blob: 9f766490a4bfe3d31c4257eea5f42f4dadddf0d4 [file] [log] [blame]
// Copyright lowRISC contributors.
// Licensed under the Apache License, Version 2.0, see LICENSE for details.
// SPDX-License-Identifier: Apache-2.0
//
// Register Top module auto-generated by `reggen`
`include "prim_assert.sv"
module edn_reg_top (
input clk_i,
input rst_ni,
input tlul_pkg::tl_h2d_t tl_i,
output tlul_pkg::tl_d2h_t tl_o,
// To HW
output edn_reg_pkg::edn_reg2hw_t reg2hw, // Write
input edn_reg_pkg::edn_hw2reg_t hw2reg, // Read
// Integrity check errors
output logic intg_err_o,
// Config
input devmode_i // If 1, explicit error return for unmapped register access
);
import edn_reg_pkg::* ;
localparam int AW = 6;
localparam int DW = 32;
localparam int DBW = DW/8; // Byte Width
// register signals
logic reg_we;
logic reg_re;
logic [AW-1:0] reg_addr;
logic [DW-1:0] reg_wdata;
logic [DBW-1:0] reg_be;
logic [DW-1:0] reg_rdata;
logic reg_error;
logic addrmiss, wr_err;
logic [DW-1:0] reg_rdata_next;
tlul_pkg::tl_h2d_t tl_reg_h2d;
tlul_pkg::tl_d2h_t tl_reg_d2h;
// incoming payload check
logic intg_err;
tlul_cmd_intg_chk u_chk (
.tl_i,
.err_o(intg_err)
);
logic intg_err_q;
always_ff @(posedge clk_i or negedge rst_ni) begin
if (!rst_ni) begin
intg_err_q <= '0;
end else if (intg_err) begin
intg_err_q <= 1'b1;
end
end
// integrity error output is permanent and should be used for alert generation
// register errors are transactional
assign intg_err_o = intg_err_q | intg_err;
// outgoing integrity generation
tlul_pkg::tl_d2h_t tl_o_pre;
tlul_rsp_intg_gen #(
.EnableRspIntgGen(1),
.EnableDataIntgGen(1)
) u_rsp_intg_gen (
.tl_i(tl_o_pre),
.tl_o
);
assign tl_reg_h2d = tl_i;
assign tl_o_pre = tl_reg_d2h;
tlul_adapter_reg #(
.RegAw(AW),
.RegDw(DW),
.EnableDataIntgGen(0)
) u_reg_if (
.clk_i,
.rst_ni,
.tl_i (tl_reg_h2d),
.tl_o (tl_reg_d2h),
.we_o (reg_we),
.re_o (reg_re),
.addr_o (reg_addr),
.wdata_o (reg_wdata),
.be_o (reg_be),
.rdata_i (reg_rdata),
.error_i (reg_error)
);
assign reg_rdata = reg_rdata_next ;
assign reg_error = (devmode_i & addrmiss) | wr_err | intg_err;
// Define SW related signals
// Format: <reg>_<field>_{wd|we|qs}
// or <reg>_{wd|we|qs} if field == 1 or 0
logic intr_state_edn_cmd_req_done_qs;
logic intr_state_edn_cmd_req_done_wd;
logic intr_state_edn_cmd_req_done_we;
logic intr_state_edn_fatal_err_qs;
logic intr_state_edn_fatal_err_wd;
logic intr_state_edn_fatal_err_we;
logic intr_enable_edn_cmd_req_done_qs;
logic intr_enable_edn_cmd_req_done_wd;
logic intr_enable_edn_cmd_req_done_we;
logic intr_enable_edn_fatal_err_qs;
logic intr_enable_edn_fatal_err_wd;
logic intr_enable_edn_fatal_err_we;
logic intr_test_edn_cmd_req_done_wd;
logic intr_test_edn_cmd_req_done_we;
logic intr_test_edn_fatal_err_wd;
logic intr_test_edn_fatal_err_we;
logic alert_test_wd;
logic alert_test_we;
logic regwen_qs;
logic regwen_wd;
logic regwen_we;
logic ctrl_edn_enable_qs;
logic ctrl_edn_enable_wd;
logic ctrl_edn_enable_we;
logic ctrl_cmd_fifo_rst_qs;
logic ctrl_cmd_fifo_rst_wd;
logic ctrl_cmd_fifo_rst_we;
logic [1:0] ctrl_hw_req_mode_qs;
logic [1:0] ctrl_hw_req_mode_wd;
logic ctrl_hw_req_mode_we;
logic sum_sts_req_mode_sm_sts_qs;
logic sum_sts_req_mode_sm_sts_wd;
logic sum_sts_req_mode_sm_sts_we;
logic sum_sts_boot_inst_ack_qs;
logic sum_sts_boot_inst_ack_wd;
logic sum_sts_boot_inst_ack_we;
logic [31:0] sw_cmd_req_wd;
logic sw_cmd_req_we;
logic sw_cmd_sts_cmd_rdy_qs;
logic sw_cmd_sts_cmd_sts_qs;
logic [31:0] reseed_cmd_wd;
logic reseed_cmd_we;
logic [31:0] generate_cmd_wd;
logic generate_cmd_we;
logic [31:0] max_num_reqs_between_reseeds_qs;
logic [31:0] max_num_reqs_between_reseeds_wd;
logic max_num_reqs_between_reseeds_we;
logic err_code_sfifo_rescmd_err_qs;
logic err_code_sfifo_gencmd_err_qs;
logic err_code_edn_ack_sm_err_qs;
logic err_code_edn_main_sm_err_qs;
logic err_code_fifo_write_err_qs;
logic err_code_fifo_read_err_qs;
logic err_code_fifo_state_err_qs;
logic [4:0] err_code_test_qs;
logic [4:0] err_code_test_wd;
logic err_code_test_we;
// Register instances
// R[intr_state]: V(False)
// F[edn_cmd_req_done]: 0:0
prim_subreg #(
.DW (1),
.SWACCESS("W1C"),
.RESVAL (1'h0)
) u_intr_state_edn_cmd_req_done (
.clk_i (clk_i),
.rst_ni (rst_ni),
// from register interface
.we (intr_state_edn_cmd_req_done_we),
.wd (intr_state_edn_cmd_req_done_wd),
// from internal hardware
.de (hw2reg.intr_state.edn_cmd_req_done.de),
.d (hw2reg.intr_state.edn_cmd_req_done.d),
// to internal hardware
.qe (),
.q (reg2hw.intr_state.edn_cmd_req_done.q),
// to register interface (read)
.qs (intr_state_edn_cmd_req_done_qs)
);
// F[edn_fatal_err]: 1:1
prim_subreg #(
.DW (1),
.SWACCESS("W1C"),
.RESVAL (1'h0)
) u_intr_state_edn_fatal_err (
.clk_i (clk_i),
.rst_ni (rst_ni),
// from register interface
.we (intr_state_edn_fatal_err_we),
.wd (intr_state_edn_fatal_err_wd),
// from internal hardware
.de (hw2reg.intr_state.edn_fatal_err.de),
.d (hw2reg.intr_state.edn_fatal_err.d),
// to internal hardware
.qe (),
.q (reg2hw.intr_state.edn_fatal_err.q),
// to register interface (read)
.qs (intr_state_edn_fatal_err_qs)
);
// R[intr_enable]: V(False)
// F[edn_cmd_req_done]: 0:0
prim_subreg #(
.DW (1),
.SWACCESS("RW"),
.RESVAL (1'h0)
) u_intr_enable_edn_cmd_req_done (
.clk_i (clk_i),
.rst_ni (rst_ni),
// from register interface
.we (intr_enable_edn_cmd_req_done_we),
.wd (intr_enable_edn_cmd_req_done_wd),
// from internal hardware
.de (1'b0),
.d ('0),
// to internal hardware
.qe (),
.q (reg2hw.intr_enable.edn_cmd_req_done.q),
// to register interface (read)
.qs (intr_enable_edn_cmd_req_done_qs)
);
// F[edn_fatal_err]: 1:1
prim_subreg #(
.DW (1),
.SWACCESS("RW"),
.RESVAL (1'h0)
) u_intr_enable_edn_fatal_err (
.clk_i (clk_i),
.rst_ni (rst_ni),
// from register interface
.we (intr_enable_edn_fatal_err_we),
.wd (intr_enable_edn_fatal_err_wd),
// from internal hardware
.de (1'b0),
.d ('0),
// to internal hardware
.qe (),
.q (reg2hw.intr_enable.edn_fatal_err.q),
// to register interface (read)
.qs (intr_enable_edn_fatal_err_qs)
);
// R[intr_test]: V(True)
// F[edn_cmd_req_done]: 0:0
prim_subreg_ext #(
.DW (1)
) u_intr_test_edn_cmd_req_done (
.re (1'b0),
.we (intr_test_edn_cmd_req_done_we),
.wd (intr_test_edn_cmd_req_done_wd),
.d ('0),
.qre (),
.qe (reg2hw.intr_test.edn_cmd_req_done.qe),
.q (reg2hw.intr_test.edn_cmd_req_done.q),
.qs ()
);
// F[edn_fatal_err]: 1:1
prim_subreg_ext #(
.DW (1)
) u_intr_test_edn_fatal_err (
.re (1'b0),
.we (intr_test_edn_fatal_err_we),
.wd (intr_test_edn_fatal_err_wd),
.d ('0),
.qre (),
.qe (reg2hw.intr_test.edn_fatal_err.qe),
.q (reg2hw.intr_test.edn_fatal_err.q),
.qs ()
);
// R[alert_test]: V(True)
prim_subreg_ext #(
.DW (1)
) u_alert_test (
.re (1'b0),
.we (alert_test_we),
.wd (alert_test_wd),
.d ('0),
.qre (),
.qe (reg2hw.alert_test.qe),
.q (reg2hw.alert_test.q),
.qs ()
);
// R[regwen]: V(False)
prim_subreg #(
.DW (1),
.SWACCESS("W0C"),
.RESVAL (1'h1)
) u_regwen (
.clk_i (clk_i),
.rst_ni (rst_ni),
// from register interface
.we (regwen_we),
.wd (regwen_wd),
// from internal hardware
.de (1'b0),
.d ('0),
// to internal hardware
.qe (),
.q (reg2hw.regwen.q),
// to register interface (read)
.qs (regwen_qs)
);
// R[ctrl]: V(False)
// F[edn_enable]: 0:0
prim_subreg #(
.DW (1),
.SWACCESS("RW"),
.RESVAL (1'h0)
) u_ctrl_edn_enable (
.clk_i (clk_i),
.rst_ni (rst_ni),
// from register interface
.we (ctrl_edn_enable_we),
.wd (ctrl_edn_enable_wd),
// from internal hardware
.de (1'b0),
.d ('0),
// to internal hardware
.qe (),
.q (reg2hw.ctrl.edn_enable.q),
// to register interface (read)
.qs (ctrl_edn_enable_qs)
);
// F[cmd_fifo_rst]: 1:1
prim_subreg #(
.DW (1),
.SWACCESS("RW"),
.RESVAL (1'h0)
) u_ctrl_cmd_fifo_rst (
.clk_i (clk_i),
.rst_ni (rst_ni),
// from register interface
.we (ctrl_cmd_fifo_rst_we),
.wd (ctrl_cmd_fifo_rst_wd),
// from internal hardware
.de (1'b0),
.d ('0),
// to internal hardware
.qe (),
.q (reg2hw.ctrl.cmd_fifo_rst.q),
// to register interface (read)
.qs (ctrl_cmd_fifo_rst_qs)
);
// F[hw_req_mode]: 3:2
prim_subreg #(
.DW (2),
.SWACCESS("RW"),
.RESVAL (2'h0)
) u_ctrl_hw_req_mode (
.clk_i (clk_i),
.rst_ni (rst_ni),
// from register interface
.we (ctrl_hw_req_mode_we),
.wd (ctrl_hw_req_mode_wd),
// from internal hardware
.de (1'b0),
.d ('0),
// to internal hardware
.qe (),
.q (reg2hw.ctrl.hw_req_mode.q),
// to register interface (read)
.qs (ctrl_hw_req_mode_qs)
);
// R[sum_sts]: V(False)
// F[req_mode_sm_sts]: 0:0
prim_subreg #(
.DW (1),
.SWACCESS("RW"),
.RESVAL (1'h0)
) u_sum_sts_req_mode_sm_sts (
.clk_i (clk_i),
.rst_ni (rst_ni),
// from register interface
.we (sum_sts_req_mode_sm_sts_we),
.wd (sum_sts_req_mode_sm_sts_wd),
// from internal hardware
.de (hw2reg.sum_sts.req_mode_sm_sts.de),
.d (hw2reg.sum_sts.req_mode_sm_sts.d),
// to internal hardware
.qe (),
.q (),
// to register interface (read)
.qs (sum_sts_req_mode_sm_sts_qs)
);
// F[boot_inst_ack]: 1:1
prim_subreg #(
.DW (1),
.SWACCESS("RW"),
.RESVAL (1'h0)
) u_sum_sts_boot_inst_ack (
.clk_i (clk_i),
.rst_ni (rst_ni),
// from register interface
.we (sum_sts_boot_inst_ack_we),
.wd (sum_sts_boot_inst_ack_wd),
// from internal hardware
.de (hw2reg.sum_sts.boot_inst_ack.de),
.d (hw2reg.sum_sts.boot_inst_ack.d),
// to internal hardware
.qe (),
.q (),
// to register interface (read)
.qs (sum_sts_boot_inst_ack_qs)
);
// R[sw_cmd_req]: V(True)
prim_subreg_ext #(
.DW (32)
) u_sw_cmd_req (
.re (1'b0),
.we (sw_cmd_req_we & regwen_qs),
.wd (sw_cmd_req_wd),
.d ('0),
.qre (),
.qe (reg2hw.sw_cmd_req.qe),
.q (reg2hw.sw_cmd_req.q),
.qs ()
);
// R[sw_cmd_sts]: V(False)
// F[cmd_rdy]: 0:0
prim_subreg #(
.DW (1),
.SWACCESS("RO"),
.RESVAL (1'h1)
) u_sw_cmd_sts_cmd_rdy (
.clk_i (clk_i),
.rst_ni (rst_ni),
// from register interface
.we (1'b0),
.wd ('0),
// from internal hardware
.de (hw2reg.sw_cmd_sts.cmd_rdy.de),
.d (hw2reg.sw_cmd_sts.cmd_rdy.d),
// to internal hardware
.qe (),
.q (),
// to register interface (read)
.qs (sw_cmd_sts_cmd_rdy_qs)
);
// F[cmd_sts]: 1:1
prim_subreg #(
.DW (1),
.SWACCESS("RO"),
.RESVAL (1'h0)
) u_sw_cmd_sts_cmd_sts (
.clk_i (clk_i),
.rst_ni (rst_ni),
// from register interface
.we (1'b0),
.wd ('0),
// from internal hardware
.de (hw2reg.sw_cmd_sts.cmd_sts.de),
.d (hw2reg.sw_cmd_sts.cmd_sts.d),
// to internal hardware
.qe (),
.q (),
// to register interface (read)
.qs (sw_cmd_sts_cmd_sts_qs)
);
// R[reseed_cmd]: V(True)
prim_subreg_ext #(
.DW (32)
) u_reseed_cmd (
.re (1'b0),
.we (reseed_cmd_we & regwen_qs),
.wd (reseed_cmd_wd),
.d ('0),
.qre (),
.qe (reg2hw.reseed_cmd.qe),
.q (reg2hw.reseed_cmd.q),
.qs ()
);
// R[generate_cmd]: V(True)
prim_subreg_ext #(
.DW (32)
) u_generate_cmd (
.re (1'b0),
.we (generate_cmd_we & regwen_qs),
.wd (generate_cmd_wd),
.d ('0),
.qre (),
.qe (reg2hw.generate_cmd.qe),
.q (reg2hw.generate_cmd.q),
.qs ()
);
// R[max_num_reqs_between_reseeds]: V(False)
prim_subreg #(
.DW (32),
.SWACCESS("RW"),
.RESVAL (32'h0)
) u_max_num_reqs_between_reseeds (
.clk_i (clk_i),
.rst_ni (rst_ni),
// from register interface
.we (max_num_reqs_between_reseeds_we),
.wd (max_num_reqs_between_reseeds_wd),
// from internal hardware
.de (1'b0),
.d ('0),
// to internal hardware
.qe (reg2hw.max_num_reqs_between_reseeds.qe),
.q (reg2hw.max_num_reqs_between_reseeds.q),
// to register interface (read)
.qs (max_num_reqs_between_reseeds_qs)
);
// R[err_code]: V(False)
// F[sfifo_rescmd_err]: 0:0
prim_subreg #(
.DW (1),
.SWACCESS("RO"),
.RESVAL (1'h0)
) u_err_code_sfifo_rescmd_err (
.clk_i (clk_i),
.rst_ni (rst_ni),
// from register interface
.we (1'b0),
.wd ('0),
// from internal hardware
.de (hw2reg.err_code.sfifo_rescmd_err.de),
.d (hw2reg.err_code.sfifo_rescmd_err.d),
// to internal hardware
.qe (),
.q (),
// to register interface (read)
.qs (err_code_sfifo_rescmd_err_qs)
);
// F[sfifo_gencmd_err]: 1:1
prim_subreg #(
.DW (1),
.SWACCESS("RO"),
.RESVAL (1'h0)
) u_err_code_sfifo_gencmd_err (
.clk_i (clk_i),
.rst_ni (rst_ni),
// from register interface
.we (1'b0),
.wd ('0),
// from internal hardware
.de (hw2reg.err_code.sfifo_gencmd_err.de),
.d (hw2reg.err_code.sfifo_gencmd_err.d),
// to internal hardware
.qe (),
.q (),
// to register interface (read)
.qs (err_code_sfifo_gencmd_err_qs)
);
// F[edn_ack_sm_err]: 20:20
prim_subreg #(
.DW (1),
.SWACCESS("RO"),
.RESVAL (1'h0)
) u_err_code_edn_ack_sm_err (
.clk_i (clk_i),
.rst_ni (rst_ni),
// from register interface
.we (1'b0),
.wd ('0),
// from internal hardware
.de (hw2reg.err_code.edn_ack_sm_err.de),
.d (hw2reg.err_code.edn_ack_sm_err.d),
// to internal hardware
.qe (),
.q (),
// to register interface (read)
.qs (err_code_edn_ack_sm_err_qs)
);
// F[edn_main_sm_err]: 21:21
prim_subreg #(
.DW (1),
.SWACCESS("RO"),
.RESVAL (1'h0)
) u_err_code_edn_main_sm_err (
.clk_i (clk_i),
.rst_ni (rst_ni),
// from register interface
.we (1'b0),
.wd ('0),
// from internal hardware
.de (hw2reg.err_code.edn_main_sm_err.de),
.d (hw2reg.err_code.edn_main_sm_err.d),
// to internal hardware
.qe (),
.q (),
// to register interface (read)
.qs (err_code_edn_main_sm_err_qs)
);
// F[fifo_write_err]: 28:28
prim_subreg #(
.DW (1),
.SWACCESS("RO"),
.RESVAL (1'h0)
) u_err_code_fifo_write_err (
.clk_i (clk_i),
.rst_ni (rst_ni),
// from register interface
.we (1'b0),
.wd ('0),
// from internal hardware
.de (hw2reg.err_code.fifo_write_err.de),
.d (hw2reg.err_code.fifo_write_err.d),
// to internal hardware
.qe (),
.q (),
// to register interface (read)
.qs (err_code_fifo_write_err_qs)
);
// F[fifo_read_err]: 29:29
prim_subreg #(
.DW (1),
.SWACCESS("RO"),
.RESVAL (1'h0)
) u_err_code_fifo_read_err (
.clk_i (clk_i),
.rst_ni (rst_ni),
// from register interface
.we (1'b0),
.wd ('0),
// from internal hardware
.de (hw2reg.err_code.fifo_read_err.de),
.d (hw2reg.err_code.fifo_read_err.d),
// to internal hardware
.qe (),
.q (),
// to register interface (read)
.qs (err_code_fifo_read_err_qs)
);
// F[fifo_state_err]: 30:30
prim_subreg #(
.DW (1),
.SWACCESS("RO"),
.RESVAL (1'h0)
) u_err_code_fifo_state_err (
.clk_i (clk_i),
.rst_ni (rst_ni),
// from register interface
.we (1'b0),
.wd ('0),
// from internal hardware
.de (hw2reg.err_code.fifo_state_err.de),
.d (hw2reg.err_code.fifo_state_err.d),
// to internal hardware
.qe (),
.q (),
// to register interface (read)
.qs (err_code_fifo_state_err_qs)
);
// R[err_code_test]: V(False)
prim_subreg #(
.DW (5),
.SWACCESS("RW"),
.RESVAL (5'h0)
) u_err_code_test (
.clk_i (clk_i),
.rst_ni (rst_ni),
// from register interface
.we (err_code_test_we & regwen_qs),
.wd (err_code_test_wd),
// from internal hardware
.de (1'b0),
.d ('0),
// to internal hardware
.qe (reg2hw.err_code_test.qe),
.q (reg2hw.err_code_test.q),
// to register interface (read)
.qs (err_code_test_qs)
);
logic [13:0] addr_hit;
always_comb begin
addr_hit = '0;
addr_hit[ 0] = (reg_addr == EDN_INTR_STATE_OFFSET);
addr_hit[ 1] = (reg_addr == EDN_INTR_ENABLE_OFFSET);
addr_hit[ 2] = (reg_addr == EDN_INTR_TEST_OFFSET);
addr_hit[ 3] = (reg_addr == EDN_ALERT_TEST_OFFSET);
addr_hit[ 4] = (reg_addr == EDN_REGWEN_OFFSET);
addr_hit[ 5] = (reg_addr == EDN_CTRL_OFFSET);
addr_hit[ 6] = (reg_addr == EDN_SUM_STS_OFFSET);
addr_hit[ 7] = (reg_addr == EDN_SW_CMD_REQ_OFFSET);
addr_hit[ 8] = (reg_addr == EDN_SW_CMD_STS_OFFSET);
addr_hit[ 9] = (reg_addr == EDN_RESEED_CMD_OFFSET);
addr_hit[10] = (reg_addr == EDN_GENERATE_CMD_OFFSET);
addr_hit[11] = (reg_addr == EDN_MAX_NUM_REQS_BETWEEN_RESEEDS_OFFSET);
addr_hit[12] = (reg_addr == EDN_ERR_CODE_OFFSET);
addr_hit[13] = (reg_addr == EDN_ERR_CODE_TEST_OFFSET);
end
assign addrmiss = (reg_re || reg_we) ? ~|addr_hit : 1'b0 ;
// Check sub-word write is permitted
always_comb begin
wr_err = (reg_we &
((addr_hit[ 0] & (|(EDN_PERMIT[ 0] & ~reg_be))) |
(addr_hit[ 1] & (|(EDN_PERMIT[ 1] & ~reg_be))) |
(addr_hit[ 2] & (|(EDN_PERMIT[ 2] & ~reg_be))) |
(addr_hit[ 3] & (|(EDN_PERMIT[ 3] & ~reg_be))) |
(addr_hit[ 4] & (|(EDN_PERMIT[ 4] & ~reg_be))) |
(addr_hit[ 5] & (|(EDN_PERMIT[ 5] & ~reg_be))) |
(addr_hit[ 6] & (|(EDN_PERMIT[ 6] & ~reg_be))) |
(addr_hit[ 7] & (|(EDN_PERMIT[ 7] & ~reg_be))) |
(addr_hit[ 8] & (|(EDN_PERMIT[ 8] & ~reg_be))) |
(addr_hit[ 9] & (|(EDN_PERMIT[ 9] & ~reg_be))) |
(addr_hit[10] & (|(EDN_PERMIT[10] & ~reg_be))) |
(addr_hit[11] & (|(EDN_PERMIT[11] & ~reg_be))) |
(addr_hit[12] & (|(EDN_PERMIT[12] & ~reg_be))) |
(addr_hit[13] & (|(EDN_PERMIT[13] & ~reg_be)))));
end
assign intr_state_edn_cmd_req_done_we = addr_hit[0] & reg_we & !reg_error;
assign intr_state_edn_cmd_req_done_wd = reg_wdata[0];
assign intr_state_edn_fatal_err_we = addr_hit[0] & reg_we & !reg_error;
assign intr_state_edn_fatal_err_wd = reg_wdata[1];
assign intr_enable_edn_cmd_req_done_we = addr_hit[1] & reg_we & !reg_error;
assign intr_enable_edn_cmd_req_done_wd = reg_wdata[0];
assign intr_enable_edn_fatal_err_we = addr_hit[1] & reg_we & !reg_error;
assign intr_enable_edn_fatal_err_wd = reg_wdata[1];
assign intr_test_edn_cmd_req_done_we = addr_hit[2] & reg_we & !reg_error;
assign intr_test_edn_cmd_req_done_wd = reg_wdata[0];
assign intr_test_edn_fatal_err_we = addr_hit[2] & reg_we & !reg_error;
assign intr_test_edn_fatal_err_wd = reg_wdata[1];
assign alert_test_we = addr_hit[3] & reg_we & !reg_error;
assign alert_test_wd = reg_wdata[0];
assign regwen_we = addr_hit[4] & reg_we & !reg_error;
assign regwen_wd = reg_wdata[0];
assign ctrl_edn_enable_we = addr_hit[5] & reg_we & !reg_error;
assign ctrl_edn_enable_wd = reg_wdata[0];
assign ctrl_cmd_fifo_rst_we = addr_hit[5] & reg_we & !reg_error;
assign ctrl_cmd_fifo_rst_wd = reg_wdata[1];
assign ctrl_hw_req_mode_we = addr_hit[5] & reg_we & !reg_error;
assign ctrl_hw_req_mode_wd = reg_wdata[3:2];
assign sum_sts_req_mode_sm_sts_we = addr_hit[6] & reg_we & !reg_error;
assign sum_sts_req_mode_sm_sts_wd = reg_wdata[0];
assign sum_sts_boot_inst_ack_we = addr_hit[6] & reg_we & !reg_error;
assign sum_sts_boot_inst_ack_wd = reg_wdata[1];
assign sw_cmd_req_we = addr_hit[7] & reg_we & !reg_error;
assign sw_cmd_req_wd = reg_wdata[31:0];
assign reseed_cmd_we = addr_hit[9] & reg_we & !reg_error;
assign reseed_cmd_wd = reg_wdata[31:0];
assign generate_cmd_we = addr_hit[10] & reg_we & !reg_error;
assign generate_cmd_wd = reg_wdata[31:0];
assign max_num_reqs_between_reseeds_we = addr_hit[11] & reg_we & !reg_error;
assign max_num_reqs_between_reseeds_wd = reg_wdata[31:0];
assign err_code_test_we = addr_hit[13] & reg_we & !reg_error;
assign err_code_test_wd = reg_wdata[4:0];
// Read data return
always_comb begin
reg_rdata_next = '0;
unique case (1'b1)
addr_hit[0]: begin
reg_rdata_next[0] = intr_state_edn_cmd_req_done_qs;
reg_rdata_next[1] = intr_state_edn_fatal_err_qs;
end
addr_hit[1]: begin
reg_rdata_next[0] = intr_enable_edn_cmd_req_done_qs;
reg_rdata_next[1] = intr_enable_edn_fatal_err_qs;
end
addr_hit[2]: begin
reg_rdata_next[0] = '0;
reg_rdata_next[1] = '0;
end
addr_hit[3]: begin
reg_rdata_next[0] = '0;
end
addr_hit[4]: begin
reg_rdata_next[0] = regwen_qs;
end
addr_hit[5]: begin
reg_rdata_next[0] = ctrl_edn_enable_qs;
reg_rdata_next[1] = ctrl_cmd_fifo_rst_qs;
reg_rdata_next[3:2] = ctrl_hw_req_mode_qs;
end
addr_hit[6]: begin
reg_rdata_next[0] = sum_sts_req_mode_sm_sts_qs;
reg_rdata_next[1] = sum_sts_boot_inst_ack_qs;
end
addr_hit[7]: begin
reg_rdata_next[31:0] = '0;
end
addr_hit[8]: begin
reg_rdata_next[0] = sw_cmd_sts_cmd_rdy_qs;
reg_rdata_next[1] = sw_cmd_sts_cmd_sts_qs;
end
addr_hit[9]: begin
reg_rdata_next[31:0] = '0;
end
addr_hit[10]: begin
reg_rdata_next[31:0] = '0;
end
addr_hit[11]: begin
reg_rdata_next[31:0] = max_num_reqs_between_reseeds_qs;
end
addr_hit[12]: begin
reg_rdata_next[0] = err_code_sfifo_rescmd_err_qs;
reg_rdata_next[1] = err_code_sfifo_gencmd_err_qs;
reg_rdata_next[20] = err_code_edn_ack_sm_err_qs;
reg_rdata_next[21] = err_code_edn_main_sm_err_qs;
reg_rdata_next[28] = err_code_fifo_write_err_qs;
reg_rdata_next[29] = err_code_fifo_read_err_qs;
reg_rdata_next[30] = err_code_fifo_state_err_qs;
end
addr_hit[13]: begin
reg_rdata_next[4:0] = err_code_test_qs;
end
default: begin
reg_rdata_next = '1;
end
endcase
end
// Unused signal tieoff
// wdata / byte enable are not always fully used
// add a blanket unused statement to handle lint waivers
logic unused_wdata;
logic unused_be;
assign unused_wdata = ^reg_wdata;
assign unused_be = ^reg_be;
// Assertions for Register Interface
`ASSERT_PULSE(wePulse, reg_we)
`ASSERT_PULSE(rePulse, reg_re)
`ASSERT(reAfterRv, $rose(reg_re || reg_we) |=> tl_o.d_valid)
`ASSERT(en2addrHit, (reg_we || reg_re) |-> $onehot0(addr_hit))
// this is formulated as an assumption such that the FPV testbenches do disprove this
// property by mistake
//`ASSUME(reqParity, tl_reg_h2d.a_valid |-> tl_reg_h2d.a_user.chk_en == tlul_pkg::CheckDis)
endmodule