blob: 5ca113c4df5817e9bc8e25cfe7f9fadeb2ff3dae [file] [log] [blame]
// Copyright lowRISC contributors.
// Licensed under the Apache License, Version 2.0, see LICENSE for details.
// SPDX-License-Identifier: Apache-2.0
//
// Register Top module auto-generated by `reggen`
`include "prim_assert.sv"
module kmac_reg_top (
input clk_i,
input rst_ni,
// Below Regster interface can be changed
input tlul_pkg::tl_h2d_t tl_i,
output tlul_pkg::tl_d2h_t tl_o,
// Output port for window
output tlul_pkg::tl_h2d_t tl_win_o [2],
input tlul_pkg::tl_d2h_t tl_win_i [2],
// To HW
output kmac_reg_pkg::kmac_reg2hw_t reg2hw, // Write
input kmac_reg_pkg::kmac_hw2reg_t hw2reg, // Read
// Config
input devmode_i // If 1, explicit error return for unmapped register access
);
import kmac_reg_pkg::* ;
localparam int AW = 12;
localparam int DW = 32;
localparam int DBW = DW/8; // Byte Width
// register signals
logic reg_we;
logic reg_re;
logic [AW-1:0] reg_addr;
logic [DW-1:0] reg_wdata;
logic [DBW-1:0] reg_be;
logic [DW-1:0] reg_rdata;
logic reg_error;
logic addrmiss, wr_err;
logic [DW-1:0] reg_rdata_next;
tlul_pkg::tl_h2d_t tl_reg_h2d;
tlul_pkg::tl_d2h_t tl_reg_d2h;
tlul_pkg::tl_h2d_t tl_socket_h2d [3];
tlul_pkg::tl_d2h_t tl_socket_d2h [3];
logic [1:0] reg_steer;
// socket_1n connection
assign tl_reg_h2d = tl_socket_h2d[2];
assign tl_socket_d2h[2] = tl_reg_d2h;
assign tl_win_o[0] = tl_socket_h2d[0];
assign tl_socket_d2h[0] = tl_win_i[0];
assign tl_win_o[1] = tl_socket_h2d[1];
assign tl_socket_d2h[1] = tl_win_i[1];
// Create Socket_1n
tlul_socket_1n #(
.N (3),
.HReqPass (1'b1),
.HRspPass (1'b1),
.DReqPass ({3{1'b1}}),
.DRspPass ({3{1'b1}}),
.HReqDepth (4'h0),
.HRspDepth (4'h0),
.DReqDepth ({3{4'h0}}),
.DRspDepth ({3{4'h0}})
) u_socket (
.clk_i,
.rst_ni,
.tl_h_i (tl_i),
.tl_h_o (tl_o),
.tl_d_o (tl_socket_h2d),
.tl_d_i (tl_socket_d2h),
.dev_select_i (reg_steer)
);
// Create steering logic
always_comb begin
reg_steer = 2; // Default set to register
// TODO: Can below codes be unique case () inside ?
if (tl_i.a_address[AW-1:0] >= 1024 && tl_i.a_address[AW-1:0] < 1536) begin
reg_steer = 0;
end
if (tl_i.a_address[AW-1:0] >= 2048) begin
// Exceed or meet the address range. Removed the comparison of limit addr 'h 1000
reg_steer = 1;
end
end
tlul_adapter_reg #(
.RegAw(AW),
.RegDw(DW)
) u_reg_if (
.clk_i,
.rst_ni,
.tl_i (tl_reg_h2d),
.tl_o (tl_reg_d2h),
.we_o (reg_we),
.re_o (reg_re),
.addr_o (reg_addr),
.wdata_o (reg_wdata),
.be_o (reg_be),
.rdata_i (reg_rdata),
.error_i (reg_error)
);
assign reg_rdata = reg_rdata_next ;
assign reg_error = (devmode_i & addrmiss) | wr_err ;
// Define SW related signals
// Format: <reg>_<field>_{wd|we|qs}
// or <reg>_{wd|we|qs} if field == 1 or 0
logic intr_state_kmac_done_qs;
logic intr_state_kmac_done_wd;
logic intr_state_kmac_done_we;
logic intr_state_fifo_empty_qs;
logic intr_state_fifo_empty_wd;
logic intr_state_fifo_empty_we;
logic intr_state_kmac_err_qs;
logic intr_state_kmac_err_wd;
logic intr_state_kmac_err_we;
logic intr_enable_kmac_done_qs;
logic intr_enable_kmac_done_wd;
logic intr_enable_kmac_done_we;
logic intr_enable_fifo_empty_qs;
logic intr_enable_fifo_empty_wd;
logic intr_enable_fifo_empty_we;
logic intr_enable_kmac_err_qs;
logic intr_enable_kmac_err_wd;
logic intr_enable_kmac_err_we;
logic intr_test_kmac_done_wd;
logic intr_test_kmac_done_we;
logic intr_test_fifo_empty_wd;
logic intr_test_fifo_empty_we;
logic intr_test_kmac_err_wd;
logic intr_test_kmac_err_we;
logic cfg_kmac_en_qs;
logic cfg_kmac_en_wd;
logic cfg_kmac_en_we;
logic [2:0] cfg_strength_qs;
logic [2:0] cfg_strength_wd;
logic cfg_strength_we;
logic [1:0] cfg_mode_qs;
logic [1:0] cfg_mode_wd;
logic cfg_mode_we;
logic cfg_msg_endianness_qs;
logic cfg_msg_endianness_wd;
logic cfg_msg_endianness_we;
logic cfg_state_endianness_qs;
logic cfg_state_endianness_wd;
logic cfg_state_endianness_we;
logic cmd_start_wd;
logic cmd_start_we;
logic cmd_process_wd;
logic cmd_process_we;
logic cmd_run_wd;
logic cmd_run_we;
logic cmd_done_wd;
logic cmd_done_we;
logic status_sha3_idle_qs;
logic status_sha3_idle_re;
logic status_sha3_absorb_qs;
logic status_sha3_absorb_re;
logic status_sha3_squeeze_qs;
logic status_sha3_squeeze_re;
logic [4:0] status_fifo_depth_qs;
logic status_fifo_depth_re;
logic status_fifo_empty_qs;
logic status_fifo_empty_re;
logic status_fifo_full_qs;
logic status_fifo_full_re;
logic [31:0] key_share0_0_wd;
logic key_share0_0_we;
logic [31:0] key_share0_1_wd;
logic key_share0_1_we;
logic [31:0] key_share0_2_wd;
logic key_share0_2_we;
logic [31:0] key_share0_3_wd;
logic key_share0_3_we;
logic [31:0] key_share0_4_wd;
logic key_share0_4_we;
logic [31:0] key_share0_5_wd;
logic key_share0_5_we;
logic [31:0] key_share0_6_wd;
logic key_share0_6_we;
logic [31:0] key_share0_7_wd;
logic key_share0_7_we;
logic [31:0] key_share0_8_wd;
logic key_share0_8_we;
logic [31:0] key_share0_9_wd;
logic key_share0_9_we;
logic [31:0] key_share0_10_wd;
logic key_share0_10_we;
logic [31:0] key_share0_11_wd;
logic key_share0_11_we;
logic [31:0] key_share0_12_wd;
logic key_share0_12_we;
logic [31:0] key_share0_13_wd;
logic key_share0_13_we;
logic [31:0] key_share0_14_wd;
logic key_share0_14_we;
logic [31:0] key_share0_15_wd;
logic key_share0_15_we;
logic [31:0] key_share1_0_wd;
logic key_share1_0_we;
logic [31:0] key_share1_1_wd;
logic key_share1_1_we;
logic [31:0] key_share1_2_wd;
logic key_share1_2_we;
logic [31:0] key_share1_3_wd;
logic key_share1_3_we;
logic [31:0] key_share1_4_wd;
logic key_share1_4_we;
logic [31:0] key_share1_5_wd;
logic key_share1_5_we;
logic [31:0] key_share1_6_wd;
logic key_share1_6_we;
logic [31:0] key_share1_7_wd;
logic key_share1_7_we;
logic [31:0] key_share1_8_wd;
logic key_share1_8_we;
logic [31:0] key_share1_9_wd;
logic key_share1_9_we;
logic [31:0] key_share1_10_wd;
logic key_share1_10_we;
logic [31:0] key_share1_11_wd;
logic key_share1_11_we;
logic [31:0] key_share1_12_wd;
logic key_share1_12_we;
logic [31:0] key_share1_13_wd;
logic key_share1_13_we;
logic [31:0] key_share1_14_wd;
logic key_share1_14_we;
logic [31:0] key_share1_15_wd;
logic key_share1_15_we;
logic [2:0] key_len_wd;
logic key_len_we;
logic [31:0] prefix_0_qs;
logic [31:0] prefix_0_wd;
logic prefix_0_we;
logic [31:0] prefix_1_qs;
logic [31:0] prefix_1_wd;
logic prefix_1_we;
logic [31:0] prefix_2_qs;
logic [31:0] prefix_2_wd;
logic prefix_2_we;
logic [31:0] prefix_3_qs;
logic [31:0] prefix_3_wd;
logic prefix_3_we;
logic [31:0] prefix_4_qs;
logic [31:0] prefix_4_wd;
logic prefix_4_we;
logic [31:0] prefix_5_qs;
logic [31:0] prefix_5_wd;
logic prefix_5_we;
logic [31:0] prefix_6_qs;
logic [31:0] prefix_6_wd;
logic prefix_6_we;
logic [31:0] prefix_7_qs;
logic [31:0] prefix_7_wd;
logic prefix_7_we;
logic [31:0] prefix_8_qs;
logic [31:0] prefix_8_wd;
logic prefix_8_we;
logic [31:0] prefix_9_qs;
logic [31:0] prefix_9_wd;
logic prefix_9_we;
logic [31:0] prefix_10_qs;
logic [31:0] prefix_10_wd;
logic prefix_10_we;
logic [31:0] err_code_qs;
logic cfg_regwen_qs;
logic cfg_regwen_re;
// Register instances
// R[intr_state]: V(False)
// F[kmac_done]: 0:0
prim_subreg #(
.DW (1),
.SWACCESS("W1C"),
.RESVAL (1'h0)
) u_intr_state_kmac_done (
.clk_i (clk_i ),
.rst_ni (rst_ni ),
// from register interface
.we (intr_state_kmac_done_we),
.wd (intr_state_kmac_done_wd),
// from internal hardware
.de (hw2reg.intr_state.kmac_done.de),
.d (hw2reg.intr_state.kmac_done.d ),
// to internal hardware
.qe (),
.q (reg2hw.intr_state.kmac_done.q ),
// to register interface (read)
.qs (intr_state_kmac_done_qs)
);
// F[fifo_empty]: 1:1
prim_subreg #(
.DW (1),
.SWACCESS("W1C"),
.RESVAL (1'h0)
) u_intr_state_fifo_empty (
.clk_i (clk_i ),
.rst_ni (rst_ni ),
// from register interface
.we (intr_state_fifo_empty_we),
.wd (intr_state_fifo_empty_wd),
// from internal hardware
.de (hw2reg.intr_state.fifo_empty.de),
.d (hw2reg.intr_state.fifo_empty.d ),
// to internal hardware
.qe (),
.q (reg2hw.intr_state.fifo_empty.q ),
// to register interface (read)
.qs (intr_state_fifo_empty_qs)
);
// F[kmac_err]: 2:2
prim_subreg #(
.DW (1),
.SWACCESS("W1C"),
.RESVAL (1'h0)
) u_intr_state_kmac_err (
.clk_i (clk_i ),
.rst_ni (rst_ni ),
// from register interface
.we (intr_state_kmac_err_we),
.wd (intr_state_kmac_err_wd),
// from internal hardware
.de (hw2reg.intr_state.kmac_err.de),
.d (hw2reg.intr_state.kmac_err.d ),
// to internal hardware
.qe (),
.q (reg2hw.intr_state.kmac_err.q ),
// to register interface (read)
.qs (intr_state_kmac_err_qs)
);
// R[intr_enable]: V(False)
// F[kmac_done]: 0:0
prim_subreg #(
.DW (1),
.SWACCESS("RW"),
.RESVAL (1'h0)
) u_intr_enable_kmac_done (
.clk_i (clk_i ),
.rst_ni (rst_ni ),
// from register interface
.we (intr_enable_kmac_done_we),
.wd (intr_enable_kmac_done_wd),
// from internal hardware
.de (1'b0),
.d ('0 ),
// to internal hardware
.qe (),
.q (reg2hw.intr_enable.kmac_done.q ),
// to register interface (read)
.qs (intr_enable_kmac_done_qs)
);
// F[fifo_empty]: 1:1
prim_subreg #(
.DW (1),
.SWACCESS("RW"),
.RESVAL (1'h0)
) u_intr_enable_fifo_empty (
.clk_i (clk_i ),
.rst_ni (rst_ni ),
// from register interface
.we (intr_enable_fifo_empty_we),
.wd (intr_enable_fifo_empty_wd),
// from internal hardware
.de (1'b0),
.d ('0 ),
// to internal hardware
.qe (),
.q (reg2hw.intr_enable.fifo_empty.q ),
// to register interface (read)
.qs (intr_enable_fifo_empty_qs)
);
// F[kmac_err]: 2:2
prim_subreg #(
.DW (1),
.SWACCESS("RW"),
.RESVAL (1'h0)
) u_intr_enable_kmac_err (
.clk_i (clk_i ),
.rst_ni (rst_ni ),
// from register interface
.we (intr_enable_kmac_err_we),
.wd (intr_enable_kmac_err_wd),
// from internal hardware
.de (1'b0),
.d ('0 ),
// to internal hardware
.qe (),
.q (reg2hw.intr_enable.kmac_err.q ),
// to register interface (read)
.qs (intr_enable_kmac_err_qs)
);
// R[intr_test]: V(True)
// F[kmac_done]: 0:0
prim_subreg_ext #(
.DW (1)
) u_intr_test_kmac_done (
.re (1'b0),
.we (intr_test_kmac_done_we),
.wd (intr_test_kmac_done_wd),
.d ('0),
.qre (),
.qe (reg2hw.intr_test.kmac_done.qe),
.q (reg2hw.intr_test.kmac_done.q ),
.qs ()
);
// F[fifo_empty]: 1:1
prim_subreg_ext #(
.DW (1)
) u_intr_test_fifo_empty (
.re (1'b0),
.we (intr_test_fifo_empty_we),
.wd (intr_test_fifo_empty_wd),
.d ('0),
.qre (),
.qe (reg2hw.intr_test.fifo_empty.qe),
.q (reg2hw.intr_test.fifo_empty.q ),
.qs ()
);
// F[kmac_err]: 2:2
prim_subreg_ext #(
.DW (1)
) u_intr_test_kmac_err (
.re (1'b0),
.we (intr_test_kmac_err_we),
.wd (intr_test_kmac_err_wd),
.d ('0),
.qre (),
.qe (reg2hw.intr_test.kmac_err.qe),
.q (reg2hw.intr_test.kmac_err.q ),
.qs ()
);
// R[cfg]: V(False)
// F[kmac_en]: 0:0
prim_subreg #(
.DW (1),
.SWACCESS("RW"),
.RESVAL (1'h0)
) u_cfg_kmac_en (
.clk_i (clk_i ),
.rst_ni (rst_ni ),
// from register interface (qualified with register enable)
.we (cfg_kmac_en_we & cfg_regwen_qs),
.wd (cfg_kmac_en_wd),
// from internal hardware
.de (hw2reg.cfg.kmac_en.de),
.d (hw2reg.cfg.kmac_en.d ),
// to internal hardware
.qe (),
.q (reg2hw.cfg.kmac_en.q ),
// to register interface (read)
.qs (cfg_kmac_en_qs)
);
// F[strength]: 3:1
prim_subreg #(
.DW (3),
.SWACCESS("RW"),
.RESVAL (3'h0)
) u_cfg_strength (
.clk_i (clk_i ),
.rst_ni (rst_ni ),
// from register interface (qualified with register enable)
.we (cfg_strength_we & cfg_regwen_qs),
.wd (cfg_strength_wd),
// from internal hardware
.de (hw2reg.cfg.strength.de),
.d (hw2reg.cfg.strength.d ),
// to internal hardware
.qe (),
.q (reg2hw.cfg.strength.q ),
// to register interface (read)
.qs (cfg_strength_qs)
);
// F[mode]: 5:4
prim_subreg #(
.DW (2),
.SWACCESS("RW"),
.RESVAL (2'h0)
) u_cfg_mode (
.clk_i (clk_i ),
.rst_ni (rst_ni ),
// from register interface (qualified with register enable)
.we (cfg_mode_we & cfg_regwen_qs),
.wd (cfg_mode_wd),
// from internal hardware
.de (hw2reg.cfg.mode.de),
.d (hw2reg.cfg.mode.d ),
// to internal hardware
.qe (),
.q (reg2hw.cfg.mode.q ),
// to register interface (read)
.qs (cfg_mode_qs)
);
// F[msg_endianness]: 8:8
prim_subreg #(
.DW (1),
.SWACCESS("RW"),
.RESVAL (1'h1)
) u_cfg_msg_endianness (
.clk_i (clk_i ),
.rst_ni (rst_ni ),
// from register interface (qualified with register enable)
.we (cfg_msg_endianness_we & cfg_regwen_qs),
.wd (cfg_msg_endianness_wd),
// from internal hardware
.de (hw2reg.cfg.msg_endianness.de),
.d (hw2reg.cfg.msg_endianness.d ),
// to internal hardware
.qe (),
.q (reg2hw.cfg.msg_endianness.q ),
// to register interface (read)
.qs (cfg_msg_endianness_qs)
);
// F[state_endianness]: 9:9
prim_subreg #(
.DW (1),
.SWACCESS("RW"),
.RESVAL (1'h0)
) u_cfg_state_endianness (
.clk_i (clk_i ),
.rst_ni (rst_ni ),
// from register interface (qualified with register enable)
.we (cfg_state_endianness_we & cfg_regwen_qs),
.wd (cfg_state_endianness_wd),
// from internal hardware
.de (hw2reg.cfg.state_endianness.de),
.d (hw2reg.cfg.state_endianness.d ),
// to internal hardware
.qe (),
.q (reg2hw.cfg.state_endianness.q ),
// to register interface (read)
.qs (cfg_state_endianness_qs)
);
// R[cmd]: V(True)
// F[start]: 0:0
prim_subreg_ext #(
.DW (1)
) u_cmd_start (
.re (1'b0),
.we (cmd_start_we),
.wd (cmd_start_wd),
.d ('0),
.qre (),
.qe (reg2hw.cmd.start.qe),
.q (reg2hw.cmd.start.q ),
.qs ()
);
// F[process]: 1:1
prim_subreg_ext #(
.DW (1)
) u_cmd_process (
.re (1'b0),
.we (cmd_process_we),
.wd (cmd_process_wd),
.d ('0),
.qre (),
.qe (reg2hw.cmd.process.qe),
.q (reg2hw.cmd.process.q ),
.qs ()
);
// F[run]: 2:2
prim_subreg_ext #(
.DW (1)
) u_cmd_run (
.re (1'b0),
.we (cmd_run_we),
.wd (cmd_run_wd),
.d ('0),
.qre (),
.qe (reg2hw.cmd.run.qe),
.q (reg2hw.cmd.run.q ),
.qs ()
);
// F[done]: 3:3
prim_subreg_ext #(
.DW (1)
) u_cmd_done (
.re (1'b0),
.we (cmd_done_we),
.wd (cmd_done_wd),
.d ('0),
.qre (),
.qe (reg2hw.cmd.done.qe),
.q (reg2hw.cmd.done.q ),
.qs ()
);
// R[status]: V(True)
// F[sha3_idle]: 0:0
prim_subreg_ext #(
.DW (1)
) u_status_sha3_idle (
.re (status_sha3_idle_re),
.we (1'b0),
.wd ('0),
.d (hw2reg.status.sha3_idle.d),
.qre (),
.qe (),
.q (),
.qs (status_sha3_idle_qs)
);
// F[sha3_absorb]: 1:1
prim_subreg_ext #(
.DW (1)
) u_status_sha3_absorb (
.re (status_sha3_absorb_re),
.we (1'b0),
.wd ('0),
.d (hw2reg.status.sha3_absorb.d),
.qre (),
.qe (),
.q (),
.qs (status_sha3_absorb_qs)
);
// F[sha3_squeeze]: 2:2
prim_subreg_ext #(
.DW (1)
) u_status_sha3_squeeze (
.re (status_sha3_squeeze_re),
.we (1'b0),
.wd ('0),
.d (hw2reg.status.sha3_squeeze.d),
.qre (),
.qe (),
.q (),
.qs (status_sha3_squeeze_qs)
);
// F[fifo_depth]: 12:8
prim_subreg_ext #(
.DW (5)
) u_status_fifo_depth (
.re (status_fifo_depth_re),
.we (1'b0),
.wd ('0),
.d (hw2reg.status.fifo_depth.d),
.qre (),
.qe (),
.q (),
.qs (status_fifo_depth_qs)
);
// F[fifo_empty]: 14:14
prim_subreg_ext #(
.DW (1)
) u_status_fifo_empty (
.re (status_fifo_empty_re),
.we (1'b0),
.wd ('0),
.d (hw2reg.status.fifo_empty.d),
.qre (),
.qe (),
.q (),
.qs (status_fifo_empty_qs)
);
// F[fifo_full]: 15:15
prim_subreg_ext #(
.DW (1)
) u_status_fifo_full (
.re (status_fifo_full_re),
.we (1'b0),
.wd ('0),
.d (hw2reg.status.fifo_full.d),
.qre (),
.qe (),
.q (),
.qs (status_fifo_full_qs)
);
// Subregister 0 of Multireg key_share0
// R[key_share0_0]: V(True)
prim_subreg_ext #(
.DW (32)
) u_key_share0_0 (
.re (1'b0),
.we (key_share0_0_we),
.wd (key_share0_0_wd),
.d ('0),
.qre (),
.qe (reg2hw.key_share0[0].qe),
.q (reg2hw.key_share0[0].q ),
.qs ()
);
// Subregister 1 of Multireg key_share0
// R[key_share0_1]: V(True)
prim_subreg_ext #(
.DW (32)
) u_key_share0_1 (
.re (1'b0),
.we (key_share0_1_we),
.wd (key_share0_1_wd),
.d ('0),
.qre (),
.qe (reg2hw.key_share0[1].qe),
.q (reg2hw.key_share0[1].q ),
.qs ()
);
// Subregister 2 of Multireg key_share0
// R[key_share0_2]: V(True)
prim_subreg_ext #(
.DW (32)
) u_key_share0_2 (
.re (1'b0),
.we (key_share0_2_we),
.wd (key_share0_2_wd),
.d ('0),
.qre (),
.qe (reg2hw.key_share0[2].qe),
.q (reg2hw.key_share0[2].q ),
.qs ()
);
// Subregister 3 of Multireg key_share0
// R[key_share0_3]: V(True)
prim_subreg_ext #(
.DW (32)
) u_key_share0_3 (
.re (1'b0),
.we (key_share0_3_we),
.wd (key_share0_3_wd),
.d ('0),
.qre (),
.qe (reg2hw.key_share0[3].qe),
.q (reg2hw.key_share0[3].q ),
.qs ()
);
// Subregister 4 of Multireg key_share0
// R[key_share0_4]: V(True)
prim_subreg_ext #(
.DW (32)
) u_key_share0_4 (
.re (1'b0),
.we (key_share0_4_we),
.wd (key_share0_4_wd),
.d ('0),
.qre (),
.qe (reg2hw.key_share0[4].qe),
.q (reg2hw.key_share0[4].q ),
.qs ()
);
// Subregister 5 of Multireg key_share0
// R[key_share0_5]: V(True)
prim_subreg_ext #(
.DW (32)
) u_key_share0_5 (
.re (1'b0),
.we (key_share0_5_we),
.wd (key_share0_5_wd),
.d ('0),
.qre (),
.qe (reg2hw.key_share0[5].qe),
.q (reg2hw.key_share0[5].q ),
.qs ()
);
// Subregister 6 of Multireg key_share0
// R[key_share0_6]: V(True)
prim_subreg_ext #(
.DW (32)
) u_key_share0_6 (
.re (1'b0),
.we (key_share0_6_we),
.wd (key_share0_6_wd),
.d ('0),
.qre (),
.qe (reg2hw.key_share0[6].qe),
.q (reg2hw.key_share0[6].q ),
.qs ()
);
// Subregister 7 of Multireg key_share0
// R[key_share0_7]: V(True)
prim_subreg_ext #(
.DW (32)
) u_key_share0_7 (
.re (1'b0),
.we (key_share0_7_we),
.wd (key_share0_7_wd),
.d ('0),
.qre (),
.qe (reg2hw.key_share0[7].qe),
.q (reg2hw.key_share0[7].q ),
.qs ()
);
// Subregister 8 of Multireg key_share0
// R[key_share0_8]: V(True)
prim_subreg_ext #(
.DW (32)
) u_key_share0_8 (
.re (1'b0),
.we (key_share0_8_we),
.wd (key_share0_8_wd),
.d ('0),
.qre (),
.qe (reg2hw.key_share0[8].qe),
.q (reg2hw.key_share0[8].q ),
.qs ()
);
// Subregister 9 of Multireg key_share0
// R[key_share0_9]: V(True)
prim_subreg_ext #(
.DW (32)
) u_key_share0_9 (
.re (1'b0),
.we (key_share0_9_we),
.wd (key_share0_9_wd),
.d ('0),
.qre (),
.qe (reg2hw.key_share0[9].qe),
.q (reg2hw.key_share0[9].q ),
.qs ()
);
// Subregister 10 of Multireg key_share0
// R[key_share0_10]: V(True)
prim_subreg_ext #(
.DW (32)
) u_key_share0_10 (
.re (1'b0),
.we (key_share0_10_we),
.wd (key_share0_10_wd),
.d ('0),
.qre (),
.qe (reg2hw.key_share0[10].qe),
.q (reg2hw.key_share0[10].q ),
.qs ()
);
// Subregister 11 of Multireg key_share0
// R[key_share0_11]: V(True)
prim_subreg_ext #(
.DW (32)
) u_key_share0_11 (
.re (1'b0),
.we (key_share0_11_we),
.wd (key_share0_11_wd),
.d ('0),
.qre (),
.qe (reg2hw.key_share0[11].qe),
.q (reg2hw.key_share0[11].q ),
.qs ()
);
// Subregister 12 of Multireg key_share0
// R[key_share0_12]: V(True)
prim_subreg_ext #(
.DW (32)
) u_key_share0_12 (
.re (1'b0),
.we (key_share0_12_we),
.wd (key_share0_12_wd),
.d ('0),
.qre (),
.qe (reg2hw.key_share0[12].qe),
.q (reg2hw.key_share0[12].q ),
.qs ()
);
// Subregister 13 of Multireg key_share0
// R[key_share0_13]: V(True)
prim_subreg_ext #(
.DW (32)
) u_key_share0_13 (
.re (1'b0),
.we (key_share0_13_we),
.wd (key_share0_13_wd),
.d ('0),
.qre (),
.qe (reg2hw.key_share0[13].qe),
.q (reg2hw.key_share0[13].q ),
.qs ()
);
// Subregister 14 of Multireg key_share0
// R[key_share0_14]: V(True)
prim_subreg_ext #(
.DW (32)
) u_key_share0_14 (
.re (1'b0),
.we (key_share0_14_we),
.wd (key_share0_14_wd),
.d ('0),
.qre (),
.qe (reg2hw.key_share0[14].qe),
.q (reg2hw.key_share0[14].q ),
.qs ()
);
// Subregister 15 of Multireg key_share0
// R[key_share0_15]: V(True)
prim_subreg_ext #(
.DW (32)
) u_key_share0_15 (
.re (1'b0),
.we (key_share0_15_we),
.wd (key_share0_15_wd),
.d ('0),
.qre (),
.qe (reg2hw.key_share0[15].qe),
.q (reg2hw.key_share0[15].q ),
.qs ()
);
// Subregister 0 of Multireg key_share1
// R[key_share1_0]: V(True)
prim_subreg_ext #(
.DW (32)
) u_key_share1_0 (
.re (1'b0),
.we (key_share1_0_we),
.wd (key_share1_0_wd),
.d ('0),
.qre (),
.qe (reg2hw.key_share1[0].qe),
.q (reg2hw.key_share1[0].q ),
.qs ()
);
// Subregister 1 of Multireg key_share1
// R[key_share1_1]: V(True)
prim_subreg_ext #(
.DW (32)
) u_key_share1_1 (
.re (1'b0),
.we (key_share1_1_we),
.wd (key_share1_1_wd),
.d ('0),
.qre (),
.qe (reg2hw.key_share1[1].qe),
.q (reg2hw.key_share1[1].q ),
.qs ()
);
// Subregister 2 of Multireg key_share1
// R[key_share1_2]: V(True)
prim_subreg_ext #(
.DW (32)
) u_key_share1_2 (
.re (1'b0),
.we (key_share1_2_we),
.wd (key_share1_2_wd),
.d ('0),
.qre (),
.qe (reg2hw.key_share1[2].qe),
.q (reg2hw.key_share1[2].q ),
.qs ()
);
// Subregister 3 of Multireg key_share1
// R[key_share1_3]: V(True)
prim_subreg_ext #(
.DW (32)
) u_key_share1_3 (
.re (1'b0),
.we (key_share1_3_we),
.wd (key_share1_3_wd),
.d ('0),
.qre (),
.qe (reg2hw.key_share1[3].qe),
.q (reg2hw.key_share1[3].q ),
.qs ()
);
// Subregister 4 of Multireg key_share1
// R[key_share1_4]: V(True)
prim_subreg_ext #(
.DW (32)
) u_key_share1_4 (
.re (1'b0),
.we (key_share1_4_we),
.wd (key_share1_4_wd),
.d ('0),
.qre (),
.qe (reg2hw.key_share1[4].qe),
.q (reg2hw.key_share1[4].q ),
.qs ()
);
// Subregister 5 of Multireg key_share1
// R[key_share1_5]: V(True)
prim_subreg_ext #(
.DW (32)
) u_key_share1_5 (
.re (1'b0),
.we (key_share1_5_we),
.wd (key_share1_5_wd),
.d ('0),
.qre (),
.qe (reg2hw.key_share1[5].qe),
.q (reg2hw.key_share1[5].q ),
.qs ()
);
// Subregister 6 of Multireg key_share1
// R[key_share1_6]: V(True)
prim_subreg_ext #(
.DW (32)
) u_key_share1_6 (
.re (1'b0),
.we (key_share1_6_we),
.wd (key_share1_6_wd),
.d ('0),
.qre (),
.qe (reg2hw.key_share1[6].qe),
.q (reg2hw.key_share1[6].q ),
.qs ()
);
// Subregister 7 of Multireg key_share1
// R[key_share1_7]: V(True)
prim_subreg_ext #(
.DW (32)
) u_key_share1_7 (
.re (1'b0),
.we (key_share1_7_we),
.wd (key_share1_7_wd),
.d ('0),
.qre (),
.qe (reg2hw.key_share1[7].qe),
.q (reg2hw.key_share1[7].q ),
.qs ()
);
// Subregister 8 of Multireg key_share1
// R[key_share1_8]: V(True)
prim_subreg_ext #(
.DW (32)
) u_key_share1_8 (
.re (1'b0),
.we (key_share1_8_we),
.wd (key_share1_8_wd),
.d ('0),
.qre (),
.qe (reg2hw.key_share1[8].qe),
.q (reg2hw.key_share1[8].q ),
.qs ()
);
// Subregister 9 of Multireg key_share1
// R[key_share1_9]: V(True)
prim_subreg_ext #(
.DW (32)
) u_key_share1_9 (
.re (1'b0),
.we (key_share1_9_we),
.wd (key_share1_9_wd),
.d ('0),
.qre (),
.qe (reg2hw.key_share1[9].qe),
.q (reg2hw.key_share1[9].q ),
.qs ()
);
// Subregister 10 of Multireg key_share1
// R[key_share1_10]: V(True)
prim_subreg_ext #(
.DW (32)
) u_key_share1_10 (
.re (1'b0),
.we (key_share1_10_we),
.wd (key_share1_10_wd),
.d ('0),
.qre (),
.qe (reg2hw.key_share1[10].qe),
.q (reg2hw.key_share1[10].q ),
.qs ()
);
// Subregister 11 of Multireg key_share1
// R[key_share1_11]: V(True)
prim_subreg_ext #(
.DW (32)
) u_key_share1_11 (
.re (1'b0),
.we (key_share1_11_we),
.wd (key_share1_11_wd),
.d ('0),
.qre (),
.qe (reg2hw.key_share1[11].qe),
.q (reg2hw.key_share1[11].q ),
.qs ()
);
// Subregister 12 of Multireg key_share1
// R[key_share1_12]: V(True)
prim_subreg_ext #(
.DW (32)
) u_key_share1_12 (
.re (1'b0),
.we (key_share1_12_we),
.wd (key_share1_12_wd),
.d ('0),
.qre (),
.qe (reg2hw.key_share1[12].qe),
.q (reg2hw.key_share1[12].q ),
.qs ()
);
// Subregister 13 of Multireg key_share1
// R[key_share1_13]: V(True)
prim_subreg_ext #(
.DW (32)
) u_key_share1_13 (
.re (1'b0),
.we (key_share1_13_we),
.wd (key_share1_13_wd),
.d ('0),
.qre (),
.qe (reg2hw.key_share1[13].qe),
.q (reg2hw.key_share1[13].q ),
.qs ()
);
// Subregister 14 of Multireg key_share1
// R[key_share1_14]: V(True)
prim_subreg_ext #(
.DW (32)
) u_key_share1_14 (
.re (1'b0),
.we (key_share1_14_we),
.wd (key_share1_14_wd),
.d ('0),
.qre (),
.qe (reg2hw.key_share1[14].qe),
.q (reg2hw.key_share1[14].q ),
.qs ()
);
// Subregister 15 of Multireg key_share1
// R[key_share1_15]: V(True)
prim_subreg_ext #(
.DW (32)
) u_key_share1_15 (
.re (1'b0),
.we (key_share1_15_we),
.wd (key_share1_15_wd),
.d ('0),
.qre (),
.qe (reg2hw.key_share1[15].qe),
.q (reg2hw.key_share1[15].q ),
.qs ()
);
// R[key_len]: V(False)
prim_subreg #(
.DW (3),
.SWACCESS("WO"),
.RESVAL (3'h0)
) u_key_len (
.clk_i (clk_i ),
.rst_ni (rst_ni ),
// from register interface (qualified with register enable)
.we (key_len_we & cfg_regwen_qs),
.wd (key_len_wd),
// from internal hardware
.de (1'b0),
.d ('0 ),
// to internal hardware
.qe (),
.q (reg2hw.key_len.q ),
.qs ()
);
// Subregister 0 of Multireg prefix
// R[prefix_0]: V(False)
prim_subreg #(
.DW (32),
.SWACCESS("RW"),
.RESVAL (32'h0)
) u_prefix_0 (
.clk_i (clk_i ),
.rst_ni (rst_ni ),
// from register interface
.we (prefix_0_we),
.wd (prefix_0_wd),
// from internal hardware
.de (1'b0),
.d ('0 ),
// to internal hardware
.qe (reg2hw.prefix[0].qe),
.q (reg2hw.prefix[0].q ),
// to register interface (read)
.qs (prefix_0_qs)
);
// Subregister 1 of Multireg prefix
// R[prefix_1]: V(False)
prim_subreg #(
.DW (32),
.SWACCESS("RW"),
.RESVAL (32'h0)
) u_prefix_1 (
.clk_i (clk_i ),
.rst_ni (rst_ni ),
// from register interface
.we (prefix_1_we),
.wd (prefix_1_wd),
// from internal hardware
.de (1'b0),
.d ('0 ),
// to internal hardware
.qe (reg2hw.prefix[1].qe),
.q (reg2hw.prefix[1].q ),
// to register interface (read)
.qs (prefix_1_qs)
);
// Subregister 2 of Multireg prefix
// R[prefix_2]: V(False)
prim_subreg #(
.DW (32),
.SWACCESS("RW"),
.RESVAL (32'h0)
) u_prefix_2 (
.clk_i (clk_i ),
.rst_ni (rst_ni ),
// from register interface
.we (prefix_2_we),
.wd (prefix_2_wd),
// from internal hardware
.de (1'b0),
.d ('0 ),
// to internal hardware
.qe (reg2hw.prefix[2].qe),
.q (reg2hw.prefix[2].q ),
// to register interface (read)
.qs (prefix_2_qs)
);
// Subregister 3 of Multireg prefix
// R[prefix_3]: V(False)
prim_subreg #(
.DW (32),
.SWACCESS("RW"),
.RESVAL (32'h0)
) u_prefix_3 (
.clk_i (clk_i ),
.rst_ni (rst_ni ),
// from register interface
.we (prefix_3_we),
.wd (prefix_3_wd),
// from internal hardware
.de (1'b0),
.d ('0 ),
// to internal hardware
.qe (reg2hw.prefix[3].qe),
.q (reg2hw.prefix[3].q ),
// to register interface (read)
.qs (prefix_3_qs)
);
// Subregister 4 of Multireg prefix
// R[prefix_4]: V(False)
prim_subreg #(
.DW (32),
.SWACCESS("RW"),
.RESVAL (32'h0)
) u_prefix_4 (
.clk_i (clk_i ),
.rst_ni (rst_ni ),
// from register interface
.we (prefix_4_we),
.wd (prefix_4_wd),
// from internal hardware
.de (1'b0),
.d ('0 ),
// to internal hardware
.qe (reg2hw.prefix[4].qe),
.q (reg2hw.prefix[4].q ),
// to register interface (read)
.qs (prefix_4_qs)
);
// Subregister 5 of Multireg prefix
// R[prefix_5]: V(False)
prim_subreg #(
.DW (32),
.SWACCESS("RW"),
.RESVAL (32'h0)
) u_prefix_5 (
.clk_i (clk_i ),
.rst_ni (rst_ni ),
// from register interface
.we (prefix_5_we),
.wd (prefix_5_wd),
// from internal hardware
.de (1'b0),
.d ('0 ),
// to internal hardware
.qe (reg2hw.prefix[5].qe),
.q (reg2hw.prefix[5].q ),
// to register interface (read)
.qs (prefix_5_qs)
);
// Subregister 6 of Multireg prefix
// R[prefix_6]: V(False)
prim_subreg #(
.DW (32),
.SWACCESS("RW"),
.RESVAL (32'h0)
) u_prefix_6 (
.clk_i (clk_i ),
.rst_ni (rst_ni ),
// from register interface
.we (prefix_6_we),
.wd (prefix_6_wd),
// from internal hardware
.de (1'b0),
.d ('0 ),
// to internal hardware
.qe (reg2hw.prefix[6].qe),
.q (reg2hw.prefix[6].q ),
// to register interface (read)
.qs (prefix_6_qs)
);
// Subregister 7 of Multireg prefix
// R[prefix_7]: V(False)
prim_subreg #(
.DW (32),
.SWACCESS("RW"),
.RESVAL (32'h0)
) u_prefix_7 (
.clk_i (clk_i ),
.rst_ni (rst_ni ),
// from register interface
.we (prefix_7_we),
.wd (prefix_7_wd),
// from internal hardware
.de (1'b0),
.d ('0 ),
// to internal hardware
.qe (reg2hw.prefix[7].qe),
.q (reg2hw.prefix[7].q ),
// to register interface (read)
.qs (prefix_7_qs)
);
// Subregister 8 of Multireg prefix
// R[prefix_8]: V(False)
prim_subreg #(
.DW (32),
.SWACCESS("RW"),
.RESVAL (32'h0)
) u_prefix_8 (
.clk_i (clk_i ),
.rst_ni (rst_ni ),
// from register interface
.we (prefix_8_we),
.wd (prefix_8_wd),
// from internal hardware
.de (1'b0),
.d ('0 ),
// to internal hardware
.qe (reg2hw.prefix[8].qe),
.q (reg2hw.prefix[8].q ),
// to register interface (read)
.qs (prefix_8_qs)
);
// Subregister 9 of Multireg prefix
// R[prefix_9]: V(False)
prim_subreg #(
.DW (32),
.SWACCESS("RW"),
.RESVAL (32'h0)
) u_prefix_9 (
.clk_i (clk_i ),
.rst_ni (rst_ni ),
// from register interface
.we (prefix_9_we),
.wd (prefix_9_wd),
// from internal hardware
.de (1'b0),
.d ('0 ),
// to internal hardware
.qe (reg2hw.prefix[9].qe),
.q (reg2hw.prefix[9].q ),
// to register interface (read)
.qs (prefix_9_qs)
);
// Subregister 10 of Multireg prefix
// R[prefix_10]: V(False)
prim_subreg #(
.DW (32),
.SWACCESS("RW"),
.RESVAL (32'h0)
) u_prefix_10 (
.clk_i (clk_i ),
.rst_ni (rst_ni ),
// from register interface
.we (prefix_10_we),
.wd (prefix_10_wd),
// from internal hardware
.de (1'b0),
.d ('0 ),
// to internal hardware
.qe (reg2hw.prefix[10].qe),
.q (reg2hw.prefix[10].q ),
// to register interface (read)
.qs (prefix_10_qs)
);
// R[err_code]: V(False)
prim_subreg #(
.DW (32),
.SWACCESS("RO"),
.RESVAL (32'h0)
) u_err_code (
.clk_i (clk_i ),
.rst_ni (rst_ni ),
.we (1'b0),
.wd ('0 ),
// from internal hardware
.de (hw2reg.err_code.de),
.d (hw2reg.err_code.d ),
// to internal hardware
.qe (),
.q (),
// to register interface (read)
.qs (err_code_qs)
);
// R[cfg_regwen]: V(True)
prim_subreg_ext #(
.DW (1)
) u_cfg_regwen (
.re (cfg_regwen_re),
.we (1'b0),
.wd ('0),
.d (hw2reg.cfg_regwen.d),
.qre (),
.qe (),
.q (),
.qs (cfg_regwen_qs)
);
logic [51:0] addr_hit;
always_comb begin
addr_hit = '0;
addr_hit[ 0] = (reg_addr == KMAC_INTR_STATE_OFFSET);
addr_hit[ 1] = (reg_addr == KMAC_INTR_ENABLE_OFFSET);
addr_hit[ 2] = (reg_addr == KMAC_INTR_TEST_OFFSET);
addr_hit[ 3] = (reg_addr == KMAC_CFG_OFFSET);
addr_hit[ 4] = (reg_addr == KMAC_CMD_OFFSET);
addr_hit[ 5] = (reg_addr == KMAC_STATUS_OFFSET);
addr_hit[ 6] = (reg_addr == KMAC_KEY_SHARE0_0_OFFSET);
addr_hit[ 7] = (reg_addr == KMAC_KEY_SHARE0_1_OFFSET);
addr_hit[ 8] = (reg_addr == KMAC_KEY_SHARE0_2_OFFSET);
addr_hit[ 9] = (reg_addr == KMAC_KEY_SHARE0_3_OFFSET);
addr_hit[10] = (reg_addr == KMAC_KEY_SHARE0_4_OFFSET);
addr_hit[11] = (reg_addr == KMAC_KEY_SHARE0_5_OFFSET);
addr_hit[12] = (reg_addr == KMAC_KEY_SHARE0_6_OFFSET);
addr_hit[13] = (reg_addr == KMAC_KEY_SHARE0_7_OFFSET);
addr_hit[14] = (reg_addr == KMAC_KEY_SHARE0_8_OFFSET);
addr_hit[15] = (reg_addr == KMAC_KEY_SHARE0_9_OFFSET);
addr_hit[16] = (reg_addr == KMAC_KEY_SHARE0_10_OFFSET);
addr_hit[17] = (reg_addr == KMAC_KEY_SHARE0_11_OFFSET);
addr_hit[18] = (reg_addr == KMAC_KEY_SHARE0_12_OFFSET);
addr_hit[19] = (reg_addr == KMAC_KEY_SHARE0_13_OFFSET);
addr_hit[20] = (reg_addr == KMAC_KEY_SHARE0_14_OFFSET);
addr_hit[21] = (reg_addr == KMAC_KEY_SHARE0_15_OFFSET);
addr_hit[22] = (reg_addr == KMAC_KEY_SHARE1_0_OFFSET);
addr_hit[23] = (reg_addr == KMAC_KEY_SHARE1_1_OFFSET);
addr_hit[24] = (reg_addr == KMAC_KEY_SHARE1_2_OFFSET);
addr_hit[25] = (reg_addr == KMAC_KEY_SHARE1_3_OFFSET);
addr_hit[26] = (reg_addr == KMAC_KEY_SHARE1_4_OFFSET);
addr_hit[27] = (reg_addr == KMAC_KEY_SHARE1_5_OFFSET);
addr_hit[28] = (reg_addr == KMAC_KEY_SHARE1_6_OFFSET);
addr_hit[29] = (reg_addr == KMAC_KEY_SHARE1_7_OFFSET);
addr_hit[30] = (reg_addr == KMAC_KEY_SHARE1_8_OFFSET);
addr_hit[31] = (reg_addr == KMAC_KEY_SHARE1_9_OFFSET);
addr_hit[32] = (reg_addr == KMAC_KEY_SHARE1_10_OFFSET);
addr_hit[33] = (reg_addr == KMAC_KEY_SHARE1_11_OFFSET);
addr_hit[34] = (reg_addr == KMAC_KEY_SHARE1_12_OFFSET);
addr_hit[35] = (reg_addr == KMAC_KEY_SHARE1_13_OFFSET);
addr_hit[36] = (reg_addr == KMAC_KEY_SHARE1_14_OFFSET);
addr_hit[37] = (reg_addr == KMAC_KEY_SHARE1_15_OFFSET);
addr_hit[38] = (reg_addr == KMAC_KEY_LEN_OFFSET);
addr_hit[39] = (reg_addr == KMAC_PREFIX_0_OFFSET);
addr_hit[40] = (reg_addr == KMAC_PREFIX_1_OFFSET);
addr_hit[41] = (reg_addr == KMAC_PREFIX_2_OFFSET);
addr_hit[42] = (reg_addr == KMAC_PREFIX_3_OFFSET);
addr_hit[43] = (reg_addr == KMAC_PREFIX_4_OFFSET);
addr_hit[44] = (reg_addr == KMAC_PREFIX_5_OFFSET);
addr_hit[45] = (reg_addr == KMAC_PREFIX_6_OFFSET);
addr_hit[46] = (reg_addr == KMAC_PREFIX_7_OFFSET);
addr_hit[47] = (reg_addr == KMAC_PREFIX_8_OFFSET);
addr_hit[48] = (reg_addr == KMAC_PREFIX_9_OFFSET);
addr_hit[49] = (reg_addr == KMAC_PREFIX_10_OFFSET);
addr_hit[50] = (reg_addr == KMAC_ERR_CODE_OFFSET);
addr_hit[51] = (reg_addr == KMAC_CFG_REGWEN_OFFSET);
end
assign addrmiss = (reg_re || reg_we) ? ~|addr_hit : 1'b0 ;
// Check sub-word write is permitted
always_comb begin
wr_err = 1'b0;
if (addr_hit[ 0] && reg_we && (KMAC_PERMIT[ 0] != (KMAC_PERMIT[ 0] & reg_be))) wr_err = 1'b1 ;
if (addr_hit[ 1] && reg_we && (KMAC_PERMIT[ 1] != (KMAC_PERMIT[ 1] & reg_be))) wr_err = 1'b1 ;
if (addr_hit[ 2] && reg_we && (KMAC_PERMIT[ 2] != (KMAC_PERMIT[ 2] & reg_be))) wr_err = 1'b1 ;
if (addr_hit[ 3] && reg_we && (KMAC_PERMIT[ 3] != (KMAC_PERMIT[ 3] & reg_be))) wr_err = 1'b1 ;
if (addr_hit[ 4] && reg_we && (KMAC_PERMIT[ 4] != (KMAC_PERMIT[ 4] & reg_be))) wr_err = 1'b1 ;
if (addr_hit[ 5] && reg_we && (KMAC_PERMIT[ 5] != (KMAC_PERMIT[ 5] & reg_be))) wr_err = 1'b1 ;
if (addr_hit[ 6] && reg_we && (KMAC_PERMIT[ 6] != (KMAC_PERMIT[ 6] & reg_be))) wr_err = 1'b1 ;
if (addr_hit[ 7] && reg_we && (KMAC_PERMIT[ 7] != (KMAC_PERMIT[ 7] & reg_be))) wr_err = 1'b1 ;
if (addr_hit[ 8] && reg_we && (KMAC_PERMIT[ 8] != (KMAC_PERMIT[ 8] & reg_be))) wr_err = 1'b1 ;
if (addr_hit[ 9] && reg_we && (KMAC_PERMIT[ 9] != (KMAC_PERMIT[ 9] & reg_be))) wr_err = 1'b1 ;
if (addr_hit[10] && reg_we && (KMAC_PERMIT[10] != (KMAC_PERMIT[10] & reg_be))) wr_err = 1'b1 ;
if (addr_hit[11] && reg_we && (KMAC_PERMIT[11] != (KMAC_PERMIT[11] & reg_be))) wr_err = 1'b1 ;
if (addr_hit[12] && reg_we && (KMAC_PERMIT[12] != (KMAC_PERMIT[12] & reg_be))) wr_err = 1'b1 ;
if (addr_hit[13] && reg_we && (KMAC_PERMIT[13] != (KMAC_PERMIT[13] & reg_be))) wr_err = 1'b1 ;
if (addr_hit[14] && reg_we && (KMAC_PERMIT[14] != (KMAC_PERMIT[14] & reg_be))) wr_err = 1'b1 ;
if (addr_hit[15] && reg_we && (KMAC_PERMIT[15] != (KMAC_PERMIT[15] & reg_be))) wr_err = 1'b1 ;
if (addr_hit[16] && reg_we && (KMAC_PERMIT[16] != (KMAC_PERMIT[16] & reg_be))) wr_err = 1'b1 ;
if (addr_hit[17] && reg_we && (KMAC_PERMIT[17] != (KMAC_PERMIT[17] & reg_be))) wr_err = 1'b1 ;
if (addr_hit[18] && reg_we && (KMAC_PERMIT[18] != (KMAC_PERMIT[18] & reg_be))) wr_err = 1'b1 ;
if (addr_hit[19] && reg_we && (KMAC_PERMIT[19] != (KMAC_PERMIT[19] & reg_be))) wr_err = 1'b1 ;
if (addr_hit[20] && reg_we && (KMAC_PERMIT[20] != (KMAC_PERMIT[20] & reg_be))) wr_err = 1'b1 ;
if (addr_hit[21] && reg_we && (KMAC_PERMIT[21] != (KMAC_PERMIT[21] & reg_be))) wr_err = 1'b1 ;
if (addr_hit[22] && reg_we && (KMAC_PERMIT[22] != (KMAC_PERMIT[22] & reg_be))) wr_err = 1'b1 ;
if (addr_hit[23] && reg_we && (KMAC_PERMIT[23] != (KMAC_PERMIT[23] & reg_be))) wr_err = 1'b1 ;
if (addr_hit[24] && reg_we && (KMAC_PERMIT[24] != (KMAC_PERMIT[24] & reg_be))) wr_err = 1'b1 ;
if (addr_hit[25] && reg_we && (KMAC_PERMIT[25] != (KMAC_PERMIT[25] & reg_be))) wr_err = 1'b1 ;
if (addr_hit[26] && reg_we && (KMAC_PERMIT[26] != (KMAC_PERMIT[26] & reg_be))) wr_err = 1'b1 ;
if (addr_hit[27] && reg_we && (KMAC_PERMIT[27] != (KMAC_PERMIT[27] & reg_be))) wr_err = 1'b1 ;
if (addr_hit[28] && reg_we && (KMAC_PERMIT[28] != (KMAC_PERMIT[28] & reg_be))) wr_err = 1'b1 ;
if (addr_hit[29] && reg_we && (KMAC_PERMIT[29] != (KMAC_PERMIT[29] & reg_be))) wr_err = 1'b1 ;
if (addr_hit[30] && reg_we && (KMAC_PERMIT[30] != (KMAC_PERMIT[30] & reg_be))) wr_err = 1'b1 ;
if (addr_hit[31] && reg_we && (KMAC_PERMIT[31] != (KMAC_PERMIT[31] & reg_be))) wr_err = 1'b1 ;
if (addr_hit[32] && reg_we && (KMAC_PERMIT[32] != (KMAC_PERMIT[32] & reg_be))) wr_err = 1'b1 ;
if (addr_hit[33] && reg_we && (KMAC_PERMIT[33] != (KMAC_PERMIT[33] & reg_be))) wr_err = 1'b1 ;
if (addr_hit[34] && reg_we && (KMAC_PERMIT[34] != (KMAC_PERMIT[34] & reg_be))) wr_err = 1'b1 ;
if (addr_hit[35] && reg_we && (KMAC_PERMIT[35] != (KMAC_PERMIT[35] & reg_be))) wr_err = 1'b1 ;
if (addr_hit[36] && reg_we && (KMAC_PERMIT[36] != (KMAC_PERMIT[36] & reg_be))) wr_err = 1'b1 ;
if (addr_hit[37] && reg_we && (KMAC_PERMIT[37] != (KMAC_PERMIT[37] & reg_be))) wr_err = 1'b1 ;
if (addr_hit[38] && reg_we && (KMAC_PERMIT[38] != (KMAC_PERMIT[38] & reg_be))) wr_err = 1'b1 ;
if (addr_hit[39] && reg_we && (KMAC_PERMIT[39] != (KMAC_PERMIT[39] & reg_be))) wr_err = 1'b1 ;
if (addr_hit[40] && reg_we && (KMAC_PERMIT[40] != (KMAC_PERMIT[40] & reg_be))) wr_err = 1'b1 ;
if (addr_hit[41] && reg_we && (KMAC_PERMIT[41] != (KMAC_PERMIT[41] & reg_be))) wr_err = 1'b1 ;
if (addr_hit[42] && reg_we && (KMAC_PERMIT[42] != (KMAC_PERMIT[42] & reg_be))) wr_err = 1'b1 ;
if (addr_hit[43] && reg_we && (KMAC_PERMIT[43] != (KMAC_PERMIT[43] & reg_be))) wr_err = 1'b1 ;
if (addr_hit[44] && reg_we && (KMAC_PERMIT[44] != (KMAC_PERMIT[44] & reg_be))) wr_err = 1'b1 ;
if (addr_hit[45] && reg_we && (KMAC_PERMIT[45] != (KMAC_PERMIT[45] & reg_be))) wr_err = 1'b1 ;
if (addr_hit[46] && reg_we && (KMAC_PERMIT[46] != (KMAC_PERMIT[46] & reg_be))) wr_err = 1'b1 ;
if (addr_hit[47] && reg_we && (KMAC_PERMIT[47] != (KMAC_PERMIT[47] & reg_be))) wr_err = 1'b1 ;
if (addr_hit[48] && reg_we && (KMAC_PERMIT[48] != (KMAC_PERMIT[48] & reg_be))) wr_err = 1'b1 ;
if (addr_hit[49] && reg_we && (KMAC_PERMIT[49] != (KMAC_PERMIT[49] & reg_be))) wr_err = 1'b1 ;
if (addr_hit[50] && reg_we && (KMAC_PERMIT[50] != (KMAC_PERMIT[50] & reg_be))) wr_err = 1'b1 ;
if (addr_hit[51] && reg_we && (KMAC_PERMIT[51] != (KMAC_PERMIT[51] & reg_be))) wr_err = 1'b1 ;
end
assign intr_state_kmac_done_we = addr_hit[0] & reg_we & ~wr_err;
assign intr_state_kmac_done_wd = reg_wdata[0];
assign intr_state_fifo_empty_we = addr_hit[0] & reg_we & ~wr_err;
assign intr_state_fifo_empty_wd = reg_wdata[1];
assign intr_state_kmac_err_we = addr_hit[0] & reg_we & ~wr_err;
assign intr_state_kmac_err_wd = reg_wdata[2];
assign intr_enable_kmac_done_we = addr_hit[1] & reg_we & ~wr_err;
assign intr_enable_kmac_done_wd = reg_wdata[0];
assign intr_enable_fifo_empty_we = addr_hit[1] & reg_we & ~wr_err;
assign intr_enable_fifo_empty_wd = reg_wdata[1];
assign intr_enable_kmac_err_we = addr_hit[1] & reg_we & ~wr_err;
assign intr_enable_kmac_err_wd = reg_wdata[2];
assign intr_test_kmac_done_we = addr_hit[2] & reg_we & ~wr_err;
assign intr_test_kmac_done_wd = reg_wdata[0];
assign intr_test_fifo_empty_we = addr_hit[2] & reg_we & ~wr_err;
assign intr_test_fifo_empty_wd = reg_wdata[1];
assign intr_test_kmac_err_we = addr_hit[2] & reg_we & ~wr_err;
assign intr_test_kmac_err_wd = reg_wdata[2];
assign cfg_kmac_en_we = addr_hit[3] & reg_we & ~wr_err;
assign cfg_kmac_en_wd = reg_wdata[0];
assign cfg_strength_we = addr_hit[3] & reg_we & ~wr_err;
assign cfg_strength_wd = reg_wdata[3:1];
assign cfg_mode_we = addr_hit[3] & reg_we & ~wr_err;
assign cfg_mode_wd = reg_wdata[5:4];
assign cfg_msg_endianness_we = addr_hit[3] & reg_we & ~wr_err;
assign cfg_msg_endianness_wd = reg_wdata[8];
assign cfg_state_endianness_we = addr_hit[3] & reg_we & ~wr_err;
assign cfg_state_endianness_wd = reg_wdata[9];
assign cmd_start_we = addr_hit[4] & reg_we & ~wr_err;
assign cmd_start_wd = reg_wdata[0];
assign cmd_process_we = addr_hit[4] & reg_we & ~wr_err;
assign cmd_process_wd = reg_wdata[1];
assign cmd_run_we = addr_hit[4] & reg_we & ~wr_err;
assign cmd_run_wd = reg_wdata[2];
assign cmd_done_we = addr_hit[4] & reg_we & ~wr_err;
assign cmd_done_wd = reg_wdata[3];
assign status_sha3_idle_re = addr_hit[5] && reg_re;
assign status_sha3_absorb_re = addr_hit[5] && reg_re;
assign status_sha3_squeeze_re = addr_hit[5] && reg_re;
assign status_fifo_depth_re = addr_hit[5] && reg_re;
assign status_fifo_empty_re = addr_hit[5] && reg_re;
assign status_fifo_full_re = addr_hit[5] && reg_re;
assign key_share0_0_we = addr_hit[6] & reg_we & ~wr_err;
assign key_share0_0_wd = reg_wdata[31:0];
assign key_share0_1_we = addr_hit[7] & reg_we & ~wr_err;
assign key_share0_1_wd = reg_wdata[31:0];
assign key_share0_2_we = addr_hit[8] & reg_we & ~wr_err;
assign key_share0_2_wd = reg_wdata[31:0];
assign key_share0_3_we = addr_hit[9] & reg_we & ~wr_err;
assign key_share0_3_wd = reg_wdata[31:0];
assign key_share0_4_we = addr_hit[10] & reg_we & ~wr_err;
assign key_share0_4_wd = reg_wdata[31:0];
assign key_share0_5_we = addr_hit[11] & reg_we & ~wr_err;
assign key_share0_5_wd = reg_wdata[31:0];
assign key_share0_6_we = addr_hit[12] & reg_we & ~wr_err;
assign key_share0_6_wd = reg_wdata[31:0];
assign key_share0_7_we = addr_hit[13] & reg_we & ~wr_err;
assign key_share0_7_wd = reg_wdata[31:0];
assign key_share0_8_we = addr_hit[14] & reg_we & ~wr_err;
assign key_share0_8_wd = reg_wdata[31:0];
assign key_share0_9_we = addr_hit[15] & reg_we & ~wr_err;
assign key_share0_9_wd = reg_wdata[31:0];
assign key_share0_10_we = addr_hit[16] & reg_we & ~wr_err;
assign key_share0_10_wd = reg_wdata[31:0];
assign key_share0_11_we = addr_hit[17] & reg_we & ~wr_err;
assign key_share0_11_wd = reg_wdata[31:0];
assign key_share0_12_we = addr_hit[18] & reg_we & ~wr_err;
assign key_share0_12_wd = reg_wdata[31:0];
assign key_share0_13_we = addr_hit[19] & reg_we & ~wr_err;
assign key_share0_13_wd = reg_wdata[31:0];
assign key_share0_14_we = addr_hit[20] & reg_we & ~wr_err;
assign key_share0_14_wd = reg_wdata[31:0];
assign key_share0_15_we = addr_hit[21] & reg_we & ~wr_err;
assign key_share0_15_wd = reg_wdata[31:0];
assign key_share1_0_we = addr_hit[22] & reg_we & ~wr_err;
assign key_share1_0_wd = reg_wdata[31:0];
assign key_share1_1_we = addr_hit[23] & reg_we & ~wr_err;
assign key_share1_1_wd = reg_wdata[31:0];
assign key_share1_2_we = addr_hit[24] & reg_we & ~wr_err;
assign key_share1_2_wd = reg_wdata[31:0];
assign key_share1_3_we = addr_hit[25] & reg_we & ~wr_err;
assign key_share1_3_wd = reg_wdata[31:0];
assign key_share1_4_we = addr_hit[26] & reg_we & ~wr_err;
assign key_share1_4_wd = reg_wdata[31:0];
assign key_share1_5_we = addr_hit[27] & reg_we & ~wr_err;
assign key_share1_5_wd = reg_wdata[31:0];
assign key_share1_6_we = addr_hit[28] & reg_we & ~wr_err;
assign key_share1_6_wd = reg_wdata[31:0];
assign key_share1_7_we = addr_hit[29] & reg_we & ~wr_err;
assign key_share1_7_wd = reg_wdata[31:0];
assign key_share1_8_we = addr_hit[30] & reg_we & ~wr_err;
assign key_share1_8_wd = reg_wdata[31:0];
assign key_share1_9_we = addr_hit[31] & reg_we & ~wr_err;
assign key_share1_9_wd = reg_wdata[31:0];
assign key_share1_10_we = addr_hit[32] & reg_we & ~wr_err;
assign key_share1_10_wd = reg_wdata[31:0];
assign key_share1_11_we = addr_hit[33] & reg_we & ~wr_err;
assign key_share1_11_wd = reg_wdata[31:0];
assign key_share1_12_we = addr_hit[34] & reg_we & ~wr_err;
assign key_share1_12_wd = reg_wdata[31:0];
assign key_share1_13_we = addr_hit[35] & reg_we & ~wr_err;
assign key_share1_13_wd = reg_wdata[31:0];
assign key_share1_14_we = addr_hit[36] & reg_we & ~wr_err;
assign key_share1_14_wd = reg_wdata[31:0];
assign key_share1_15_we = addr_hit[37] & reg_we & ~wr_err;
assign key_share1_15_wd = reg_wdata[31:0];
assign key_len_we = addr_hit[38] & reg_we & ~wr_err;
assign key_len_wd = reg_wdata[2:0];
assign prefix_0_we = addr_hit[39] & reg_we & ~wr_err;
assign prefix_0_wd = reg_wdata[31:0];
assign prefix_1_we = addr_hit[40] & reg_we & ~wr_err;
assign prefix_1_wd = reg_wdata[31:0];
assign prefix_2_we = addr_hit[41] & reg_we & ~wr_err;
assign prefix_2_wd = reg_wdata[31:0];
assign prefix_3_we = addr_hit[42] & reg_we & ~wr_err;
assign prefix_3_wd = reg_wdata[31:0];
assign prefix_4_we = addr_hit[43] & reg_we & ~wr_err;
assign prefix_4_wd = reg_wdata[31:0];
assign prefix_5_we = addr_hit[44] & reg_we & ~wr_err;
assign prefix_5_wd = reg_wdata[31:0];
assign prefix_6_we = addr_hit[45] & reg_we & ~wr_err;
assign prefix_6_wd = reg_wdata[31:0];
assign prefix_7_we = addr_hit[46] & reg_we & ~wr_err;
assign prefix_7_wd = reg_wdata[31:0];
assign prefix_8_we = addr_hit[47] & reg_we & ~wr_err;
assign prefix_8_wd = reg_wdata[31:0];
assign prefix_9_we = addr_hit[48] & reg_we & ~wr_err;
assign prefix_9_wd = reg_wdata[31:0];
assign prefix_10_we = addr_hit[49] & reg_we & ~wr_err;
assign prefix_10_wd = reg_wdata[31:0];
assign cfg_regwen_re = addr_hit[51] && reg_re;
// Read data return
always_comb begin
reg_rdata_next = '0;
unique case (1'b1)
addr_hit[0]: begin
reg_rdata_next[0] = intr_state_kmac_done_qs;
reg_rdata_next[1] = intr_state_fifo_empty_qs;
reg_rdata_next[2] = intr_state_kmac_err_qs;
end
addr_hit[1]: begin
reg_rdata_next[0] = intr_enable_kmac_done_qs;
reg_rdata_next[1] = intr_enable_fifo_empty_qs;
reg_rdata_next[2] = intr_enable_kmac_err_qs;
end
addr_hit[2]: begin
reg_rdata_next[0] = '0;
reg_rdata_next[1] = '0;
reg_rdata_next[2] = '0;
end
addr_hit[3]: begin
reg_rdata_next[0] = cfg_kmac_en_qs;
reg_rdata_next[3:1] = cfg_strength_qs;
reg_rdata_next[5:4] = cfg_mode_qs;
reg_rdata_next[8] = cfg_msg_endianness_qs;
reg_rdata_next[9] = cfg_state_endianness_qs;
end
addr_hit[4]: begin
reg_rdata_next[0] = '0;
reg_rdata_next[1] = '0;
reg_rdata_next[2] = '0;
reg_rdata_next[3] = '0;
end
addr_hit[5]: begin
reg_rdata_next[0] = status_sha3_idle_qs;
reg_rdata_next[1] = status_sha3_absorb_qs;
reg_rdata_next[2] = status_sha3_squeeze_qs;
reg_rdata_next[12:8] = status_fifo_depth_qs;
reg_rdata_next[14] = status_fifo_empty_qs;
reg_rdata_next[15] = status_fifo_full_qs;
end
addr_hit[6]: begin
reg_rdata_next[31:0] = '0;
end
addr_hit[7]: begin
reg_rdata_next[31:0] = '0;
end
addr_hit[8]: begin
reg_rdata_next[31:0] = '0;
end
addr_hit[9]: begin
reg_rdata_next[31:0] = '0;
end
addr_hit[10]: begin
reg_rdata_next[31:0] = '0;
end
addr_hit[11]: begin
reg_rdata_next[31:0] = '0;
end
addr_hit[12]: begin
reg_rdata_next[31:0] = '0;
end
addr_hit[13]: begin
reg_rdata_next[31:0] = '0;
end
addr_hit[14]: begin
reg_rdata_next[31:0] = '0;
end
addr_hit[15]: begin
reg_rdata_next[31:0] = '0;
end
addr_hit[16]: begin
reg_rdata_next[31:0] = '0;
end
addr_hit[17]: begin
reg_rdata_next[31:0] = '0;
end
addr_hit[18]: begin
reg_rdata_next[31:0] = '0;
end
addr_hit[19]: begin
reg_rdata_next[31:0] = '0;
end
addr_hit[20]: begin
reg_rdata_next[31:0] = '0;
end
addr_hit[21]: begin
reg_rdata_next[31:0] = '0;
end
addr_hit[22]: begin
reg_rdata_next[31:0] = '0;
end
addr_hit[23]: begin
reg_rdata_next[31:0] = '0;
end
addr_hit[24]: begin
reg_rdata_next[31:0] = '0;
end
addr_hit[25]: begin
reg_rdata_next[31:0] = '0;
end
addr_hit[26]: begin
reg_rdata_next[31:0] = '0;
end
addr_hit[27]: begin
reg_rdata_next[31:0] = '0;
end
addr_hit[28]: begin
reg_rdata_next[31:0] = '0;
end
addr_hit[29]: begin
reg_rdata_next[31:0] = '0;
end
addr_hit[30]: begin
reg_rdata_next[31:0] = '0;
end
addr_hit[31]: begin
reg_rdata_next[31:0] = '0;
end
addr_hit[32]: begin
reg_rdata_next[31:0] = '0;
end
addr_hit[33]: begin
reg_rdata_next[31:0] = '0;
end
addr_hit[34]: begin
reg_rdata_next[31:0] = '0;
end
addr_hit[35]: begin
reg_rdata_next[31:0] = '0;
end
addr_hit[36]: begin
reg_rdata_next[31:0] = '0;
end
addr_hit[37]: begin
reg_rdata_next[31:0] = '0;
end
addr_hit[38]: begin
reg_rdata_next[2:0] = '0;
end
addr_hit[39]: begin
reg_rdata_next[31:0] = prefix_0_qs;
end
addr_hit[40]: begin
reg_rdata_next[31:0] = prefix_1_qs;
end
addr_hit[41]: begin
reg_rdata_next[31:0] = prefix_2_qs;
end
addr_hit[42]: begin
reg_rdata_next[31:0] = prefix_3_qs;
end
addr_hit[43]: begin
reg_rdata_next[31:0] = prefix_4_qs;
end
addr_hit[44]: begin
reg_rdata_next[31:0] = prefix_5_qs;
end
addr_hit[45]: begin
reg_rdata_next[31:0] = prefix_6_qs;
end
addr_hit[46]: begin
reg_rdata_next[31:0] = prefix_7_qs;
end
addr_hit[47]: begin
reg_rdata_next[31:0] = prefix_8_qs;
end
addr_hit[48]: begin
reg_rdata_next[31:0] = prefix_9_qs;
end
addr_hit[49]: begin
reg_rdata_next[31:0] = prefix_10_qs;
end
addr_hit[50]: begin
reg_rdata_next[31:0] = err_code_qs;
end
addr_hit[51]: begin
reg_rdata_next[0] = cfg_regwen_qs;
end
default: begin
reg_rdata_next = '1;
end
endcase
end
// Assertions for Register Interface
`ASSERT_PULSE(wePulse, reg_we)
`ASSERT_PULSE(rePulse, reg_re)
`ASSERT(reAfterRv, $rose(reg_re || reg_we) |=> tl_o.d_valid)
`ASSERT(en2addrHit, (reg_we || reg_re) |-> $onehot0(addr_hit))
// this is formulated as an assumption such that the FPV testbenches do disprove this
// property by mistake
`ASSUME(reqParity, tl_reg_h2d.a_valid |-> tl_reg_h2d.a_user.parity_en == 1'b0)
endmodule