logic intg_err_q;
always_ff @(posedge clk_i or negedge rst_ni) begin
if (!rst_ni) begin
intg_err_q <= '0;
end else if (intg_err) begin
intg_err_q <= 1'b1;
end
end
// integrity error output is permanent and should be used for alert generation
// register errors are transactional
assign intg_err_o = intg_err_q | intg_err;
// outgoing integrity generation
tlul_pkg::tl_d2h_t tl_o_pre;
tlul_rsp_intg_gen #(
.EnableRspIntgGen(1),
.EnableDataIntgGen(0)
) u_rsp_intg_gen (
.tl_i(tl_o_pre),
.tl_o
);
tlul_pkg::tl_h2d_t tl_socket_h2d [3];
tlul_pkg::tl_d2h_t tl_socket_d2h [3];
logic [1:0] reg_steer;
// socket_1n connection
assign tl_reg_h2d = tl_socket_h2d[2];
assign tl_socket_d2h[2] = tl_reg_d2h;
assign tl_win_o[0] = tl_socket_h2d[0];
assign tl_socket_d2h[0] = tl_win_i[0];
assign tl_win_o[1] = tl_socket_h2d[1];
assign tl_socket_d2h[1] = tl_win_i[1];
// Create Socket_1n
tlul_socket_1n #(
.N (3),
.HReqPass (1'b1),
.HRspPass (1'b1),
.DReqPass ({3{1'b1}}),
.DRspPass ({3{1'b1}}),
.HReqDepth (4'h0),
.HRspDepth (4'h0),
.DReqDepth ({3{4'h0}}),
.DRspDepth ({3{4'h0}})
) u_socket (
.clk_i,
.rst_ni,
.tl_h_i (tl_i),
.tl_h_o (tl_o_pre),
.tl_d_o (tl_socket_h2d),
.tl_d_i (tl_socket_d2h),
.dev_select_i (reg_steer)
);
// Create steering logic
always_comb begin
reg_steer = 2; // Default set to register
// TODO: Can below codes be unique case () inside ?
if (tl_i.a_address[AW-1:0] >= 16384 && tl_i.a_address[AW-1:0] < 20480) begin
reg_steer = 0;
end
if (tl_i.a_address[AW-1:0] >= 32768 && tl_i.a_address[AW-1:0] < 36864) begin
reg_steer = 1;
end
if (intg_err) begin
reg_steer = 2;
end
end
tlul_adapter_reg #(
.RegAw(AW),
.RegDw(DW),
.EnableDataIntgGen(1)
) u_reg_if (
.clk_i,
.rst_ni,
.tl_i (tl_reg_h2d),
.tl_o (tl_reg_d2h),
.we_o (reg_we),
.re_o (reg_re),
.addr_o (reg_addr),
.wdata_o (reg_wdata),
.be_o (reg_be),
.rdata_i (reg_rdata),
.error_i (reg_error)
);
assign reg_rdata = reg_rdata_next ;
assign reg_error = (devmode_i & addrmiss) | wr_err | intg_err;
// Define SW related signals
// Format: <reg>_<field>_{wd|we|qs}
// or <reg>_{wd|we|qs} if field == 1 or 0
logic intr_state_qs;
logic intr_state_wd;
logic intr_state_we;
logic intr_enable_qs;
logic intr_enable_wd;
logic intr_enable_we;
logic intr_test_wd;
logic intr_test_we;
logic alert_test_fatal_wd;
logic alert_test_fatal_we;
logic alert_test_recov_wd;
logic alert_test_recov_we;
logic cmd_wd;
logic cmd_we;
logic status_qs;
logic status_re;
logic err_bits_bad_data_addr_qs;
logic err_bits_bad_insn_addr_qs;
logic err_bits_call_stack_qs;
logic err_bits_illegal_insn_qs;
logic err_bits_loop_qs;
logic err_bits_fatal_imem_qs;
logic err_bits_fatal_dmem_qs;
logic err_bits_fatal_reg_qs;
logic [31:0] start_addr_wd;
logic start_addr_we;
logic fatal_alert_cause_bus_integrity_error_qs;
logic fatal_alert_cause_imem_error_qs;
logic fatal_alert_cause_dmem_error_qs;
logic fatal_alert_cause_reg_error_qs;
logic [31:0] insn_cnt_qs;
// Register instances
// R[intr_state]: V(False)
prim_subreg #(
.DW (1),
.SWACCESS("W1C"),
.RESVAL (1'h0)
) u_intr_state (
.clk_i (clk_i),
.rst_ni (rst_ni),
// from register interface
.we (intr_state_we),
.wd (intr_state_wd),
// from internal hardware
.de (hw2reg.intr_state.de),
.d (hw2reg.intr_state.d),
// to internal hardware
.qe (),
.q (reg2hw.intr_state.q),
// to register interface (read)
.qs (intr_state_qs)
);
// R[intr_enable]: V(False)
prim_subreg #(
.DW (1),
.SWACCESS("RW"),
.RESVAL (1'h0)
) u_intr_enable (
.clk_i (clk_i),
.rst_ni (rst_ni),
// from register interface
.we (intr_enable_we),
.wd (intr_enable_wd),
// from internal hardware
.de (1'b0),
.d ('0),
// to internal hardware
.qe (),
.q (reg2hw.intr_enable.q),
// to register interface (read)
.qs (intr_enable_qs)
);
// R[intr_test]: V(True)
prim_subreg_ext #(
.DW (1)
) u_intr_test (
.re (1'b0),
.we (intr_test_we),
.wd (intr_test_wd),
.d ('0),
.qre (),
.qe (reg2hw.intr_test.qe),
.q (reg2hw.intr_test.q),
.qs ()
);
// R[alert_test]: V(True)
// F[fatal]: 0:0
prim_subreg_ext #(
.DW (1)
) u_alert_test_fatal (
.re (1'b0),
.we (alert_test_fatal_we),
.wd (alert_test_fatal_wd),
.d ('0),
.qre (),
.qe (reg2hw.alert_test.fatal.qe),
.q (reg2hw.alert_test.fatal.q),
.qs ()
);
// F[recov]: 1:1
prim_subreg_ext #(
.DW (1)
) u_alert_test_recov (
.re (1'b0),
.we (alert_test_recov_we),
.wd (alert_test_recov_wd),
.d ('0),
.qre (),
.qe (reg2hw.alert_test.recov.qe),
.q (reg2hw.alert_test.recov.q),
.qs ()
);
// R[cmd]: V(True)
prim_subreg_ext #(
.DW (1)
) u_cmd (
.re (1'b0),
.we (cmd_we),
.wd (cmd_wd),
.d ('0),
.qre (),
.qe (reg2hw.cmd.qe),
.q (reg2hw.cmd.q),
.qs ()
);
// R[status]: V(True)
prim_subreg_ext #(
.DW (1)
) u_status (
.re (status_re),
.we (1'b0),
.wd ('0),
.d (hw2reg.status.d),
.qre (),
.qe (),
.q (),
.qs (status_qs)
);
// R[err_bits]: V(False)
// F[bad_data_addr]: 0:0
prim_subreg #(
.DW (1),
.SWACCESS("RO"),
.RESVAL (1'h0)
) u_err_bits_bad_data_addr (
.clk_i (clk_i),
.rst_ni (rst_ni),
// from register interface
.we (1'b0),
.wd ('0),
// from internal hardware
.de (hw2reg.err_bits.bad_data_addr.de),
.d (hw2reg.err_bits.bad_data_addr.d),
// to internal hardware
.qe (),
.q (),
// to register interface (read)
.qs (err_bits_bad_data_addr_qs)
);
// F[bad_insn_addr]: 1:1
prim_subreg #(
.DW (1),
.SWACCESS("RO"),
.RESVAL (1'h0)
) u_err_bits_bad_insn_addr (
.clk_i (clk_i),
.rst_ni (rst_ni),
// from register interface
.we (1'b0),
.wd ('0),
// from internal hardware
.de (hw2reg.err_bits.bad_insn_addr.de),
.d (hw2reg.err_bits.bad_insn_addr.d),
// to internal hardware
.qe (),
.q (),
// to register interface (read)
.qs (err_bits_bad_insn_addr_qs)
);
// F[call_stack]: 2:2
prim_subreg #(
.DW (1),
.SWACCESS("RO"),
.RESVAL (1'h0)
) u_err_bits_call_stack (
.clk_i (clk_i),
.rst_ni (rst_ni),
// from register interface
.we (1'b0),
.wd ('0),
// from internal hardware
.de (hw2reg.err_bits.call_stack.de),
.d (hw2reg.err_bits.call_stack.d),
// to internal hardware
.qe (),
.q (),
// to register interface (read)
.qs (err_bits_call_stack_qs)
);
// F[illegal_insn]: 3:3
prim_subreg #(
.DW (1),
.SWACCESS("RO"),
.RESVAL (1'h0)
) u_err_bits_illegal_insn (
.clk_i (clk_i),
.rst_ni (rst_ni),
// from register interface
.we (1'b0),
.wd ('0),
// from internal hardware
.de (hw2reg.err_bits.illegal_insn.de),
.d (hw2reg.err_bits.illegal_insn.d),
// to internal hardware
.qe (),
.q (),
// to register interface (read)
.qs (err_bits_illegal_insn_qs)
);
// F[loop]: 4:4
prim_subreg #(
.DW (1),
.SWACCESS("RO"),
.RESVAL (1'h0)
) u_err_bits_loop (
.clk_i (clk_i),
.rst_ni (rst_ni),
// from register interface
.we (1'b0),
.wd ('0),
// from internal hardware
.de (hw2reg.err_bits.loop.de),
.d (hw2reg.err_bits.loop.d),
// to internal hardware
.qe (),
.q (),
// to register interface (read)
.qs (err_bits_loop_qs)
);
// F[fatal_imem]: 5:5
prim_subreg #(
.DW (1),
.SWACCESS("RO"),
.RESVAL (1'h0)
) u_err_bits_fatal_imem (
.clk_i (clk_i),
.rst_ni (rst_ni),
// from register interface
.we (1'b0),
.wd ('0),
// from internal hardware
.de (hw2reg.err_bits.fatal_imem.de),
.d (hw2reg.err_bits.fatal_imem.d),
// to internal hardware
.qe (),
.q (),
// to register interface (read)
.qs (err_bits_fatal_imem_qs)
);
// F[fatal_dmem]: 6:6
prim_subreg #(
.DW (1),
.SWACCESS("RO"),
.RESVAL (1'h0)
) u_err_bits_fatal_dmem (
.clk_i (clk_i),
.rst_ni (rst_ni),
// from register interface
.we (1'b0),
.wd ('0),
// from internal hardware
.de (hw2reg.err_bits.fatal_dmem.de),
.d (hw2reg.err_bits.fatal_dmem.d),
// to internal hardware
.qe (),
.q (),
// to register interface (read)
.qs (err_bits_fatal_dmem_qs)
);
// F[fatal_reg]: 7:7
prim_subreg #(
.DW (1),
.SWACCESS("RO"),
.RESVAL (1'h0)
) u_err_bits_fatal_reg (
.clk_i (clk_i),
.rst_ni (rst_ni),
// from register interface
.we (1'b0),
.wd ('0),
// from internal hardware
.de (hw2reg.err_bits.fatal_reg.de),
.d (hw2reg.err_bits.fatal_reg.d),
// to internal hardware
.qe (),
.q (),
// to register interface (read)
.qs (err_bits_fatal_reg_qs)
);
// R[start_addr]: V(False)
prim_subreg #(
.DW (32),
.SWACCESS("WO"),
.RESVAL (32'h0)
) u_start_addr (
.clk_i (clk_i),
.rst_ni (rst_ni),
// from register interface
.we (start_addr_we),
.wd (start_addr_wd),
// from internal hardware
.de (1'b0),
.d ('0),
// to internal hardware
.qe (),
.q (reg2hw.start_addr.q),
// to register interface (read)
.qs ()
);
// R[fatal_alert_cause]: V(False)
// F[bus_integrity_error]: 0:0
prim_subreg #(
.DW (1),
.SWACCESS("RO"),
.RESVAL (1'h0)
) u_fatal_alert_cause_bus_integrity_error (
.clk_i (clk_i),
.rst_ni (rst_ni),
// from register interface
.we (1'b0),
.wd ('0),
// from internal hardware
.de (hw2reg.fatal_alert_cause.bus_integrity_error.de),
.d (hw2reg.fatal_alert_cause.bus_integrity_error.d),
// to internal hardware
.qe (),
.q (),
// to register interface (read)
.qs (fatal_alert_cause_bus_integrity_error_qs)
);
// F[imem_error]: 1:1
prim_subreg #(
.DW (1),
.SWACCESS("RO"),
.RESVAL (1'h0)
) u_fatal_alert_cause_imem_error (
.clk_i (clk_i),
.rst_ni (rst_ni),
// from register interface
.we (1'b0),
.wd ('0),
// from internal hardware
.de (hw2reg.fatal_alert_cause.imem_error.de),
.d (hw2reg.fatal_alert_cause.imem_error.d),
// to internal hardware
.qe (),
.q (),
// to register interface (read)
.qs (fatal_alert_cause_imem_error_qs)
);
// F[dmem_error]: 2:2
prim_subreg #(
.DW (1),
.SWACCESS("RO"),
.RESVAL (1'h0)
) u_fatal_alert_cause_dmem_error (
.clk_i (clk_i),
.rst_ni (rst_ni),
// from register interface
.we (1'b0),
.wd ('0),
// from internal hardware
.de (hw2reg.fatal_alert_cause.dmem_error.de),
.d (hw2reg.fatal_alert_cause.dmem_error.d),
// to internal hardware
.qe (),
.q (),
// to register interface (read)
.qs (fatal_alert_cause_dmem_error_qs)
);
// F[reg_error]: 3:3
prim_subreg #(
.DW (1),
.SWACCESS("RO"),
.RESVAL (1'h0)
) u_fatal_alert_cause_reg_error (
.clk_i (clk_i),
.rst_ni (rst_ni),
// from register interface
.we (1'b0),
.wd ('0),
// from internal hardware
.de (hw2reg.fatal_alert_cause.reg_error.de),
.d (hw2reg.fatal_alert_cause.reg_error.d),
// to internal hardware
.qe (),
.q (),
// to register interface (read)
.qs (fatal_alert_cause_reg_error_qs)
);
// R[insn_cnt]: V(False)
prim_subreg #(
.DW (32),
.SWACCESS("RO"),
.RESVAL (32'h0)
) u_insn_cnt (
.clk_i (clk_i),
.rst_ni (rst_ni),
// from register interface
.we (1'b0),
.wd ('0),
// from internal hardware
.de (hw2reg.insn_cnt.de),
.d (hw2reg.insn_cnt.d),
// to internal hardware
.qe (),
.q (),
// to register interface (read)
.qs (insn_cnt_qs)
);
logic [9:0] addr_hit;
always_comb begin
addr_hit = '0;
addr_hit[0] = (reg_addr == OTBN_INTR_STATE_OFFSET);
addr_hit[1] = (reg_addr == OTBN_INTR_ENABLE_OFFSET);
addr_hit[2] = (reg_addr == OTBN_INTR_TEST_OFFSET);
addr_hit[3] = (reg_addr == OTBN_ALERT_TEST_OFFSET);
addr_hit[4] = (reg_addr == OTBN_CMD_OFFSET);
addr_hit[5] = (reg_addr == OTBN_STATUS_OFFSET);
addr_hit[6] = (reg_addr == OTBN_ERR_BITS_OFFSET);
addr_hit[7] = (reg_addr == OTBN_START_ADDR_OFFSET);
addr_hit[8] = (reg_addr == OTBN_FATAL_ALERT_CAUSE_OFFSET);
addr_hit[9] = (reg_addr == OTBN_INSN_CNT_OFFSET);
end
assign addrmiss = (reg_re || reg_we) ? ~|addr_hit : 1'b0 ;
// Check sub-word write is permitted
always_comb begin
wr_err = (reg_we &
((addr_hit[0] & (|(OTBN_PERMIT[0] & ~reg_be))) |
(addr_hit[1] & (|(OTBN_PERMIT[1] & ~reg_be))) |
(addr_hit[2] & (|(OTBN_PERMIT[2] & ~reg_be))) |
(addr_hit[3] & (|(OTBN_PERMIT[3] & ~reg_be))) |
(addr_hit[4] & (|(OTBN_PERMIT[4] & ~reg_be))) |
(addr_hit[5] & (|(OTBN_PERMIT[5] & ~reg_be))) |
(addr_hit[6] & (|(OTBN_PERMIT[6] & ~reg_be))) |
(addr_hit[7] & (|(OTBN_PERMIT[7] & ~reg_be))) |
(addr_hit[8] & (|(OTBN_PERMIT[8] & ~reg_be))) |
(addr_hit[9] & (|(OTBN_PERMIT[9] & ~reg_be)))));
end
assign intr_state_we = addr_hit[0] & reg_we & !reg_error;
assign intr_state_wd = reg_wdata[0];
assign intr_enable_we = addr_hit[1] & reg_we & !reg_error;
assign intr_enable_wd = reg_wdata[0];
assign intr_test_we = addr_hit[2] & reg_we & !reg_error;
assign intr_test_wd = reg_wdata[0];
assign alert_test_fatal_we = addr_hit[3] & reg_we & !reg_error;
assign alert_test_fatal_wd = reg_wdata[0];
assign alert_test_recov_we = addr_hit[3] & reg_we & !reg_error;
assign alert_test_recov_wd = reg_wdata[1];
assign cmd_we = addr_hit[4] & reg_we & !reg_error;
assign cmd_wd = reg_wdata[0];
assign status_re = addr_hit[5] & reg_re & !reg_error;
assign start_addr_we = addr_hit[7] & reg_we & !reg_error;
assign start_addr_wd = reg_wdata[31:0];
// Read data return
always_comb begin
reg_rdata_next = '0;
unique case (1'b1)
addr_hit[0]: begin
reg_rdata_next[0] = intr_state_qs;
end
addr_hit[1]: begin
reg_rdata_next[0] = intr_enable_qs;
end
addr_hit[2]: begin
reg_rdata_next[0] = '0;
end
addr_hit[3]: begin
reg_rdata_next[0] = '0;
reg_rdata_next[1] = '0;
end
addr_hit[4]: begin
reg_rdata_next[0] = '0;
end
addr_hit[5]: begin
reg_rdata_next[0] = status_qs;
end
addr_hit[6]: begin
reg_rdata_next[0] = err_bits_bad_data_addr_qs;
reg_rdata_next[1] = err_bits_bad_insn_addr_qs;
reg_rdata_next[2] = err_bits_call_stack_qs;
reg_rdata_next[3] = err_bits_illegal_insn_qs;
reg_rdata_next[4] = err_bits_loop_qs;
reg_rdata_next[5] = err_bits_fatal_imem_qs;
reg_rdata_next[6] = err_bits_fatal_dmem_qs;
reg_rdata_next[7] = err_bits_fatal_reg_qs;
end
addr_hit[7]: begin
reg_rdata_next[31:0] = '0;
end
addr_hit[8]: begin
reg_rdata_next[0] = fatal_alert_cause_bus_integrity_error_qs;
reg_rdata_next[1] = fatal_alert_cause_imem_error_qs;
reg_rdata_next[2] = fatal_alert_cause_dmem_error_qs;
reg_rdata_next[3] = fatal_alert_cause_reg_error_qs;
end
addr_hit[9]: begin
reg_rdata_next[31:0] = insn_cnt_qs;
end
default: begin
reg_rdata_next = '1;
end
endcase
end
// Unused signal tieoff
// wdata / byte enable are not always fully used
// add a blanket unused statement to handle lint waivers
logic unused_wdata;
logic unused_be;
assign unused_wdata = ^reg_wdata;
assign unused_be = ^reg_be;
// Assertions for Register Interface
`ASSERT_PULSE(wePulse, reg_we)
`ASSERT_PULSE(rePulse, reg_re)
`ASSERT(reAfterRv, $rose(reg_re || reg_we) |=> tl_o.d_valid)
`ASSERT(en2addrHit, (reg_we || reg_re) |-> $onehot0(addr_hit))
// this is formulated as an assumption such that the FPV testbenches do disprove this
// property by mistake
//`ASSUME(reqParity, tl_reg_h2d.a_valid |-> tl_reg_h2d.a_user.chk_en == tlul_pkg::CheckDis)
endmodule