| // Copyright lowRISC contributors. |
| // Licensed under the Apache License, Version 2.0, see LICENSE for details. |
| // SPDX-License-Identifier: Apache-2.0 |
| // |
| // Key manager top level |
| // |
| |
| `include "prim_assert.sv" |
| |
| module keymgr_ctrl import keymgr_pkg::*; #( |
| parameter bit KmacEnMasking = 1'b1 |
| ) ( |
| input clk_i, |
| input rst_ni, |
| |
| // lifecycle enforcement |
| input en_i, |
| |
| // faults that can occur outside of operations |
| input regfile_intg_err_i, |
| input shadowed_update_err_i, |
| input shadowed_storage_err_i, |
| |
| // Software interface |
| input op_start_i, |
| input keymgr_ops_e op_i, |
| input [CdiWidth-1:0] op_cdi_sel_i, |
| output logic op_done_o, |
| output keymgr_op_status_e status_o, |
| output logic [ErrLastPos-1:0] error_o, |
| output logic [FaultLastPos-1:0] fault_o, |
| output logic data_en_o, |
| output logic data_valid_o, |
| output logic wipe_key_o, |
| output keymgr_working_state_e working_state_o, |
| output logic sw_binding_unlock_o, |
| output logic init_o, |
| |
| // Data input |
| input otp_ctrl_pkg::otp_keymgr_key_t root_key_i, |
| output keymgr_gen_out_e hw_sel_o, |
| output keymgr_stage_e stage_sel_o, |
| output logic [CdiWidth-1:0] cdi_sel_o, |
| |
| // KMAC ctrl interface |
| output logic adv_en_o, |
| output logic id_en_o, |
| output logic gen_en_o, |
| output hw_key_req_t key_o, |
| input kmac_done_i, |
| input kmac_input_invalid_i, // asserted when selected data fails criteria check |
| input kmac_fsm_err_i, // asserted when kmac fsm reaches unexpected state |
| input kmac_op_err_i, // asserted when kmac itself reports an error |
| input kmac_cmd_err_i, // asserted when more than one command given to kmac |
| input [Shares-1:0][KeyWidth-1:0] kmac_data_i, |
| |
| // prng control interface |
| input [Shares-1:0][RandWidth-1:0] entropy_i, |
| input prng_reseed_ack_i, |
| output logic prng_reseed_req_o, |
| output logic prng_en_o |
| ); |
| |
| localparam int EntropyWidth = LfsrWidth / 2; |
| localparam int EntropyRounds = KeyWidth / EntropyWidth; |
| localparam int EntropyRndWidth = prim_util_pkg::vbits(EntropyRounds); |
| localparam int CntWidth = EntropyRounds > CDIs ? EntropyRndWidth : CdiWidth; |
| |
| // Enumeration for working state |
| // Encoding generated with: |
| // $ ./util/design/sparse-fsm-encode.py -d 5 -m 11 -n 10 \ |
| // -s 4101887575 --language=sv |
| // |
| // Hamming distance histogram: |
| // |
| // 0: -- |
| // 1: -- |
| // 2: -- |
| // 3: -- |
| // 4: -- |
| // 5: |||||||||||||||||||| (54.55%) |
| // 6: |||||||||||||||| (45.45%) |
| // 7: -- |
| // 8: -- |
| // 9: -- |
| // 10: -- |
| // |
| // Minimum Hamming distance: 5 |
| // Maximum Hamming distance: 6 |
| // Minimum Hamming weight: 2 |
| // Maximum Hamming weight: 8 |
| // |
| localparam int StateWidth = 10; |
| typedef enum logic [StateWidth-1:0] { |
| StCtrlReset = 10'b1101100001, |
| StCtrlEntropyReseed = 10'b1110010010, |
| StCtrlRandom = 10'b0011110100, |
| StCtrlRootKey = 10'b0110101111, |
| StCtrlInit = 10'b0100000100, |
| StCtrlCreatorRootKey = 10'b1000011101, |
| StCtrlOwnerIntKey = 10'b0001001010, |
| StCtrlOwnerKey = 10'b1101111110, |
| StCtrlDisabled = 10'b1010101000, |
| StCtrlWipe = 10'b0000110011, |
| StCtrlInvalid = 10'b1011000111 |
| } keymgr_ctrl_state_e; |
| |
| // Enumeration for operation handling |
| typedef enum logic [1:0] { |
| StIdle, |
| StAdv, |
| StAdvAck, |
| StWait |
| } keymgr_op_state_e; |
| |
| keymgr_ctrl_state_e state_q, state_d; |
| keymgr_op_state_e op_state_q, op_state_d; |
| |
| // There are two versions of the key state, one for sealing one for attestation |
| // Among each version, there are multiple shares |
| // Each share is a fixed multiple of the entropy width |
| logic [CDIs-1:0][Shares-1:0][EntropyRounds-1:0][EntropyWidth-1:0] key_state_q, key_state_d; |
| logic [CntWidth-1:0] cnt; |
| logic [CdiWidth-1:0] cdi_cnt; |
| |
| // error conditions |
| logic invalid_kmac_out; |
| logic invalid_op; |
| logic cnt_err; |
| // states fall out of sparsely encoded range |
| logic state_intg_err_q, state_intg_err_d; |
| |
| /////////////////////////// |
| // General operation decode |
| /////////////////////////// |
| |
| logic adv_op, dis_op, gen_id_op, gen_sw_op, gen_hw_op, gen_op; |
| assign adv_op = (op_i == OpAdvance); |
| assign dis_op = (op_i == OpDisable); |
| assign gen_id_op = (op_i == OpGenId); |
| assign gen_sw_op = (op_i == OpGenSwOut); |
| assign gen_hw_op = (op_i == OpGenHwOut); |
| assign gen_op = (gen_id_op | gen_sw_op | gen_hw_op); |
| |
| /////////////////////////// |
| // interaction between software and main fsm |
| /////////////////////////// |
| // disable is treated like an advanced call |
| logic advance_sel; |
| logic disable_sel; |
| logic gen_out_hw_sel; |
| |
| assign advance_sel = op_start_i & adv_op & en_i; |
| assign gen_out_hw_sel = op_start_i & gen_hw_op & en_i; |
| |
| // disable is selected whenever a normal operation is not set |
| assign disable_sel = (op_start_i & dis_op) | !en_i; |
| |
| |
| /////////////////////////// |
| // interaction between main control fsm and operation fsm |
| /////////////////////////// |
| |
| // req/ack interface with op handling fsm |
| logic op_req; |
| logic op_ack; |
| logic op_update; |
| logic op_busy; |
| logic disabled; |
| |
| logic adv_req, dis_req, id_req, gen_req; |
| assign adv_req = op_req & adv_op; |
| assign dis_req = op_req & dis_op; |
| assign id_req = op_req & gen_id_op; |
| assign gen_req = op_req & (gen_sw_op | gen_hw_op); |
| |
| /////////////////////////// |
| // interaction between operation fsm and software |
| /////////////////////////// |
| // categories of keymgr errors |
| logic [SyncErrLastIdx-1:0] sync_err; |
| logic [AsyncErrLastIdx-1:0] async_err; |
| logic [SyncFaultLastIdx-1:0] sync_fault; |
| logic [AsyncFaultLastIdx-1:0] async_fault; |
| |
| logic op_err; |
| logic op_fault_err; |
| |
| // unlock sw binding configuration whenever an advance call is made without errors |
| assign sw_binding_unlock_o = adv_req & op_ack & ~(op_err | op_fault_err); |
| |
| // error definition |
| // check incoming kmac data validity |
| // Only check during the periods when there is actual kmac output |
| assign invalid_kmac_out = (op_update | op_ack) & |
| (~valid_data_chk(kmac_data_i[0]) | |
| (~valid_data_chk(kmac_data_i[1]) & KmacEnMasking)); |
| |
| assign op_err = sync_err[SyncErrInvalidOp] | |
| sync_err[SyncErrInvalidIn]; |
| |
| assign op_fault_err = |sync_fault | |
| |async_fault; |
| |
| |
| /////////////////////////// |
| // key update controls |
| /////////////////////////// |
| |
| // update select can come from both main and operation fsm's |
| keymgr_key_update_e update_sel, op_update_sel; |
| |
| // req from main control fsm to key update controls |
| logic wipe_req; |
| logic random_req; |
| logic random_ack; |
| |
| // wipe and initialize take precedence |
| assign update_sel = wipe_req ? KeyUpdateWipe : |
| random_req ? KeyUpdateRandom : |
| init_o ? KeyUpdateRoot : op_update_sel; |
| |
| /////////////////////////// |
| // interaction between main fsm and prng |
| /////////////////////////// |
| |
| logic prng_en; |
| assign prng_en_o = prng_en | disabled | wipe_req; |
| |
| ////////////////////////// |
| // Main Control FSM |
| ////////////////////////// |
| |
| logic [StateWidth-1:0] state_raw_q; |
| assign state_q = keymgr_ctrl_state_e'(state_raw_q); |
| prim_flop #( |
| .Width(StateWidth), |
| .ResetValue(StateWidth'(StCtrlReset)) |
| ) u_state_regs ( |
| .clk_i, |
| .rst_ni, |
| .d_i ( state_d ), |
| .q_o ( state_raw_q ) |
| ); |
| |
| always_ff @(posedge clk_i or negedge rst_ni) begin |
| if (!rst_ni) begin |
| state_intg_err_q <= '0; |
| end else begin |
| state_intg_err_q <= state_intg_err_d; |
| end |
| end |
| |
| // prevents unknowns from reaching the outside world. |
| // - whatever operation causes the input data select to be disabled should not expose the key |
| // state. |
| // - when there are no operations, the key state also should be exposed. |
| assign key_o.valid = op_req; |
| assign cdi_sel_o = advance_sel ? cdi_cnt : op_cdi_sel_i; |
| |
| for (genvar i = 0; i < Shares; i++) begin : gen_key_out_assign |
| assign key_o.key[i] = stage_sel_o == Disable ? |
| {EntropyRounds{entropy_i[i]}} : |
| key_state_q[cdi_sel_o][i]; |
| end |
| |
| |
| // key state is intentionally not reset |
| always_ff @(posedge clk_i) begin |
| key_state_q <= key_state_d; |
| end |
| |
| // root key valid sync |
| logic root_key_valid_q; |
| |
| prim_flop_2sync # ( |
| .Width(1) |
| ) u_key_valid_sync ( |
| .clk_i, |
| .rst_ni, |
| .d_i(root_key_i.valid), |
| .q_o(root_key_valid_q) |
| ); |
| |
| // Do not let the count toggle unless an advance operation is |
| // selected |
| assign cdi_cnt = op_req ? cnt[CdiWidth-1:0] : '0; |
| |
| always_comb begin |
| key_state_d = key_state_q; |
| data_valid_o = 1'b0; |
| wipe_key_o = 1'b0; |
| |
| // if a wipe request arrives, immediately destroy the |
| // keys regardless of current state |
| unique case (update_sel) |
| KeyUpdateRandom: begin |
| for (int i = 0; i < CDIs; i++) begin |
| for (int j = 0; j < Shares; j++) begin |
| key_state_d[i][j][cnt[EntropyRndWidth-1:0]] = entropy_i[j]; |
| end |
| end |
| end |
| |
| KeyUpdateRoot: begin |
| if (root_key_valid_q) begin |
| for (int i = 0; i < CDIs; i++) begin |
| if (KmacEnMasking) begin : gen_two_share_key |
| key_state_d[i][0] = root_key_i.key_share0; |
| key_state_d[i][1] = root_key_i.key_share1; |
| end else begin : gen_one_share_key |
| key_state_d[i][0] = root_key_i.key_share0 ^ root_key_i.key_share1; |
| key_state_d[i][1] = '0; |
| end |
| end |
| end |
| end |
| |
| KeyUpdateKmac: begin |
| data_valid_o = gen_op; |
| key_state_d[cdi_sel_o] = (adv_op || dis_op) ? kmac_data_i : key_state_q[cdi_sel_o]; |
| end |
| |
| KeyUpdateWipe: begin |
| wipe_key_o = 1'b1; |
| for (int i = 0; i < CDIs; i++) begin |
| for (int j = 0; j < Shares; j++) begin |
| key_state_d[i][j] = {EntropyRounds{entropy_i[j]}}; |
| end |
| end |
| end |
| |
| default:; |
| endcase // unique case (update_sel) |
| end |
| |
| keymgr_cnt #( |
| .Width(CntWidth), |
| .CntStyle(DupCnt) |
| ) u_cnt ( |
| .clk_i, |
| .rst_ni, |
| .clr_i(op_ack | random_ack), |
| .set_i('0), |
| .set_cnt_i('0), |
| .en_i(op_update | random_req), |
| .cnt_o(cnt), |
| .err_o(cnt_err) |
| ); |
| |
| // TODO: Create a no select option, do not leave this as binary |
| assign hw_sel_o = gen_out_hw_sel ? HwKey : SwKey; |
| |
| |
| // when in a state that accepts commands, look at op_ack for completion |
| // when in a state that does not accept commands, wait for other triggers. |
| assign op_done_o = op_req ? op_ack : |
| (init_o | invalid_op); |
| |
| |
| // There are 3 possibilities |
| // advance to next state (software command) |
| // advance to disabled state (software command) |
| // advance to invalid state (detected fault) |
| logic adv_state; |
| logic dis_state; |
| logic inv_state; |
| assign adv_state = op_ack & adv_req & ~op_err; |
| assign dis_state = op_ack & dis_req; |
| assign inv_state = op_fault_err; |
| |
| always_comb begin |
| // persistent data |
| state_d = state_q; |
| |
| // request to op handling |
| op_req = 1'b0; |
| random_req = 1'b0; |
| random_ack = 1'b0; |
| |
| // request to key updates |
| wipe_req = 1'b0; |
| |
| // invalid operation issued |
| invalid_op = 1'b0; |
| |
| // data update and select signals |
| stage_sel_o = Disable; |
| |
| // indication that state is disabled |
| disabled = 1'b0; |
| |
| // enable prng toggling |
| prng_reseed_req_o = 1'b0; |
| prng_en = 1'b0; |
| |
| // initialization complete |
| init_o = 1'b0; |
| |
| // if state is ever faulted, hold on to this indication |
| // until reset. |
| state_intg_err_d = state_intg_err_q; |
| |
| unique case (state_q) |
| // Only advance can be called from reset state |
| StCtrlReset: begin |
| // in reset state, don't enable entropy yet, since there are no users. |
| prng_en = 1'b0; |
| |
| // always use random data for advance, since out of reset state |
| // the key state will be randomized. |
| stage_sel_o = Disable; |
| |
| // key state is updated when it is an advance call |
| // all other operations are invalid, including disable |
| if (advance_sel) begin |
| state_d = StCtrlEntropyReseed; |
| end else if (op_start_i) begin |
| invalid_op = 1'b1; |
| end |
| end |
| |
| // reseed entropy |
| StCtrlEntropyReseed: begin |
| prng_reseed_req_o = 1'b1; |
| |
| if (prng_reseed_ack_i) begin |
| state_d = StCtrlRandom; |
| end |
| end |
| |
| // This state does not accept any command. |
| StCtrlRandom: begin |
| prng_en = 1'b1; |
| |
| if (cnt < EntropyRounds-1) begin |
| random_req = 1'b1; |
| end |
| // when mask population is complete, xor the root_key into the zero share |
| // if in the future the root key is updated to 2 shares, it will direclty overwrite |
| // the values here |
| else begin |
| random_ack = 1'b1; |
| state_d = StCtrlRootKey; |
| end |
| end |
| |
| // load the root key. |
| StCtrlRootKey: begin |
| init_o = 1'b1; |
| state_d = (!en_i || inv_state) ? StCtrlWipe : StCtrlInit; |
| end |
| |
| // Beginning from the Init state, operations are accepted. |
| // Only valid operation is advance state. If invalid command received, |
| // random data is selected for operation and no persistent state is changed. |
| StCtrlInit: begin |
| op_req = op_start_i; |
| |
| // when advancing select creator data, otherwise use random input |
| stage_sel_o = advance_sel ? Creator : Disable; |
| invalid_op = op_start_i & ~(advance_sel | disable_sel); |
| |
| if (!en_i || inv_state) begin |
| state_d = StCtrlWipe; |
| end else if (dis_state) begin |
| state_d = StCtrlDisabled; |
| end else if (adv_state) begin |
| state_d = StCtrlCreatorRootKey; |
| end |
| end |
| |
| // all commands are valid during this stage |
| StCtrlCreatorRootKey: begin |
| op_req = op_start_i; |
| |
| // when generating, select creator data input |
| // when advancing, select owner intermediate key as target |
| // when disabling, select random data input |
| stage_sel_o = disable_sel ? Disable : |
| advance_sel ? OwnerInt : Creator; |
| |
| if (!en_i || inv_state) begin |
| state_d = StCtrlWipe; |
| end else if (dis_state) begin |
| state_d = StCtrlDisabled; |
| end else if (adv_state) begin |
| state_d = StCtrlOwnerIntKey; |
| end |
| end |
| |
| // all commands are valid during this stage |
| StCtrlOwnerIntKey: begin |
| op_req = op_start_i; |
| |
| // when generating, select owner intermediate data input |
| // when advancing, select owner as target |
| // when disabling, select random data input |
| stage_sel_o = disable_sel ? Disable : |
| advance_sel ? Owner : OwnerInt; |
| |
| if (!en_i || inv_state) begin |
| state_d = StCtrlWipe; |
| end else if (dis_state) begin |
| state_d = StCtrlDisabled; |
| end else if (adv_state) begin |
| state_d = StCtrlOwnerKey; |
| end |
| end |
| |
| // all commands are valid during this stage |
| // however advance goes directly to disabled state |
| StCtrlOwnerKey: begin |
| op_req = op_start_i; |
| |
| // when generating, select owner data input |
| // when advancing, select disable as target |
| // when disabling, select random data input |
| stage_sel_o = disable_sel | advance_sel ? Disable : Owner; |
| |
| if (!en_i || inv_state) begin |
| state_d = StCtrlWipe; |
| end else if (adv_state || dis_state) begin |
| state_d = StCtrlDisabled; |
| end |
| end |
| |
| // The wipe state immediately clears out the key state, but waits for any ongoing |
| // transaction to finish before going to disabled state. |
| // Unlike the random state, this is an immedaite shutdown request, so all parts of the |
| // key are wiped. |
| StCtrlWipe: begin |
| wipe_req = 1'b1; |
| // if there was already an operation ongoing, maintain the request until completion |
| op_req = op_busy; |
| invalid_op = op_start_i; |
| |
| // If the enable is dropped during the middle of a transaction, we clear and wait for that |
| // transaction to gracefully complete (if it can). |
| // There are two scenarios: |
| // 1. the operation completed right when we started wiping, in which case the done would |
| // clear the start. |
| // 2. the operation completed before we started wiping, or there was never an operation to |
| // begin with (op_start_i == 0), in this case, don't wait and immediately transition |
| if (!op_start_i) begin |
| state_d = StCtrlInvalid; |
| end |
| end |
| |
| // StCtrlDisabled and StCtrlInvalid are almost functionally equivalent |
| // The only difference is that Disabled is entered through software invocation, |
| // while Invalid is entered through life cycle disable or operational fault. |
| // |
| // Both states continue to kick off random transactions |
| // All transactions are treated as invalid despite completing |
| StCtrlDisabled: begin |
| op_req = op_start_i; |
| disabled = 1'b1; |
| |
| if (!en_i || inv_state) begin |
| state_d = StCtrlWipe; |
| end |
| end |
| |
| StCtrlInvalid: begin |
| op_req = op_start_i; |
| disabled = 1'b1; |
| end |
| |
| // latch the fault indication and start to wipe the key manager |
| default: begin |
| state_intg_err_d = 1'b1; |
| state_d = StCtrlWipe; |
| end |
| |
| endcase // unique case (state_q) |
| end // always_comb |
| |
| // Current working state provided for software read |
| // Certain states are collapsed for simplicity |
| keymgr_working_state_e last_working_st; |
| logic state_update; |
| |
| always_ff @(posedge clk_i or negedge rst_ni) begin |
| if (!rst_ni) begin |
| last_working_st <= StReset; |
| end else if (state_update) begin |
| last_working_st <= working_state_o; |
| end |
| end |
| |
| always_comb begin |
| state_update = 1'b1; |
| working_state_o = StInvalid; |
| |
| unique case (state_q) |
| StCtrlReset, StCtrlEntropyReseed, StCtrlRandom, StCtrlRootKey: |
| working_state_o = StReset; |
| |
| StCtrlInit: |
| working_state_o = StInit; |
| |
| StCtrlCreatorRootKey: |
| working_state_o = StCreatorRootKey; |
| |
| StCtrlOwnerIntKey: |
| working_state_o = StOwnerIntKey; |
| |
| StCtrlOwnerKey: |
| working_state_o = StOwnerKey; |
| |
| StCtrlDisabled: |
| working_state_o = StDisabled; |
| |
| StCtrlWipe: begin |
| state_update = 1'b0; |
| working_state_o = last_working_st; |
| end |
| |
| StCtrlInvalid: |
| working_state_o = StInvalid; |
| |
| default: |
| working_state_o = StInvalid; |
| endcase // unique case (state_q) |
| end |
| |
| |
| ///////////////////////// |
| // Operateion state, handle advance and generate |
| ///////////////////////// |
| |
| always_ff @(posedge clk_i or negedge rst_ni) begin |
| if (!rst_ni) begin |
| op_state_q <= StIdle; |
| end else begin |
| op_state_q <= op_state_d; |
| end |
| end |
| |
| always_comb begin |
| op_state_d = op_state_q; |
| op_update = 1'b0; |
| op_ack = 1'b0; |
| op_busy = 1'b1; |
| |
| // output to kmac interface |
| adv_en_o = 1'b0; |
| id_en_o = 1'b0; |
| gen_en_o = 1'b0; |
| |
| unique case (op_state_q) |
| StIdle: begin |
| op_busy = '0; |
| if (adv_req || dis_req) begin |
| op_state_d = StAdv; |
| end else if (id_req || gen_req) begin |
| op_state_d = StWait; |
| end |
| end |
| |
| StAdv: begin |
| adv_en_o = 1'b1; |
| |
| if (kmac_done_i && (cdi_cnt == CDIs-1)) begin |
| op_ack = 1'b1; |
| op_state_d = StIdle; |
| end else if (kmac_done_i && (cdi_cnt < CDIs-1)) begin |
| op_update = 1'b1; |
| op_state_d = StAdvAck; |
| end |
| end |
| |
| // drop adv_en_o to allow kmac interface handshake |
| StAdvAck: begin |
| op_state_d = StAdv; |
| end |
| |
| // Not an advanced operation |
| StWait: begin |
| id_en_o = gen_id_op; |
| gen_en_o = gen_sw_op | gen_hw_op; |
| |
| if (kmac_done_i) begin |
| op_ack = 1'b1; |
| op_state_d = StIdle; |
| end |
| end |
| |
| // What should go here? |
| default:; |
| |
| endcase // unique case (adv_state_q) |
| end |
| |
| |
| // operations fsm update precedence |
| // when in disabled state, always update. |
| assign op_update_sel = (op_ack | op_update) & disabled ? KeyUpdateKmac : |
| op_fault_err ? KeyUpdateWipe : |
| op_err ? KeyUpdateIdle : |
| (op_ack | op_update) ? KeyUpdateKmac : KeyUpdateIdle; |
| |
| |
| // Advance calls are made up of multiple rounds of kmac operations. |
| // Any sync error that occurs is treated as an error of the entire call. |
| // Therefore sync errors that happen before the end of the call must be |
| // latched. |
| logic[SyncErrLastIdx-1:0] sync_err_q, sync_err_d; |
| logic[SyncFaultLastIdx-1:0] sync_fault_q, sync_fault_d; |
| |
| logic err_vld; |
| assign err_vld = op_update | op_done_o; |
| |
| // sync errors |
| // When an operation encounters a fault, the operation is always rejected as the FSM |
| // transitions to wipe |
| assign sync_err_d[SyncErrInvalidOp] = err_vld & (invalid_op | disabled | op_fault_err); |
| assign sync_err_d[SyncErrInvalidIn] = err_vld & kmac_input_invalid_i; |
| always_ff @(posedge clk_i or negedge rst_ni) begin |
| if (!rst_ni) begin |
| sync_err_q <= '0; |
| end else if (op_done_o) begin |
| sync_err_q <= '0; |
| end else if (op_update) begin |
| sync_err_q <= sync_err_d; |
| end |
| end |
| assign sync_err = sync_err_q | sync_err_d; |
| |
| // async errors |
| assign async_err[AsyncErrShadowUpdate] = shadowed_update_err_i; |
| |
| // sync faults |
| assign sync_fault_d[SyncFaultKmacOp] = err_vld & kmac_op_err_i; |
| assign sync_fault_d[SyncFaultKmacOut] = err_vld & invalid_kmac_out; |
| always_ff @(posedge clk_i or negedge rst_ni) begin |
| if (!rst_ni) begin |
| sync_fault_q <= '0; |
| end else if (op_update) begin |
| sync_fault_q <= sync_fault_d; |
| end |
| end |
| assign sync_fault = sync_fault_q | sync_fault_d; |
| |
| // async faults |
| assign async_fault[AsyncFaultKmacCmd] = kmac_cmd_err_i; |
| assign async_fault[AsyncFaultKmacFsm] = kmac_fsm_err_i; |
| assign async_fault[AsyncFaultRegIntg] = regfile_intg_err_i; |
| assign async_fault[AsyncFaultShadow ] = shadowed_storage_err_i; |
| assign async_fault[AsyncFaultFsmIntg] = state_intg_err_q; |
| assign async_fault[AsyncFaultCntErr ] = cnt_err; |
| |
| // output to error code register |
| assign error_o[ErrInvalidOp] = op_done_o & sync_err[SyncErrInvalidOp]; |
| assign error_o[ErrInvalidIn] = op_done_o & sync_err[SyncErrInvalidIn]; |
| assign error_o[ErrShadowUpdate] = async_err[AsyncErrShadowUpdate]; |
| |
| // output to fault code register |
| assign fault_o[FaultKmacOp] = op_done_o & sync_fault[SyncFaultKmacOp]; |
| assign fault_o[FaultKmacOut] = op_done_o & sync_fault[SyncFaultKmacOut]; |
| assign fault_o[FaultKmacCmd] = async_fault[AsyncFaultKmacCmd]; |
| assign fault_o[FaultKmacFsm] = async_fault[AsyncFaultKmacFsm]; |
| assign fault_o[FaultRegIntg] = async_fault[AsyncFaultRegIntg]; |
| assign fault_o[FaultShadow] = async_fault[AsyncFaultShadow]; |
| assign fault_o[FaultCtrlFsm] = async_fault[AsyncFaultFsmIntg]; |
| assign fault_o[FaultCtrlCnt] = async_fault[AsyncFaultCntErr]; |
| |
| always_comb begin |
| status_o = OpIdle; |
| if (op_done_o) begin |
| status_o = |error_o | |fault_o ? OpDoneFail : OpDoneSuccess; |
| end else if (op_start_i) begin |
| status_o = OpWip; |
| end |
| end |
| |
| |
| /////////////////////////////// |
| // Suppress kmac return data |
| /////////////////////////////// |
| // This is a separate data path from the FSM used to control the data_en_o output |
| |
| typedef enum logic [1:0] { |
| StCtrlDataIdle, |
| StCtrlDataEn, |
| StCtrlDataDis, |
| StCtrlDataWait |
| } keymgr_ctrl_data_state_e; |
| |
| keymgr_ctrl_data_state_e data_st_d, data_st_q; |
| |
| always_ff @(posedge clk_i or negedge rst_ni) begin |
| if (!rst_ni) begin |
| data_st_q <= StCtrlDataIdle; |
| end else begin |
| data_st_q <= data_st_d; |
| end |
| end |
| |
| // The below control path is used for modulating the datapath to sideload and sw keys. |
| // This path is separate from the data_valid_o path, thus creating two separate attack points. |
| // The data is only enabled when a non-advance operation is invoked. |
| // When an advance operation is called, the data is disabled. It will stay disabled until an |
| // entire completion sequence is seen (op_done_o assert -> start_i de-assertion). |
| // When a generate operation is called, the data is enabled. However, any indication of this |
| // supposedly being an advance call will force the path to disable again. |
| always_comb begin |
| data_st_d = data_st_q; |
| data_en_o = 1'b0; |
| unique case (data_st_q) |
| |
| StCtrlDataIdle: begin |
| if (adv_en_o) begin |
| data_st_d = StCtrlDataDis; |
| end else if (id_en_o || gen_en_o) begin |
| data_st_d = StCtrlDataEn; |
| end |
| end |
| |
| StCtrlDataEn: begin |
| data_en_o = 1'b1; |
| if (op_done_o) begin |
| data_st_d = StCtrlDataWait; |
| end else if (adv_en_o) begin |
| data_st_d = StCtrlDataDis; |
| end |
| end |
| |
| StCtrlDataDis: begin |
| if (op_done_o) begin |
| data_st_d = StCtrlDataWait; |
| end |
| end |
| |
| StCtrlDataWait: begin |
| if (!op_start_i) begin |
| data_st_d = StCtrlDataIdle; |
| end |
| end |
| |
| default:; |
| |
| endcase // unique case (data_st_q) |
| end |
| |
| /////////////////////////////// |
| // Functions |
| /////////////////////////////// |
| |
| // unclear what this is supposed to be yet |
| // right now just check to see if it not all 0's and not all 1's |
| function automatic logic valid_data_chk (logic [KeyWidth-1:0] value); |
| |
| return |value & ~&value; |
| |
| endfunction // byte_mask |
| |
| ///////////////////////////////// |
| // Assertions |
| ///////////////////////////////// |
| |
| // stage select should always be Disable whenever it is not enabled |
| `ASSERT(StageDisableSel_A, !en_i |-> stage_sel_o == Disable) |
| |
| // Unless it is a legal command, only select disable |
| `ASSERT(InitLegalCommands_A, op_start_i & en_i & state_q inside {StCtrlInit} & |
| !(op_i inside {OpAdvance}) |-> stage_sel_o == Disable) |
| |
| // All commands are legal, so select disable only if operation is disable |
| `ASSERT(GeneralLegalCommands_A, op_start_i & en_i & |
| state_q inside {StCtrlCreatorRootKey, StCtrlOwnerIntKey} & |
| (op_i inside {OpDisable}) |-> stage_sel_o == Disable) |
| |
| `ASSERT(OwnerLegalCommands_A, op_start_i & en_i & state_q inside {StCtrlOwnerKey} & |
| (op_i inside {OpAdvance, OpDisable}) |-> stage_sel_o == Disable) |
| |
| // load_key should not be high if there is no ongoing operation |
| `ASSERT(LoadKey_A, key_o.valid |-> op_start_i) |
| |
| // The count value should always be 0 when a transaction start |
| `ASSERT(CntZero_A, $rose(op_start_i) |-> cnt == '0) |
| |
| // Whenever a transaction completes, data_en must return to 0 on the next cycle |
| `ASSERT(DataEnDis_A, op_start_i & op_done_o |=> ~data_en_o) |
| |
| // Whenever data enable asserts, it must be the case that there was a generate or |
| // id operation |
| `ASSERT(DataEn_A, data_en_o |-> (id_en_o | gen_en_o) & ~adv_en_o) |
| |
| endmodule |