blob: 88713af4c0d22e9b194f3249aca32eb0e919492d [file] [log] [blame]
// Copyright lowRISC contributors.
// Licensed under the Apache License, Version 2.0, see LICENSE for details.
// SPDX-License-Identifier: Apache-2.0
//
// Register Top module auto-generated by `reggen`
`include "prim_assert.sv"
module kmac_reg_top (
input clk_i,
input rst_ni,
input tlul_pkg::tl_h2d_t tl_i,
output tlul_pkg::tl_d2h_t tl_o,
// Output port for window
output tlul_pkg::tl_h2d_t tl_win_o [2],
input tlul_pkg::tl_d2h_t tl_win_i [2],
// To HW
output kmac_reg_pkg::kmac_reg2hw_t reg2hw, // Write
input kmac_reg_pkg::kmac_hw2reg_t hw2reg, // Read
// Integrity check errors
output logic intg_err_o,
// Config
input devmode_i // If 1, explicit error return for unmapped register access
);
import kmac_reg_pkg::* ;
localparam int AW = 12;
localparam int DW = 32;
localparam int DBW = DW/8; // Byte Width
// register signals
logic reg_we;
logic reg_re;
logic [AW-1:0] reg_addr;
logic [DW-1:0] reg_wdata;
logic [DBW-1:0] reg_be;
logic [DW-1:0] reg_rdata;
logic reg_error;
logic addrmiss, wr_err;
logic [DW-1:0] reg_rdata_next;
tlul_pkg::tl_h2d_t tl_reg_h2d;
tlul_pkg::tl_d2h_t tl_reg_d2h;
// incoming payload check
logic intg_err;
tlul_cmd_intg_chk u_chk (
.tl_i,
.err_o(intg_err)
);
logic intg_err_q;
always_ff @(posedge clk_i or negedge rst_ni) begin
if (!rst_ni) begin
intg_err_q <= '0;
end else if (intg_err) begin
intg_err_q <= 1'b1;
end
end
// integrity error output is permanent and should be used for alert generation
// register errors are transactional
assign intg_err_o = intg_err_q | intg_err;
// outgoing integrity generation
tlul_pkg::tl_d2h_t tl_o_pre;
tlul_rsp_intg_gen #(
.EnableRspIntgGen(1),
.EnableDataIntgGen(1)
) u_rsp_intg_gen (
.tl_i(tl_o_pre),
.tl_o
);
tlul_pkg::tl_h2d_t tl_socket_h2d [3];
tlul_pkg::tl_d2h_t tl_socket_d2h [3];
logic [1:0] reg_steer;
// socket_1n connection
assign tl_reg_h2d = tl_socket_h2d[2];
assign tl_socket_d2h[2] = tl_reg_d2h;
assign tl_win_o[0] = tl_socket_h2d[0];
assign tl_socket_d2h[0] = tl_win_i[0];
assign tl_win_o[1] = tl_socket_h2d[1];
assign tl_socket_d2h[1] = tl_win_i[1];
// Create Socket_1n
tlul_socket_1n #(
.N (3),
.HReqPass (1'b1),
.HRspPass (1'b1),
.DReqPass ({3{1'b1}}),
.DRspPass ({3{1'b1}}),
.HReqDepth (4'h0),
.HRspDepth (4'h0),
.DReqDepth ({3{4'h0}}),
.DRspDepth ({3{4'h0}})
) u_socket (
.clk_i,
.rst_ni,
.tl_h_i (tl_i),
.tl_h_o (tl_o_pre),
.tl_d_o (tl_socket_h2d),
.tl_d_i (tl_socket_d2h),
.dev_select_i (reg_steer)
);
// Create steering logic
always_comb begin
reg_steer = 2; // Default set to register
// TODO: Can below codes be unique case () inside ?
if (tl_i.a_address[AW-1:0] >= 1024 && tl_i.a_address[AW-1:0] < 1536) begin
reg_steer = 0;
end
if (tl_i.a_address[AW-1:0] >= 2048) begin
reg_steer = 1;
end
if (intg_err) begin
reg_steer = 2;
end
end
tlul_adapter_reg #(
.RegAw(AW),
.RegDw(DW),
.EnableDataIntgGen(0)
) u_reg_if (
.clk_i,
.rst_ni,
.tl_i (tl_reg_h2d),
.tl_o (tl_reg_d2h),
.we_o (reg_we),
.re_o (reg_re),
.addr_o (reg_addr),
.wdata_o (reg_wdata),
.be_o (reg_be),
.rdata_i (reg_rdata),
.error_i (reg_error)
);
assign reg_rdata = reg_rdata_next ;
assign reg_error = (devmode_i & addrmiss) | wr_err | intg_err;
// Define SW related signals
// Format: <reg>_<field>_{wd|we|qs}
// or <reg>_{wd|we|qs} if field == 1 or 0
logic intr_state_kmac_done_qs;
logic intr_state_kmac_done_wd;
logic intr_state_kmac_done_we;
logic intr_state_fifo_empty_qs;
logic intr_state_fifo_empty_wd;
logic intr_state_fifo_empty_we;
logic intr_state_kmac_err_qs;
logic intr_state_kmac_err_wd;
logic intr_state_kmac_err_we;
logic intr_enable_kmac_done_qs;
logic intr_enable_kmac_done_wd;
logic intr_enable_kmac_done_we;
logic intr_enable_fifo_empty_qs;
logic intr_enable_fifo_empty_wd;
logic intr_enable_fifo_empty_we;
logic intr_enable_kmac_err_qs;
logic intr_enable_kmac_err_wd;
logic intr_enable_kmac_err_we;
logic intr_test_kmac_done_wd;
logic intr_test_kmac_done_we;
logic intr_test_fifo_empty_wd;
logic intr_test_fifo_empty_we;
logic intr_test_kmac_err_wd;
logic intr_test_kmac_err_we;
logic alert_test_wd;
logic alert_test_we;
logic cfg_regwen_qs;
logic cfg_regwen_re;
logic cfg_kmac_en_qs;
logic cfg_kmac_en_wd;
logic cfg_kmac_en_we;
logic [2:0] cfg_kstrength_qs;
logic [2:0] cfg_kstrength_wd;
logic cfg_kstrength_we;
logic [1:0] cfg_mode_qs;
logic [1:0] cfg_mode_wd;
logic cfg_mode_we;
logic cfg_msg_endianness_qs;
logic cfg_msg_endianness_wd;
logic cfg_msg_endianness_we;
logic cfg_state_endianness_qs;
logic cfg_state_endianness_wd;
logic cfg_state_endianness_we;
logic cfg_sideload_qs;
logic cfg_sideload_wd;
logic cfg_sideload_we;
logic [1:0] cfg_entropy_mode_qs;
logic [1:0] cfg_entropy_mode_wd;
logic cfg_entropy_mode_we;
logic cfg_entropy_fast_process_qs;
logic cfg_entropy_fast_process_wd;
logic cfg_entropy_fast_process_we;
logic cfg_entropy_ready_qs;
logic cfg_entropy_ready_wd;
logic cfg_entropy_ready_we;
logic cfg_err_processed_qs;
logic cfg_err_processed_wd;
logic cfg_err_processed_we;
logic [3:0] cmd_wd;
logic cmd_we;
logic status_sha3_idle_qs;
logic status_sha3_idle_re;
logic status_sha3_absorb_qs;
logic status_sha3_absorb_re;
logic status_sha3_squeeze_qs;
logic status_sha3_squeeze_re;
logic [4:0] status_fifo_depth_qs;
logic status_fifo_depth_re;
logic status_fifo_empty_qs;
logic status_fifo_empty_re;
logic status_fifo_full_qs;
logic status_fifo_full_re;
logic [15:0] entropy_period_entropy_timer_qs;
logic [15:0] entropy_period_entropy_timer_wd;
logic entropy_period_entropy_timer_we;
logic [15:0] entropy_period_wait_timer_qs;
logic [15:0] entropy_period_wait_timer_wd;
logic entropy_period_wait_timer_we;
logic [31:0] entropy_seed_lower_qs;
logic [31:0] entropy_seed_lower_wd;
logic entropy_seed_lower_we;
logic [31:0] entropy_seed_upper_qs;
logic [31:0] entropy_seed_upper_wd;
logic entropy_seed_upper_we;
logic [31:0] key_share0_0_wd;
logic key_share0_0_we;
logic [31:0] key_share0_1_wd;
logic key_share0_1_we;
logic [31:0] key_share0_2_wd;
logic key_share0_2_we;
logic [31:0] key_share0_3_wd;
logic key_share0_3_we;
logic [31:0] key_share0_4_wd;
logic key_share0_4_we;
logic [31:0] key_share0_5_wd;
logic key_share0_5_we;
logic [31:0] key_share0_6_wd;
logic key_share0_6_we;
logic [31:0] key_share0_7_wd;
logic key_share0_7_we;
logic [31:0] key_share0_8_wd;
logic key_share0_8_we;
logic [31:0] key_share0_9_wd;
logic key_share0_9_we;
logic [31:0] key_share0_10_wd;
logic key_share0_10_we;
logic [31:0] key_share0_11_wd;
logic key_share0_11_we;
logic [31:0] key_share0_12_wd;
logic key_share0_12_we;
logic [31:0] key_share0_13_wd;
logic key_share0_13_we;
logic [31:0] key_share0_14_wd;
logic key_share0_14_we;
logic [31:0] key_share0_15_wd;
logic key_share0_15_we;
logic [31:0] key_share1_0_wd;
logic key_share1_0_we;
logic [31:0] key_share1_1_wd;
logic key_share1_1_we;
logic [31:0] key_share1_2_wd;
logic key_share1_2_we;
logic [31:0] key_share1_3_wd;
logic key_share1_3_we;
logic [31:0] key_share1_4_wd;
logic key_share1_4_we;
logic [31:0] key_share1_5_wd;
logic key_share1_5_we;
logic [31:0] key_share1_6_wd;
logic key_share1_6_we;
logic [31:0] key_share1_7_wd;
logic key_share1_7_we;
logic [31:0] key_share1_8_wd;
logic key_share1_8_we;
logic [31:0] key_share1_9_wd;
logic key_share1_9_we;
logic [31:0] key_share1_10_wd;
logic key_share1_10_we;
logic [31:0] key_share1_11_wd;
logic key_share1_11_we;
logic [31:0] key_share1_12_wd;
logic key_share1_12_we;
logic [31:0] key_share1_13_wd;
logic key_share1_13_we;
logic [31:0] key_share1_14_wd;
logic key_share1_14_we;
logic [31:0] key_share1_15_wd;
logic key_share1_15_we;
logic [2:0] key_len_wd;
logic key_len_we;
logic [31:0] prefix_0_qs;
logic [31:0] prefix_0_wd;
logic prefix_0_we;
logic [31:0] prefix_1_qs;
logic [31:0] prefix_1_wd;
logic prefix_1_we;
logic [31:0] prefix_2_qs;
logic [31:0] prefix_2_wd;
logic prefix_2_we;
logic [31:0] prefix_3_qs;
logic [31:0] prefix_3_wd;
logic prefix_3_we;
logic [31:0] prefix_4_qs;
logic [31:0] prefix_4_wd;
logic prefix_4_we;
logic [31:0] prefix_5_qs;
logic [31:0] prefix_5_wd;
logic prefix_5_we;
logic [31:0] prefix_6_qs;
logic [31:0] prefix_6_wd;
logic prefix_6_we;
logic [31:0] prefix_7_qs;
logic [31:0] prefix_7_wd;
logic prefix_7_we;
logic [31:0] prefix_8_qs;
logic [31:0] prefix_8_wd;
logic prefix_8_we;
logic [31:0] prefix_9_qs;
logic [31:0] prefix_9_wd;
logic prefix_9_we;
logic [31:0] prefix_10_qs;
logic [31:0] prefix_10_wd;
logic prefix_10_we;
logic [31:0] err_code_qs;
// Register instances
// R[intr_state]: V(False)
// F[kmac_done]: 0:0
prim_subreg #(
.DW (1),
.SWACCESS("W1C"),
.RESVAL (1'h0)
) u_intr_state_kmac_done (
.clk_i (clk_i),
.rst_ni (rst_ni),
// from register interface
.we (intr_state_kmac_done_we),
.wd (intr_state_kmac_done_wd),
// from internal hardware
.de (hw2reg.intr_state.kmac_done.de),
.d (hw2reg.intr_state.kmac_done.d),
// to internal hardware
.qe (),
.q (reg2hw.intr_state.kmac_done.q),
// to register interface (read)
.qs (intr_state_kmac_done_qs)
);
// F[fifo_empty]: 1:1
prim_subreg #(
.DW (1),
.SWACCESS("W1C"),
.RESVAL (1'h0)
) u_intr_state_fifo_empty (
.clk_i (clk_i),
.rst_ni (rst_ni),
// from register interface
.we (intr_state_fifo_empty_we),
.wd (intr_state_fifo_empty_wd),
// from internal hardware
.de (hw2reg.intr_state.fifo_empty.de),
.d (hw2reg.intr_state.fifo_empty.d),
// to internal hardware
.qe (),
.q (reg2hw.intr_state.fifo_empty.q),
// to register interface (read)
.qs (intr_state_fifo_empty_qs)
);
// F[kmac_err]: 2:2
prim_subreg #(
.DW (1),
.SWACCESS("W1C"),
.RESVAL (1'h0)
) u_intr_state_kmac_err (
.clk_i (clk_i),
.rst_ni (rst_ni),
// from register interface
.we (intr_state_kmac_err_we),
.wd (intr_state_kmac_err_wd),
// from internal hardware
.de (hw2reg.intr_state.kmac_err.de),
.d (hw2reg.intr_state.kmac_err.d),
// to internal hardware
.qe (),
.q (reg2hw.intr_state.kmac_err.q),
// to register interface (read)
.qs (intr_state_kmac_err_qs)
);
// R[intr_enable]: V(False)
// F[kmac_done]: 0:0
prim_subreg #(
.DW (1),
.SWACCESS("RW"),
.RESVAL (1'h0)
) u_intr_enable_kmac_done (
.clk_i (clk_i),
.rst_ni (rst_ni),
// from register interface
.we (intr_enable_kmac_done_we),
.wd (intr_enable_kmac_done_wd),
// from internal hardware
.de (1'b0),
.d ('0),
// to internal hardware
.qe (),
.q (reg2hw.intr_enable.kmac_done.q),
// to register interface (read)
.qs (intr_enable_kmac_done_qs)
);
// F[fifo_empty]: 1:1
prim_subreg #(
.DW (1),
.SWACCESS("RW"),
.RESVAL (1'h0)
) u_intr_enable_fifo_empty (
.clk_i (clk_i),
.rst_ni (rst_ni),
// from register interface
.we (intr_enable_fifo_empty_we),
.wd (intr_enable_fifo_empty_wd),
// from internal hardware
.de (1'b0),
.d ('0),
// to internal hardware
.qe (),
.q (reg2hw.intr_enable.fifo_empty.q),
// to register interface (read)
.qs (intr_enable_fifo_empty_qs)
);
// F[kmac_err]: 2:2
prim_subreg #(
.DW (1),
.SWACCESS("RW"),
.RESVAL (1'h0)
) u_intr_enable_kmac_err (
.clk_i (clk_i),
.rst_ni (rst_ni),
// from register interface
.we (intr_enable_kmac_err_we),
.wd (intr_enable_kmac_err_wd),
// from internal hardware
.de (1'b0),
.d ('0),
// to internal hardware
.qe (),
.q (reg2hw.intr_enable.kmac_err.q),
// to register interface (read)
.qs (intr_enable_kmac_err_qs)
);
// R[intr_test]: V(True)
// F[kmac_done]: 0:0
prim_subreg_ext #(
.DW (1)
) u_intr_test_kmac_done (
.re (1'b0),
.we (intr_test_kmac_done_we),
.wd (intr_test_kmac_done_wd),
.d ('0),
.qre (),
.qe (reg2hw.intr_test.kmac_done.qe),
.q (reg2hw.intr_test.kmac_done.q),
.qs ()
);
// F[fifo_empty]: 1:1
prim_subreg_ext #(
.DW (1)
) u_intr_test_fifo_empty (
.re (1'b0),
.we (intr_test_fifo_empty_we),
.wd (intr_test_fifo_empty_wd),
.d ('0),
.qre (),
.qe (reg2hw.intr_test.fifo_empty.qe),
.q (reg2hw.intr_test.fifo_empty.q),
.qs ()
);
// F[kmac_err]: 2:2
prim_subreg_ext #(
.DW (1)
) u_intr_test_kmac_err (
.re (1'b0),
.we (intr_test_kmac_err_we),
.wd (intr_test_kmac_err_wd),
.d ('0),
.qre (),
.qe (reg2hw.intr_test.kmac_err.qe),
.q (reg2hw.intr_test.kmac_err.q),
.qs ()
);
// R[alert_test]: V(True)
prim_subreg_ext #(
.DW (1)
) u_alert_test (
.re (1'b0),
.we (alert_test_we),
.wd (alert_test_wd),
.d ('0),
.qre (),
.qe (reg2hw.alert_test.qe),
.q (reg2hw.alert_test.q),
.qs ()
);
// R[cfg_regwen]: V(True)
prim_subreg_ext #(
.DW (1)
) u_cfg_regwen (
.re (cfg_regwen_re),
.we (1'b0),
.wd ('0),
.d (hw2reg.cfg_regwen.d),
.qre (),
.qe (),
.q (),
.qs (cfg_regwen_qs)
);
// R[cfg]: V(False)
// F[kmac_en]: 0:0
prim_subreg #(
.DW (1),
.SWACCESS("RW"),
.RESVAL (1'h0)
) u_cfg_kmac_en (
.clk_i (clk_i),
.rst_ni (rst_ni),
// from register interface
.we (cfg_kmac_en_we & cfg_regwen_qs),
.wd (cfg_kmac_en_wd),
// from internal hardware
.de (1'b0),
.d ('0),
// to internal hardware
.qe (),
.q (reg2hw.cfg.kmac_en.q),
// to register interface (read)
.qs (cfg_kmac_en_qs)
);
// F[kstrength]: 3:1
prim_subreg #(
.DW (3),
.SWACCESS("RW"),
.RESVAL (3'h0)
) u_cfg_kstrength (
.clk_i (clk_i),
.rst_ni (rst_ni),
// from register interface
.we (cfg_kstrength_we & cfg_regwen_qs),
.wd (cfg_kstrength_wd),
// from internal hardware
.de (1'b0),
.d ('0),
// to internal hardware
.qe (),
.q (reg2hw.cfg.kstrength.q),
// to register interface (read)
.qs (cfg_kstrength_qs)
);
// F[mode]: 5:4
prim_subreg #(
.DW (2),
.SWACCESS("RW"),
.RESVAL (2'h0)
) u_cfg_mode (
.clk_i (clk_i),
.rst_ni (rst_ni),
// from register interface
.we (cfg_mode_we & cfg_regwen_qs),
.wd (cfg_mode_wd),
// from internal hardware
.de (1'b0),
.d ('0),
// to internal hardware
.qe (),
.q (reg2hw.cfg.mode.q),
// to register interface (read)
.qs (cfg_mode_qs)
);
// F[msg_endianness]: 8:8
prim_subreg #(
.DW (1),
.SWACCESS("RW"),
.RESVAL (1'h0)
) u_cfg_msg_endianness (
.clk_i (clk_i),
.rst_ni (rst_ni),
// from register interface
.we (cfg_msg_endianness_we & cfg_regwen_qs),
.wd (cfg_msg_endianness_wd),
// from internal hardware
.de (1'b0),
.d ('0),
// to internal hardware
.qe (),
.q (reg2hw.cfg.msg_endianness.q),
// to register interface (read)
.qs (cfg_msg_endianness_qs)
);
// F[state_endianness]: 9:9
prim_subreg #(
.DW (1),
.SWACCESS("RW"),
.RESVAL (1'h0)
) u_cfg_state_endianness (
.clk_i (clk_i),
.rst_ni (rst_ni),
// from register interface
.we (cfg_state_endianness_we & cfg_regwen_qs),
.wd (cfg_state_endianness_wd),
// from internal hardware
.de (1'b0),
.d ('0),
// to internal hardware
.qe (),
.q (reg2hw.cfg.state_endianness.q),
// to register interface (read)
.qs (cfg_state_endianness_qs)
);
// F[sideload]: 12:12
prim_subreg #(
.DW (1),
.SWACCESS("RW"),
.RESVAL (1'h0)
) u_cfg_sideload (
.clk_i (clk_i),
.rst_ni (rst_ni),
// from register interface
.we (cfg_sideload_we & cfg_regwen_qs),
.wd (cfg_sideload_wd),
// from internal hardware
.de (1'b0),
.d ('0),
// to internal hardware
.qe (),
.q (reg2hw.cfg.sideload.q),
// to register interface (read)
.qs (cfg_sideload_qs)
);
// F[entropy_mode]: 17:16
prim_subreg #(
.DW (2),
.SWACCESS("RW"),
.RESVAL (2'h0)
) u_cfg_entropy_mode (
.clk_i (clk_i),
.rst_ni (rst_ni),
// from register interface
.we (cfg_entropy_mode_we & cfg_regwen_qs),
.wd (cfg_entropy_mode_wd),
// from internal hardware
.de (1'b0),
.d ('0),
// to internal hardware
.qe (),
.q (reg2hw.cfg.entropy_mode.q),
// to register interface (read)
.qs (cfg_entropy_mode_qs)
);
// F[entropy_fast_process]: 19:19
prim_subreg #(
.DW (1),
.SWACCESS("RW"),
.RESVAL (1'h0)
) u_cfg_entropy_fast_process (
.clk_i (clk_i),
.rst_ni (rst_ni),
// from register interface
.we (cfg_entropy_fast_process_we & cfg_regwen_qs),
.wd (cfg_entropy_fast_process_wd),
// from internal hardware
.de (1'b0),
.d ('0),
// to internal hardware
.qe (),
.q (reg2hw.cfg.entropy_fast_process.q),
// to register interface (read)
.qs (cfg_entropy_fast_process_qs)
);
// F[entropy_ready]: 24:24
prim_subreg #(
.DW (1),
.SWACCESS("RW"),
.RESVAL (1'h0)
) u_cfg_entropy_ready (
.clk_i (clk_i),
.rst_ni (rst_ni),
// from register interface
.we (cfg_entropy_ready_we & cfg_regwen_qs),
.wd (cfg_entropy_ready_wd),
// from internal hardware
.de (hw2reg.cfg.entropy_ready.de),
.d (hw2reg.cfg.entropy_ready.d),
// to internal hardware
.qe (),
.q (reg2hw.cfg.entropy_ready.q),
// to register interface (read)
.qs (cfg_entropy_ready_qs)
);
// F[err_processed]: 25:25
prim_subreg #(
.DW (1),
.SWACCESS("RW"),
.RESVAL (1'h0)
) u_cfg_err_processed (
.clk_i (clk_i),
.rst_ni (rst_ni),
// from register interface
.we (cfg_err_processed_we & cfg_regwen_qs),
.wd (cfg_err_processed_wd),
// from internal hardware
.de (hw2reg.cfg.err_processed.de),
.d (hw2reg.cfg.err_processed.d),
// to internal hardware
.qe (),
.q (reg2hw.cfg.err_processed.q),
// to register interface (read)
.qs (cfg_err_processed_qs)
);
// R[cmd]: V(True)
prim_subreg_ext #(
.DW (4)
) u_cmd (
.re (1'b0),
.we (cmd_we),
.wd (cmd_wd),
.d ('0),
.qre (),
.qe (reg2hw.cmd.qe),
.q (reg2hw.cmd.q),
.qs ()
);
// R[status]: V(True)
// F[sha3_idle]: 0:0
prim_subreg_ext #(
.DW (1)
) u_status_sha3_idle (
.re (status_sha3_idle_re),
.we (1'b0),
.wd ('0),
.d (hw2reg.status.sha3_idle.d),
.qre (),
.qe (),
.q (),
.qs (status_sha3_idle_qs)
);
// F[sha3_absorb]: 1:1
prim_subreg_ext #(
.DW (1)
) u_status_sha3_absorb (
.re (status_sha3_absorb_re),
.we (1'b0),
.wd ('0),
.d (hw2reg.status.sha3_absorb.d),
.qre (),
.qe (),
.q (),
.qs (status_sha3_absorb_qs)
);
// F[sha3_squeeze]: 2:2
prim_subreg_ext #(
.DW (1)
) u_status_sha3_squeeze (
.re (status_sha3_squeeze_re),
.we (1'b0),
.wd ('0),
.d (hw2reg.status.sha3_squeeze.d),
.qre (),
.qe (),
.q (),
.qs (status_sha3_squeeze_qs)
);
// F[fifo_depth]: 12:8
prim_subreg_ext #(
.DW (5)
) u_status_fifo_depth (
.re (status_fifo_depth_re),
.we (1'b0),
.wd ('0),
.d (hw2reg.status.fifo_depth.d),
.qre (),
.qe (),
.q (),
.qs (status_fifo_depth_qs)
);
// F[fifo_empty]: 14:14
prim_subreg_ext #(
.DW (1)
) u_status_fifo_empty (
.re (status_fifo_empty_re),
.we (1'b0),
.wd ('0),
.d (hw2reg.status.fifo_empty.d),
.qre (),
.qe (),
.q (),
.qs (status_fifo_empty_qs)
);
// F[fifo_full]: 15:15
prim_subreg_ext #(
.DW (1)
) u_status_fifo_full (
.re (status_fifo_full_re),
.we (1'b0),
.wd ('0),
.d (hw2reg.status.fifo_full.d),
.qre (),
.qe (),
.q (),
.qs (status_fifo_full_qs)
);
// R[entropy_period]: V(False)
// F[entropy_timer]: 15:0
prim_subreg #(
.DW (16),
.SWACCESS("RW"),
.RESVAL (16'h0)
) u_entropy_period_entropy_timer (
.clk_i (clk_i),
.rst_ni (rst_ni),
// from register interface
.we (entropy_period_entropy_timer_we & cfg_regwen_qs),
.wd (entropy_period_entropy_timer_wd),
// from internal hardware
.de (1'b0),
.d ('0),
// to internal hardware
.qe (),
.q (reg2hw.entropy_period.entropy_timer.q),
// to register interface (read)
.qs (entropy_period_entropy_timer_qs)
);
// F[wait_timer]: 31:16
prim_subreg #(
.DW (16),
.SWACCESS("RW"),
.RESVAL (16'h0)
) u_entropy_period_wait_timer (
.clk_i (clk_i),
.rst_ni (rst_ni),
// from register interface
.we (entropy_period_wait_timer_we & cfg_regwen_qs),
.wd (entropy_period_wait_timer_wd),
// from internal hardware
.de (1'b0),
.d ('0),
// to internal hardware
.qe (),
.q (reg2hw.entropy_period.wait_timer.q),
// to register interface (read)
.qs (entropy_period_wait_timer_qs)
);
// R[entropy_seed_lower]: V(False)
prim_subreg #(
.DW (32),
.SWACCESS("RW"),
.RESVAL (32'h0)
) u_entropy_seed_lower (
.clk_i (clk_i),
.rst_ni (rst_ni),
// from register interface
.we (entropy_seed_lower_we & cfg_regwen_qs),
.wd (entropy_seed_lower_wd),
// from internal hardware
.de (1'b0),
.d ('0),
// to internal hardware
.qe (reg2hw.entropy_seed_lower.qe),
.q (reg2hw.entropy_seed_lower.q),
// to register interface (read)
.qs (entropy_seed_lower_qs)
);
// R[entropy_seed_upper]: V(False)
prim_subreg #(
.DW (32),
.SWACCESS("RW"),
.RESVAL (32'h0)
) u_entropy_seed_upper (
.clk_i (clk_i),
.rst_ni (rst_ni),
// from register interface
.we (entropy_seed_upper_we & cfg_regwen_qs),
.wd (entropy_seed_upper_wd),
// from internal hardware
.de (1'b0),
.d ('0),
// to internal hardware
.qe (reg2hw.entropy_seed_upper.qe),
.q (reg2hw.entropy_seed_upper.q),
// to register interface (read)
.qs (entropy_seed_upper_qs)
);
// Subregister 0 of Multireg key_share0
// R[key_share0_0]: V(True)
prim_subreg_ext #(
.DW (32)
) u_key_share0_0 (
.re (1'b0),
.we (key_share0_0_we),
.wd (key_share0_0_wd),
.d ('0),
.qre (),
.qe (reg2hw.key_share0[0].qe),
.q (reg2hw.key_share0[0].q),
.qs ()
);
// Subregister 1 of Multireg key_share0
// R[key_share0_1]: V(True)
prim_subreg_ext #(
.DW (32)
) u_key_share0_1 (
.re (1'b0),
.we (key_share0_1_we),
.wd (key_share0_1_wd),
.d ('0),
.qre (),
.qe (reg2hw.key_share0[1].qe),
.q (reg2hw.key_share0[1].q),
.qs ()
);
// Subregister 2 of Multireg key_share0
// R[key_share0_2]: V(True)
prim_subreg_ext #(
.DW (32)
) u_key_share0_2 (
.re (1'b0),
.we (key_share0_2_we),
.wd (key_share0_2_wd),
.d ('0),
.qre (),
.qe (reg2hw.key_share0[2].qe),
.q (reg2hw.key_share0[2].q),
.qs ()
);
// Subregister 3 of Multireg key_share0
// R[key_share0_3]: V(True)
prim_subreg_ext #(
.DW (32)
) u_key_share0_3 (
.re (1'b0),
.we (key_share0_3_we),
.wd (key_share0_3_wd),
.d ('0),
.qre (),
.qe (reg2hw.key_share0[3].qe),
.q (reg2hw.key_share0[3].q),
.qs ()
);
// Subregister 4 of Multireg key_share0
// R[key_share0_4]: V(True)
prim_subreg_ext #(
.DW (32)
) u_key_share0_4 (
.re (1'b0),
.we (key_share0_4_we),
.wd (key_share0_4_wd),
.d ('0),
.qre (),
.qe (reg2hw.key_share0[4].qe),
.q (reg2hw.key_share0[4].q),
.qs ()
);
// Subregister 5 of Multireg key_share0
// R[key_share0_5]: V(True)
prim_subreg_ext #(
.DW (32)
) u_key_share0_5 (
.re (1'b0),
.we (key_share0_5_we),
.wd (key_share0_5_wd),
.d ('0),
.qre (),
.qe (reg2hw.key_share0[5].qe),
.q (reg2hw.key_share0[5].q),
.qs ()
);
// Subregister 6 of Multireg key_share0
// R[key_share0_6]: V(True)
prim_subreg_ext #(
.DW (32)
) u_key_share0_6 (
.re (1'b0),
.we (key_share0_6_we),
.wd (key_share0_6_wd),
.d ('0),
.qre (),
.qe (reg2hw.key_share0[6].qe),
.q (reg2hw.key_share0[6].q),
.qs ()
);
// Subregister 7 of Multireg key_share0
// R[key_share0_7]: V(True)
prim_subreg_ext #(
.DW (32)
) u_key_share0_7 (
.re (1'b0),
.we (key_share0_7_we),
.wd (key_share0_7_wd),
.d ('0),
.qre (),
.qe (reg2hw.key_share0[7].qe),
.q (reg2hw.key_share0[7].q),
.qs ()
);
// Subregister 8 of Multireg key_share0
// R[key_share0_8]: V(True)
prim_subreg_ext #(
.DW (32)
) u_key_share0_8 (
.re (1'b0),
.we (key_share0_8_we),
.wd (key_share0_8_wd),
.d ('0),
.qre (),
.qe (reg2hw.key_share0[8].qe),
.q (reg2hw.key_share0[8].q),
.qs ()
);
// Subregister 9 of Multireg key_share0
// R[key_share0_9]: V(True)
prim_subreg_ext #(
.DW (32)
) u_key_share0_9 (
.re (1'b0),
.we (key_share0_9_we),
.wd (key_share0_9_wd),
.d ('0),
.qre (),
.qe (reg2hw.key_share0[9].qe),
.q (reg2hw.key_share0[9].q),
.qs ()
);
// Subregister 10 of Multireg key_share0
// R[key_share0_10]: V(True)
prim_subreg_ext #(
.DW (32)
) u_key_share0_10 (
.re (1'b0),
.we (key_share0_10_we),
.wd (key_share0_10_wd),
.d ('0),
.qre (),
.qe (reg2hw.key_share0[10].qe),
.q (reg2hw.key_share0[10].q),
.qs ()
);
// Subregister 11 of Multireg key_share0
// R[key_share0_11]: V(True)
prim_subreg_ext #(
.DW (32)
) u_key_share0_11 (
.re (1'b0),
.we (key_share0_11_we),
.wd (key_share0_11_wd),
.d ('0),
.qre (),
.qe (reg2hw.key_share0[11].qe),
.q (reg2hw.key_share0[11].q),
.qs ()
);
// Subregister 12 of Multireg key_share0
// R[key_share0_12]: V(True)
prim_subreg_ext #(
.DW (32)
) u_key_share0_12 (
.re (1'b0),
.we (key_share0_12_we),
.wd (key_share0_12_wd),
.d ('0),
.qre (),
.qe (reg2hw.key_share0[12].qe),
.q (reg2hw.key_share0[12].q),
.qs ()
);
// Subregister 13 of Multireg key_share0
// R[key_share0_13]: V(True)
prim_subreg_ext #(
.DW (32)
) u_key_share0_13 (
.re (1'b0),
.we (key_share0_13_we),
.wd (key_share0_13_wd),
.d ('0),
.qre (),
.qe (reg2hw.key_share0[13].qe),
.q (reg2hw.key_share0[13].q),
.qs ()
);
// Subregister 14 of Multireg key_share0
// R[key_share0_14]: V(True)
prim_subreg_ext #(
.DW (32)
) u_key_share0_14 (
.re (1'b0),
.we (key_share0_14_we),
.wd (key_share0_14_wd),
.d ('0),
.qre (),
.qe (reg2hw.key_share0[14].qe),
.q (reg2hw.key_share0[14].q),
.qs ()
);
// Subregister 15 of Multireg key_share0
// R[key_share0_15]: V(True)
prim_subreg_ext #(
.DW (32)
) u_key_share0_15 (
.re (1'b0),
.we (key_share0_15_we),
.wd (key_share0_15_wd),
.d ('0),
.qre (),
.qe (reg2hw.key_share0[15].qe),
.q (reg2hw.key_share0[15].q),
.qs ()
);
// Subregister 0 of Multireg key_share1
// R[key_share1_0]: V(True)
prim_subreg_ext #(
.DW (32)
) u_key_share1_0 (
.re (1'b0),
.we (key_share1_0_we),
.wd (key_share1_0_wd),
.d ('0),
.qre (),
.qe (reg2hw.key_share1[0].qe),
.q (reg2hw.key_share1[0].q),
.qs ()
);
// Subregister 1 of Multireg key_share1
// R[key_share1_1]: V(True)
prim_subreg_ext #(
.DW (32)
) u_key_share1_1 (
.re (1'b0),
.we (key_share1_1_we),
.wd (key_share1_1_wd),
.d ('0),
.qre (),
.qe (reg2hw.key_share1[1].qe),
.q (reg2hw.key_share1[1].q),
.qs ()
);
// Subregister 2 of Multireg key_share1
// R[key_share1_2]: V(True)
prim_subreg_ext #(
.DW (32)
) u_key_share1_2 (
.re (1'b0),
.we (key_share1_2_we),
.wd (key_share1_2_wd),
.d ('0),
.qre (),
.qe (reg2hw.key_share1[2].qe),
.q (reg2hw.key_share1[2].q),
.qs ()
);
// Subregister 3 of Multireg key_share1
// R[key_share1_3]: V(True)
prim_subreg_ext #(
.DW (32)
) u_key_share1_3 (
.re (1'b0),
.we (key_share1_3_we),
.wd (key_share1_3_wd),
.d ('0),
.qre (),
.qe (reg2hw.key_share1[3].qe),
.q (reg2hw.key_share1[3].q),
.qs ()
);
// Subregister 4 of Multireg key_share1
// R[key_share1_4]: V(True)
prim_subreg_ext #(
.DW (32)
) u_key_share1_4 (
.re (1'b0),
.we (key_share1_4_we),
.wd (key_share1_4_wd),
.d ('0),
.qre (),
.qe (reg2hw.key_share1[4].qe),
.q (reg2hw.key_share1[4].q),
.qs ()
);
// Subregister 5 of Multireg key_share1
// R[key_share1_5]: V(True)
prim_subreg_ext #(
.DW (32)
) u_key_share1_5 (
.re (1'b0),
.we (key_share1_5_we),
.wd (key_share1_5_wd),
.d ('0),
.qre (),
.qe (reg2hw.key_share1[5].qe),
.q (reg2hw.key_share1[5].q),
.qs ()
);
// Subregister 6 of Multireg key_share1
// R[key_share1_6]: V(True)
prim_subreg_ext #(
.DW (32)
) u_key_share1_6 (
.re (1'b0),
.we (key_share1_6_we),
.wd (key_share1_6_wd),
.d ('0),
.qre (),
.qe (reg2hw.key_share1[6].qe),
.q (reg2hw.key_share1[6].q),
.qs ()
);
// Subregister 7 of Multireg key_share1
// R[key_share1_7]: V(True)
prim_subreg_ext #(
.DW (32)
) u_key_share1_7 (
.re (1'b0),
.we (key_share1_7_we),
.wd (key_share1_7_wd),
.d ('0),
.qre (),
.qe (reg2hw.key_share1[7].qe),
.q (reg2hw.key_share1[7].q),
.qs ()
);
// Subregister 8 of Multireg key_share1
// R[key_share1_8]: V(True)
prim_subreg_ext #(
.DW (32)
) u_key_share1_8 (
.re (1'b0),
.we (key_share1_8_we),
.wd (key_share1_8_wd),
.d ('0),
.qre (),
.qe (reg2hw.key_share1[8].qe),
.q (reg2hw.key_share1[8].q),
.qs ()
);
// Subregister 9 of Multireg key_share1
// R[key_share1_9]: V(True)
prim_subreg_ext #(
.DW (32)
) u_key_share1_9 (
.re (1'b0),
.we (key_share1_9_we),
.wd (key_share1_9_wd),
.d ('0),
.qre (),
.qe (reg2hw.key_share1[9].qe),
.q (reg2hw.key_share1[9].q),
.qs ()
);
// Subregister 10 of Multireg key_share1
// R[key_share1_10]: V(True)
prim_subreg_ext #(
.DW (32)
) u_key_share1_10 (
.re (1'b0),
.we (key_share1_10_we),
.wd (key_share1_10_wd),
.d ('0),
.qre (),
.qe (reg2hw.key_share1[10].qe),
.q (reg2hw.key_share1[10].q),
.qs ()
);
// Subregister 11 of Multireg key_share1
// R[key_share1_11]: V(True)
prim_subreg_ext #(
.DW (32)
) u_key_share1_11 (
.re (1'b0),
.we (key_share1_11_we),
.wd (key_share1_11_wd),
.d ('0),
.qre (),
.qe (reg2hw.key_share1[11].qe),
.q (reg2hw.key_share1[11].q),
.qs ()
);
// Subregister 12 of Multireg key_share1
// R[key_share1_12]: V(True)
prim_subreg_ext #(
.DW (32)
) u_key_share1_12 (
.re (1'b0),
.we (key_share1_12_we),
.wd (key_share1_12_wd),
.d ('0),
.qre (),
.qe (reg2hw.key_share1[12].qe),
.q (reg2hw.key_share1[12].q),
.qs ()
);
// Subregister 13 of Multireg key_share1
// R[key_share1_13]: V(True)
prim_subreg_ext #(
.DW (32)
) u_key_share1_13 (
.re (1'b0),
.we (key_share1_13_we),
.wd (key_share1_13_wd),
.d ('0),
.qre (),
.qe (reg2hw.key_share1[13].qe),
.q (reg2hw.key_share1[13].q),
.qs ()
);
// Subregister 14 of Multireg key_share1
// R[key_share1_14]: V(True)
prim_subreg_ext #(
.DW (32)
) u_key_share1_14 (
.re (1'b0),
.we (key_share1_14_we),
.wd (key_share1_14_wd),
.d ('0),
.qre (),
.qe (reg2hw.key_share1[14].qe),
.q (reg2hw.key_share1[14].q),
.qs ()
);
// Subregister 15 of Multireg key_share1
// R[key_share1_15]: V(True)
prim_subreg_ext #(
.DW (32)
) u_key_share1_15 (
.re (1'b0),
.we (key_share1_15_we),
.wd (key_share1_15_wd),
.d ('0),
.qre (),
.qe (reg2hw.key_share1[15].qe),
.q (reg2hw.key_share1[15].q),
.qs ()
);
// R[key_len]: V(False)
prim_subreg #(
.DW (3),
.SWACCESS("WO"),
.RESVAL (3'h0)
) u_key_len (
.clk_i (clk_i),
.rst_ni (rst_ni),
// from register interface
.we (key_len_we & cfg_regwen_qs),
.wd (key_len_wd),
// from internal hardware
.de (1'b0),
.d ('0),
// to internal hardware
.qe (),
.q (reg2hw.key_len.q),
// to register interface (read)
.qs ()
);
// Subregister 0 of Multireg prefix
// R[prefix_0]: V(False)
prim_subreg #(
.DW (32),
.SWACCESS("RW"),
.RESVAL (32'h0)
) u_prefix_0 (
.clk_i (clk_i),
.rst_ni (rst_ni),
// from register interface
.we (prefix_0_we),
.wd (prefix_0_wd),
// from internal hardware
.de (1'b0),
.d ('0),
// to internal hardware
.qe (),
.q (reg2hw.prefix[0].q),
// to register interface (read)
.qs (prefix_0_qs)
);
// Subregister 1 of Multireg prefix
// R[prefix_1]: V(False)
prim_subreg #(
.DW (32),
.SWACCESS("RW"),
.RESVAL (32'h0)
) u_prefix_1 (
.clk_i (clk_i),
.rst_ni (rst_ni),
// from register interface
.we (prefix_1_we),
.wd (prefix_1_wd),
// from internal hardware
.de (1'b0),
.d ('0),
// to internal hardware
.qe (),
.q (reg2hw.prefix[1].q),
// to register interface (read)
.qs (prefix_1_qs)
);
// Subregister 2 of Multireg prefix
// R[prefix_2]: V(False)
prim_subreg #(
.DW (32),
.SWACCESS("RW"),
.RESVAL (32'h0)
) u_prefix_2 (
.clk_i (clk_i),
.rst_ni (rst_ni),
// from register interface
.we (prefix_2_we),
.wd (prefix_2_wd),
// from internal hardware
.de (1'b0),
.d ('0),
// to internal hardware
.qe (),
.q (reg2hw.prefix[2].q),
// to register interface (read)
.qs (prefix_2_qs)
);
// Subregister 3 of Multireg prefix
// R[prefix_3]: V(False)
prim_subreg #(
.DW (32),
.SWACCESS("RW"),
.RESVAL (32'h0)
) u_prefix_3 (
.clk_i (clk_i),
.rst_ni (rst_ni),
// from register interface
.we (prefix_3_we),
.wd (prefix_3_wd),
// from internal hardware
.de (1'b0),
.d ('0),
// to internal hardware
.qe (),
.q (reg2hw.prefix[3].q),
// to register interface (read)
.qs (prefix_3_qs)
);
// Subregister 4 of Multireg prefix
// R[prefix_4]: V(False)
prim_subreg #(
.DW (32),
.SWACCESS("RW"),
.RESVAL (32'h0)
) u_prefix_4 (
.clk_i (clk_i),
.rst_ni (rst_ni),
// from register interface
.we (prefix_4_we),
.wd (prefix_4_wd),
// from internal hardware
.de (1'b0),
.d ('0),
// to internal hardware
.qe (),
.q (reg2hw.prefix[4].q),
// to register interface (read)
.qs (prefix_4_qs)
);
// Subregister 5 of Multireg prefix
// R[prefix_5]: V(False)
prim_subreg #(
.DW (32),
.SWACCESS("RW"),
.RESVAL (32'h0)
) u_prefix_5 (
.clk_i (clk_i),
.rst_ni (rst_ni),
// from register interface
.we (prefix_5_we),
.wd (prefix_5_wd),
// from internal hardware
.de (1'b0),
.d ('0),
// to internal hardware
.qe (),
.q (reg2hw.prefix[5].q),
// to register interface (read)
.qs (prefix_5_qs)
);
// Subregister 6 of Multireg prefix
// R[prefix_6]: V(False)
prim_subreg #(
.DW (32),
.SWACCESS("RW"),
.RESVAL (32'h0)
) u_prefix_6 (
.clk_i (clk_i),
.rst_ni (rst_ni),
// from register interface
.we (prefix_6_we),
.wd (prefix_6_wd),
// from internal hardware
.de (1'b0),
.d ('0),
// to internal hardware
.qe (),
.q (reg2hw.prefix[6].q),
// to register interface (read)
.qs (prefix_6_qs)
);
// Subregister 7 of Multireg prefix
// R[prefix_7]: V(False)
prim_subreg #(
.DW (32),
.SWACCESS("RW"),
.RESVAL (32'h0)
) u_prefix_7 (
.clk_i (clk_i),
.rst_ni (rst_ni),
// from register interface
.we (prefix_7_we),
.wd (prefix_7_wd),
// from internal hardware
.de (1'b0),
.d ('0),
// to internal hardware
.qe (),
.q (reg2hw.prefix[7].q),
// to register interface (read)
.qs (prefix_7_qs)
);
// Subregister 8 of Multireg prefix
// R[prefix_8]: V(False)
prim_subreg #(
.DW (32),
.SWACCESS("RW"),
.RESVAL (32'h0)
) u_prefix_8 (
.clk_i (clk_i),
.rst_ni (rst_ni),
// from register interface
.we (prefix_8_we),
.wd (prefix_8_wd),
// from internal hardware
.de (1'b0),
.d ('0),
// to internal hardware
.qe (),
.q (reg2hw.prefix[8].q),
// to register interface (read)
.qs (prefix_8_qs)
);
// Subregister 9 of Multireg prefix
// R[prefix_9]: V(False)
prim_subreg #(
.DW (32),
.SWACCESS("RW"),
.RESVAL (32'h0)
) u_prefix_9 (
.clk_i (clk_i),
.rst_ni (rst_ni),
// from register interface
.we (prefix_9_we),
.wd (prefix_9_wd),
// from internal hardware
.de (1'b0),
.d ('0),
// to internal hardware
.qe (),
.q (reg2hw.prefix[9].q),
// to register interface (read)
.qs (prefix_9_qs)
);
// Subregister 10 of Multireg prefix
// R[prefix_10]: V(False)
prim_subreg #(
.DW (32),
.SWACCESS("RW"),
.RESVAL (32'h0)
) u_prefix_10 (
.clk_i (clk_i),
.rst_ni (rst_ni),
// from register interface
.we (prefix_10_we),
.wd (prefix_10_wd),
// from internal hardware
.de (1'b0),
.d ('0),
// to internal hardware
.qe (),
.q (reg2hw.prefix[10].q),
// to register interface (read)
.qs (prefix_10_qs)
);
// R[err_code]: V(False)
prim_subreg #(
.DW (32),
.SWACCESS("RO"),
.RESVAL (32'h0)
) u_err_code (
.clk_i (clk_i),
.rst_ni (rst_ni),
// from register interface
.we (1'b0),
.wd ('0),
// from internal hardware
.de (hw2reg.err_code.de),
.d (hw2reg.err_code.d),
// to internal hardware
.qe (),
.q (),
// to register interface (read)
.qs (err_code_qs)
);
logic [55:0] addr_hit;
always_comb begin
addr_hit = '0;
addr_hit[ 0] = (reg_addr == KMAC_INTR_STATE_OFFSET);
addr_hit[ 1] = (reg_addr == KMAC_INTR_ENABLE_OFFSET);
addr_hit[ 2] = (reg_addr == KMAC_INTR_TEST_OFFSET);
addr_hit[ 3] = (reg_addr == KMAC_ALERT_TEST_OFFSET);
addr_hit[ 4] = (reg_addr == KMAC_CFG_REGWEN_OFFSET);
addr_hit[ 5] = (reg_addr == KMAC_CFG_OFFSET);
addr_hit[ 6] = (reg_addr == KMAC_CMD_OFFSET);
addr_hit[ 7] = (reg_addr == KMAC_STATUS_OFFSET);
addr_hit[ 8] = (reg_addr == KMAC_ENTROPY_PERIOD_OFFSET);
addr_hit[ 9] = (reg_addr == KMAC_ENTROPY_SEED_LOWER_OFFSET);
addr_hit[10] = (reg_addr == KMAC_ENTROPY_SEED_UPPER_OFFSET);
addr_hit[11] = (reg_addr == KMAC_KEY_SHARE0_0_OFFSET);
addr_hit[12] = (reg_addr == KMAC_KEY_SHARE0_1_OFFSET);
addr_hit[13] = (reg_addr == KMAC_KEY_SHARE0_2_OFFSET);
addr_hit[14] = (reg_addr == KMAC_KEY_SHARE0_3_OFFSET);
addr_hit[15] = (reg_addr == KMAC_KEY_SHARE0_4_OFFSET);
addr_hit[16] = (reg_addr == KMAC_KEY_SHARE0_5_OFFSET);
addr_hit[17] = (reg_addr == KMAC_KEY_SHARE0_6_OFFSET);
addr_hit[18] = (reg_addr == KMAC_KEY_SHARE0_7_OFFSET);
addr_hit[19] = (reg_addr == KMAC_KEY_SHARE0_8_OFFSET);
addr_hit[20] = (reg_addr == KMAC_KEY_SHARE0_9_OFFSET);
addr_hit[21] = (reg_addr == KMAC_KEY_SHARE0_10_OFFSET);
addr_hit[22] = (reg_addr == KMAC_KEY_SHARE0_11_OFFSET);
addr_hit[23] = (reg_addr == KMAC_KEY_SHARE0_12_OFFSET);
addr_hit[24] = (reg_addr == KMAC_KEY_SHARE0_13_OFFSET);
addr_hit[25] = (reg_addr == KMAC_KEY_SHARE0_14_OFFSET);
addr_hit[26] = (reg_addr == KMAC_KEY_SHARE0_15_OFFSET);
addr_hit[27] = (reg_addr == KMAC_KEY_SHARE1_0_OFFSET);
addr_hit[28] = (reg_addr == KMAC_KEY_SHARE1_1_OFFSET);
addr_hit[29] = (reg_addr == KMAC_KEY_SHARE1_2_OFFSET);
addr_hit[30] = (reg_addr == KMAC_KEY_SHARE1_3_OFFSET);
addr_hit[31] = (reg_addr == KMAC_KEY_SHARE1_4_OFFSET);
addr_hit[32] = (reg_addr == KMAC_KEY_SHARE1_5_OFFSET);
addr_hit[33] = (reg_addr == KMAC_KEY_SHARE1_6_OFFSET);
addr_hit[34] = (reg_addr == KMAC_KEY_SHARE1_7_OFFSET);
addr_hit[35] = (reg_addr == KMAC_KEY_SHARE1_8_OFFSET);
addr_hit[36] = (reg_addr == KMAC_KEY_SHARE1_9_OFFSET);
addr_hit[37] = (reg_addr == KMAC_KEY_SHARE1_10_OFFSET);
addr_hit[38] = (reg_addr == KMAC_KEY_SHARE1_11_OFFSET);
addr_hit[39] = (reg_addr == KMAC_KEY_SHARE1_12_OFFSET);
addr_hit[40] = (reg_addr == KMAC_KEY_SHARE1_13_OFFSET);
addr_hit[41] = (reg_addr == KMAC_KEY_SHARE1_14_OFFSET);
addr_hit[42] = (reg_addr == KMAC_KEY_SHARE1_15_OFFSET);
addr_hit[43] = (reg_addr == KMAC_KEY_LEN_OFFSET);
addr_hit[44] = (reg_addr == KMAC_PREFIX_0_OFFSET);
addr_hit[45] = (reg_addr == KMAC_PREFIX_1_OFFSET);
addr_hit[46] = (reg_addr == KMAC_PREFIX_2_OFFSET);
addr_hit[47] = (reg_addr == KMAC_PREFIX_3_OFFSET);
addr_hit[48] = (reg_addr == KMAC_PREFIX_4_OFFSET);
addr_hit[49] = (reg_addr == KMAC_PREFIX_5_OFFSET);
addr_hit[50] = (reg_addr == KMAC_PREFIX_6_OFFSET);
addr_hit[51] = (reg_addr == KMAC_PREFIX_7_OFFSET);
addr_hit[52] = (reg_addr == KMAC_PREFIX_8_OFFSET);
addr_hit[53] = (reg_addr == KMAC_PREFIX_9_OFFSET);
addr_hit[54] = (reg_addr == KMAC_PREFIX_10_OFFSET);
addr_hit[55] = (reg_addr == KMAC_ERR_CODE_OFFSET);
end
assign addrmiss = (reg_re || reg_we) ? ~|addr_hit : 1'b0 ;
// Check sub-word write is permitted
always_comb begin
wr_err = (reg_we &
((addr_hit[ 0] & (|(KMAC_PERMIT[ 0] & ~reg_be))) |
(addr_hit[ 1] & (|(KMAC_PERMIT[ 1] & ~reg_be))) |
(addr_hit[ 2] & (|(KMAC_PERMIT[ 2] & ~reg_be))) |
(addr_hit[ 3] & (|(KMAC_PERMIT[ 3] & ~reg_be))) |
(addr_hit[ 4] & (|(KMAC_PERMIT[ 4] & ~reg_be))) |
(addr_hit[ 5] & (|(KMAC_PERMIT[ 5] & ~reg_be))) |
(addr_hit[ 6] & (|(KMAC_PERMIT[ 6] & ~reg_be))) |
(addr_hit[ 7] & (|(KMAC_PERMIT[ 7] & ~reg_be))) |
(addr_hit[ 8] & (|(KMAC_PERMIT[ 8] & ~reg_be))) |
(addr_hit[ 9] & (|(KMAC_PERMIT[ 9] & ~reg_be))) |
(addr_hit[10] & (|(KMAC_PERMIT[10] & ~reg_be))) |
(addr_hit[11] & (|(KMAC_PERMIT[11] & ~reg_be))) |
(addr_hit[12] & (|(KMAC_PERMIT[12] & ~reg_be))) |
(addr_hit[13] & (|(KMAC_PERMIT[13] & ~reg_be))) |
(addr_hit[14] & (|(KMAC_PERMIT[14] & ~reg_be))) |
(addr_hit[15] & (|(KMAC_PERMIT[15] & ~reg_be))) |
(addr_hit[16] & (|(KMAC_PERMIT[16] & ~reg_be))) |
(addr_hit[17] & (|(KMAC_PERMIT[17] & ~reg_be))) |
(addr_hit[18] & (|(KMAC_PERMIT[18] & ~reg_be))) |
(addr_hit[19] & (|(KMAC_PERMIT[19] & ~reg_be))) |
(addr_hit[20] & (|(KMAC_PERMIT[20] & ~reg_be))) |
(addr_hit[21] & (|(KMAC_PERMIT[21] & ~reg_be))) |
(addr_hit[22] & (|(KMAC_PERMIT[22] & ~reg_be))) |
(addr_hit[23] & (|(KMAC_PERMIT[23] & ~reg_be))) |
(addr_hit[24] & (|(KMAC_PERMIT[24] & ~reg_be))) |
(addr_hit[25] & (|(KMAC_PERMIT[25] & ~reg_be))) |
(addr_hit[26] & (|(KMAC_PERMIT[26] & ~reg_be))) |
(addr_hit[27] & (|(KMAC_PERMIT[27] & ~reg_be))) |
(addr_hit[28] & (|(KMAC_PERMIT[28] & ~reg_be))) |
(addr_hit[29] & (|(KMAC_PERMIT[29] & ~reg_be))) |
(addr_hit[30] & (|(KMAC_PERMIT[30] & ~reg_be))) |
(addr_hit[31] & (|(KMAC_PERMIT[31] & ~reg_be))) |
(addr_hit[32] & (|(KMAC_PERMIT[32] & ~reg_be))) |
(addr_hit[33] & (|(KMAC_PERMIT[33] & ~reg_be))) |
(addr_hit[34] & (|(KMAC_PERMIT[34] & ~reg_be))) |
(addr_hit[35] & (|(KMAC_PERMIT[35] & ~reg_be))) |
(addr_hit[36] & (|(KMAC_PERMIT[36] & ~reg_be))) |
(addr_hit[37] & (|(KMAC_PERMIT[37] & ~reg_be))) |
(addr_hit[38] & (|(KMAC_PERMIT[38] & ~reg_be))) |
(addr_hit[39] & (|(KMAC_PERMIT[39] & ~reg_be))) |
(addr_hit[40] & (|(KMAC_PERMIT[40] & ~reg_be))) |
(addr_hit[41] & (|(KMAC_PERMIT[41] & ~reg_be))) |
(addr_hit[42] & (|(KMAC_PERMIT[42] & ~reg_be))) |
(addr_hit[43] & (|(KMAC_PERMIT[43] & ~reg_be))) |
(addr_hit[44] & (|(KMAC_PERMIT[44] & ~reg_be))) |
(addr_hit[45] & (|(KMAC_PERMIT[45] & ~reg_be))) |
(addr_hit[46] & (|(KMAC_PERMIT[46] & ~reg_be))) |
(addr_hit[47] & (|(KMAC_PERMIT[47] & ~reg_be))) |
(addr_hit[48] & (|(KMAC_PERMIT[48] & ~reg_be))) |
(addr_hit[49] & (|(KMAC_PERMIT[49] & ~reg_be))) |
(addr_hit[50] & (|(KMAC_PERMIT[50] & ~reg_be))) |
(addr_hit[51] & (|(KMAC_PERMIT[51] & ~reg_be))) |
(addr_hit[52] & (|(KMAC_PERMIT[52] & ~reg_be))) |
(addr_hit[53] & (|(KMAC_PERMIT[53] & ~reg_be))) |
(addr_hit[54] & (|(KMAC_PERMIT[54] & ~reg_be))) |
(addr_hit[55] & (|(KMAC_PERMIT[55] & ~reg_be)))));
end
assign intr_state_kmac_done_we = addr_hit[0] & reg_we & !reg_error;
assign intr_state_kmac_done_wd = reg_wdata[0];
assign intr_state_fifo_empty_we = addr_hit[0] & reg_we & !reg_error;
assign intr_state_fifo_empty_wd = reg_wdata[1];
assign intr_state_kmac_err_we = addr_hit[0] & reg_we & !reg_error;
assign intr_state_kmac_err_wd = reg_wdata[2];
assign intr_enable_kmac_done_we = addr_hit[1] & reg_we & !reg_error;
assign intr_enable_kmac_done_wd = reg_wdata[0];
assign intr_enable_fifo_empty_we = addr_hit[1] & reg_we & !reg_error;
assign intr_enable_fifo_empty_wd = reg_wdata[1];
assign intr_enable_kmac_err_we = addr_hit[1] & reg_we & !reg_error;
assign intr_enable_kmac_err_wd = reg_wdata[2];
assign intr_test_kmac_done_we = addr_hit[2] & reg_we & !reg_error;
assign intr_test_kmac_done_wd = reg_wdata[0];
assign intr_test_fifo_empty_we = addr_hit[2] & reg_we & !reg_error;
assign intr_test_fifo_empty_wd = reg_wdata[1];
assign intr_test_kmac_err_we = addr_hit[2] & reg_we & !reg_error;
assign intr_test_kmac_err_wd = reg_wdata[2];
assign alert_test_we = addr_hit[3] & reg_we & !reg_error;
assign alert_test_wd = reg_wdata[0];
assign cfg_regwen_re = addr_hit[4] & reg_re & !reg_error;
assign cfg_kmac_en_we = addr_hit[5] & reg_we & !reg_error;
assign cfg_kmac_en_wd = reg_wdata[0];
assign cfg_kstrength_we = addr_hit[5] & reg_we & !reg_error;
assign cfg_kstrength_wd = reg_wdata[3:1];
assign cfg_mode_we = addr_hit[5] & reg_we & !reg_error;
assign cfg_mode_wd = reg_wdata[5:4];
assign cfg_msg_endianness_we = addr_hit[5] & reg_we & !reg_error;
assign cfg_msg_endianness_wd = reg_wdata[8];
assign cfg_state_endianness_we = addr_hit[5] & reg_we & !reg_error;
assign cfg_state_endianness_wd = reg_wdata[9];
assign cfg_sideload_we = addr_hit[5] & reg_we & !reg_error;
assign cfg_sideload_wd = reg_wdata[12];
assign cfg_entropy_mode_we = addr_hit[5] & reg_we & !reg_error;
assign cfg_entropy_mode_wd = reg_wdata[17:16];
assign cfg_entropy_fast_process_we = addr_hit[5] & reg_we & !reg_error;
assign cfg_entropy_fast_process_wd = reg_wdata[19];
assign cfg_entropy_ready_we = addr_hit[5] & reg_we & !reg_error;
assign cfg_entropy_ready_wd = reg_wdata[24];
assign cfg_err_processed_we = addr_hit[5] & reg_we & !reg_error;
assign cfg_err_processed_wd = reg_wdata[25];
assign cmd_we = addr_hit[6] & reg_we & !reg_error;
assign cmd_wd = reg_wdata[3:0];
assign status_sha3_idle_re = addr_hit[7] & reg_re & !reg_error;
assign status_sha3_absorb_re = addr_hit[7] & reg_re & !reg_error;
assign status_sha3_squeeze_re = addr_hit[7] & reg_re & !reg_error;
assign status_fifo_depth_re = addr_hit[7] & reg_re & !reg_error;
assign status_fifo_empty_re = addr_hit[7] & reg_re & !reg_error;
assign status_fifo_full_re = addr_hit[7] & reg_re & !reg_error;
assign entropy_period_entropy_timer_we = addr_hit[8] & reg_we & !reg_error;
assign entropy_period_entropy_timer_wd = reg_wdata[15:0];
assign entropy_period_wait_timer_we = addr_hit[8] & reg_we & !reg_error;
assign entropy_period_wait_timer_wd = reg_wdata[31:16];
assign entropy_seed_lower_we = addr_hit[9] & reg_we & !reg_error;
assign entropy_seed_lower_wd = reg_wdata[31:0];
assign entropy_seed_upper_we = addr_hit[10] & reg_we & !reg_error;
assign entropy_seed_upper_wd = reg_wdata[31:0];
assign key_share0_0_we = addr_hit[11] & reg_we & !reg_error;
assign key_share0_0_wd = reg_wdata[31:0];
assign key_share0_1_we = addr_hit[12] & reg_we & !reg_error;
assign key_share0_1_wd = reg_wdata[31:0];
assign key_share0_2_we = addr_hit[13] & reg_we & !reg_error;
assign key_share0_2_wd = reg_wdata[31:0];
assign key_share0_3_we = addr_hit[14] & reg_we & !reg_error;
assign key_share0_3_wd = reg_wdata[31:0];
assign key_share0_4_we = addr_hit[15] & reg_we & !reg_error;
assign key_share0_4_wd = reg_wdata[31:0];
assign key_share0_5_we = addr_hit[16] & reg_we & !reg_error;
assign key_share0_5_wd = reg_wdata[31:0];
assign key_share0_6_we = addr_hit[17] & reg_we & !reg_error;
assign key_share0_6_wd = reg_wdata[31:0];
assign key_share0_7_we = addr_hit[18] & reg_we & !reg_error;
assign key_share0_7_wd = reg_wdata[31:0];
assign key_share0_8_we = addr_hit[19] & reg_we & !reg_error;
assign key_share0_8_wd = reg_wdata[31:0];
assign key_share0_9_we = addr_hit[20] & reg_we & !reg_error;
assign key_share0_9_wd = reg_wdata[31:0];
assign key_share0_10_we = addr_hit[21] & reg_we & !reg_error;
assign key_share0_10_wd = reg_wdata[31:0];
assign key_share0_11_we = addr_hit[22] & reg_we & !reg_error;
assign key_share0_11_wd = reg_wdata[31:0];
assign key_share0_12_we = addr_hit[23] & reg_we & !reg_error;
assign key_share0_12_wd = reg_wdata[31:0];
assign key_share0_13_we = addr_hit[24] & reg_we & !reg_error;
assign key_share0_13_wd = reg_wdata[31:0];
assign key_share0_14_we = addr_hit[25] & reg_we & !reg_error;
assign key_share0_14_wd = reg_wdata[31:0];
assign key_share0_15_we = addr_hit[26] & reg_we & !reg_error;
assign key_share0_15_wd = reg_wdata[31:0];
assign key_share1_0_we = addr_hit[27] & reg_we & !reg_error;
assign key_share1_0_wd = reg_wdata[31:0];
assign key_share1_1_we = addr_hit[28] & reg_we & !reg_error;
assign key_share1_1_wd = reg_wdata[31:0];
assign key_share1_2_we = addr_hit[29] & reg_we & !reg_error;
assign key_share1_2_wd = reg_wdata[31:0];
assign key_share1_3_we = addr_hit[30] & reg_we & !reg_error;
assign key_share1_3_wd = reg_wdata[31:0];
assign key_share1_4_we = addr_hit[31] & reg_we & !reg_error;
assign key_share1_4_wd = reg_wdata[31:0];
assign key_share1_5_we = addr_hit[32] & reg_we & !reg_error;
assign key_share1_5_wd = reg_wdata[31:0];
assign key_share1_6_we = addr_hit[33] & reg_we & !reg_error;
assign key_share1_6_wd = reg_wdata[31:0];
assign key_share1_7_we = addr_hit[34] & reg_we & !reg_error;
assign key_share1_7_wd = reg_wdata[31:0];
assign key_share1_8_we = addr_hit[35] & reg_we & !reg_error;
assign key_share1_8_wd = reg_wdata[31:0];
assign key_share1_9_we = addr_hit[36] & reg_we & !reg_error;
assign key_share1_9_wd = reg_wdata[31:0];
assign key_share1_10_we = addr_hit[37] & reg_we & !reg_error;
assign key_share1_10_wd = reg_wdata[31:0];
assign key_share1_11_we = addr_hit[38] & reg_we & !reg_error;
assign key_share1_11_wd = reg_wdata[31:0];
assign key_share1_12_we = addr_hit[39] & reg_we & !reg_error;
assign key_share1_12_wd = reg_wdata[31:0];
assign key_share1_13_we = addr_hit[40] & reg_we & !reg_error;
assign key_share1_13_wd = reg_wdata[31:0];
assign key_share1_14_we = addr_hit[41] & reg_we & !reg_error;
assign key_share1_14_wd = reg_wdata[31:0];
assign key_share1_15_we = addr_hit[42] & reg_we & !reg_error;
assign key_share1_15_wd = reg_wdata[31:0];
assign key_len_we = addr_hit[43] & reg_we & !reg_error;
assign key_len_wd = reg_wdata[2:0];
assign prefix_0_we = addr_hit[44] & reg_we & !reg_error;
assign prefix_0_wd = reg_wdata[31:0];
assign prefix_1_we = addr_hit[45] & reg_we & !reg_error;
assign prefix_1_wd = reg_wdata[31:0];
assign prefix_2_we = addr_hit[46] & reg_we & !reg_error;
assign prefix_2_wd = reg_wdata[31:0];
assign prefix_3_we = addr_hit[47] & reg_we & !reg_error;
assign prefix_3_wd = reg_wdata[31:0];
assign prefix_4_we = addr_hit[48] & reg_we & !reg_error;
assign prefix_4_wd = reg_wdata[31:0];
assign prefix_5_we = addr_hit[49] & reg_we & !reg_error;
assign prefix_5_wd = reg_wdata[31:0];
assign prefix_6_we = addr_hit[50] & reg_we & !reg_error;
assign prefix_6_wd = reg_wdata[31:0];
assign prefix_7_we = addr_hit[51] & reg_we & !reg_error;
assign prefix_7_wd = reg_wdata[31:0];
assign prefix_8_we = addr_hit[52] & reg_we & !reg_error;
assign prefix_8_wd = reg_wdata[31:0];
assign prefix_9_we = addr_hit[53] & reg_we & !reg_error;
assign prefix_9_wd = reg_wdata[31:0];
assign prefix_10_we = addr_hit[54] & reg_we & !reg_error;
assign prefix_10_wd = reg_wdata[31:0];
// Read data return
always_comb begin
reg_rdata_next = '0;
unique case (1'b1)
addr_hit[0]: begin
reg_rdata_next[0] = intr_state_kmac_done_qs;
reg_rdata_next[1] = intr_state_fifo_empty_qs;
reg_rdata_next[2] = intr_state_kmac_err_qs;
end
addr_hit[1]: begin
reg_rdata_next[0] = intr_enable_kmac_done_qs;
reg_rdata_next[1] = intr_enable_fifo_empty_qs;
reg_rdata_next[2] = intr_enable_kmac_err_qs;
end
addr_hit[2]: begin
reg_rdata_next[0] = '0;
reg_rdata_next[1] = '0;
reg_rdata_next[2] = '0;
end
addr_hit[3]: begin
reg_rdata_next[0] = '0;
end
addr_hit[4]: begin
reg_rdata_next[0] = cfg_regwen_qs;
end
addr_hit[5]: begin
reg_rdata_next[0] = cfg_kmac_en_qs;
reg_rdata_next[3:1] = cfg_kstrength_qs;
reg_rdata_next[5:4] = cfg_mode_qs;
reg_rdata_next[8] = cfg_msg_endianness_qs;
reg_rdata_next[9] = cfg_state_endianness_qs;
reg_rdata_next[12] = cfg_sideload_qs;
reg_rdata_next[17:16] = cfg_entropy_mode_qs;
reg_rdata_next[19] = cfg_entropy_fast_process_qs;
reg_rdata_next[24] = cfg_entropy_ready_qs;
reg_rdata_next[25] = cfg_err_processed_qs;
end
addr_hit[6]: begin
reg_rdata_next[3:0] = '0;
end
addr_hit[7]: begin
reg_rdata_next[0] = status_sha3_idle_qs;
reg_rdata_next[1] = status_sha3_absorb_qs;
reg_rdata_next[2] = status_sha3_squeeze_qs;
reg_rdata_next[12:8] = status_fifo_depth_qs;
reg_rdata_next[14] = status_fifo_empty_qs;
reg_rdata_next[15] = status_fifo_full_qs;
end
addr_hit[8]: begin
reg_rdata_next[15:0] = entropy_period_entropy_timer_qs;
reg_rdata_next[31:16] = entropy_period_wait_timer_qs;
end
addr_hit[9]: begin
reg_rdata_next[31:0] = entropy_seed_lower_qs;
end
addr_hit[10]: begin
reg_rdata_next[31:0] = entropy_seed_upper_qs;
end
addr_hit[11]: begin
reg_rdata_next[31:0] = '0;
end
addr_hit[12]: begin
reg_rdata_next[31:0] = '0;
end
addr_hit[13]: begin
reg_rdata_next[31:0] = '0;
end
addr_hit[14]: begin
reg_rdata_next[31:0] = '0;
end
addr_hit[15]: begin
reg_rdata_next[31:0] = '0;
end
addr_hit[16]: begin
reg_rdata_next[31:0] = '0;
end
addr_hit[17]: begin
reg_rdata_next[31:0] = '0;
end
addr_hit[18]: begin
reg_rdata_next[31:0] = '0;
end
addr_hit[19]: begin
reg_rdata_next[31:0] = '0;
end
addr_hit[20]: begin
reg_rdata_next[31:0] = '0;
end
addr_hit[21]: begin
reg_rdata_next[31:0] = '0;
end
addr_hit[22]: begin
reg_rdata_next[31:0] = '0;
end
addr_hit[23]: begin
reg_rdata_next[31:0] = '0;
end
addr_hit[24]: begin
reg_rdata_next[31:0] = '0;
end
addr_hit[25]: begin
reg_rdata_next[31:0] = '0;
end
addr_hit[26]: begin
reg_rdata_next[31:0] = '0;
end
addr_hit[27]: begin
reg_rdata_next[31:0] = '0;
end
addr_hit[28]: begin
reg_rdata_next[31:0] = '0;
end
addr_hit[29]: begin
reg_rdata_next[31:0] = '0;
end
addr_hit[30]: begin
reg_rdata_next[31:0] = '0;
end
addr_hit[31]: begin
reg_rdata_next[31:0] = '0;
end
addr_hit[32]: begin
reg_rdata_next[31:0] = '0;
end
addr_hit[33]: begin
reg_rdata_next[31:0] = '0;
end
addr_hit[34]: begin
reg_rdata_next[31:0] = '0;
end
addr_hit[35]: begin
reg_rdata_next[31:0] = '0;
end
addr_hit[36]: begin
reg_rdata_next[31:0] = '0;
end
addr_hit[37]: begin
reg_rdata_next[31:0] = '0;
end
addr_hit[38]: begin
reg_rdata_next[31:0] = '0;
end
addr_hit[39]: begin
reg_rdata_next[31:0] = '0;
end
addr_hit[40]: begin
reg_rdata_next[31:0] = '0;
end
addr_hit[41]: begin
reg_rdata_next[31:0] = '0;
end
addr_hit[42]: begin
reg_rdata_next[31:0] = '0;
end
addr_hit[43]: begin
reg_rdata_next[2:0] = '0;
end
addr_hit[44]: begin
reg_rdata_next[31:0] = prefix_0_qs;
end
addr_hit[45]: begin
reg_rdata_next[31:0] = prefix_1_qs;
end
addr_hit[46]: begin
reg_rdata_next[31:0] = prefix_2_qs;
end
addr_hit[47]: begin
reg_rdata_next[31:0] = prefix_3_qs;
end
addr_hit[48]: begin
reg_rdata_next[31:0] = prefix_4_qs;
end
addr_hit[49]: begin
reg_rdata_next[31:0] = prefix_5_qs;
end
addr_hit[50]: begin
reg_rdata_next[31:0] = prefix_6_qs;
end
addr_hit[51]: begin
reg_rdata_next[31:0] = prefix_7_qs;
end
addr_hit[52]: begin
reg_rdata_next[31:0] = prefix_8_qs;
end
addr_hit[53]: begin
reg_rdata_next[31:0] = prefix_9_qs;
end
addr_hit[54]: begin
reg_rdata_next[31:0] = prefix_10_qs;
end
addr_hit[55]: begin
reg_rdata_next[31:0] = err_code_qs;
end
default: begin
reg_rdata_next = '1;
end
endcase
end
// Unused signal tieoff
// wdata / byte enable are not always fully used
// add a blanket unused statement to handle lint waivers
logic unused_wdata;
logic unused_be;
assign unused_wdata = ^reg_wdata;
assign unused_be = ^reg_be;
// Assertions for Register Interface
`ASSERT_PULSE(wePulse, reg_we)
`ASSERT_PULSE(rePulse, reg_re)
`ASSERT(reAfterRv, $rose(reg_re || reg_we) |=> tl_o.d_valid)
`ASSERT(en2addrHit, (reg_we || reg_re) |-> $onehot0(addr_hit))
// this is formulated as an assumption such that the FPV testbenches do disprove this
// property by mistake
//`ASSUME(reqParity, tl_reg_h2d.a_valid |-> tl_reg_h2d.a_user.chk_en == tlul_pkg::CheckDis)
endmodule