| // Copyright lowRISC contributors. |
| // Licensed under the Apache License, Version 2.0, see LICENSE for details. |
| // SPDX-License-Identifier: Apache-2.0 |
| // |
| // prim_keccak is single round permutation module |
| `include "prim_assert.sv" |
| module prim_keccak #( |
| parameter int Width = 1600, // b= {25, 50, 100, 200, 400, 800, 1600} |
| |
| // Derived |
| localparam int W = Width/25, |
| localparam int L = $clog2(W), |
| localparam int MaxRound = 12 + 2*L, // Keccak-f only |
| localparam int RndW = $clog2(MaxRound+1) // Representing up to MaxRound |
| ) ( |
| input [RndW-1:0] rnd_i, // Current Round |
| input [Width-1:0] s_i, |
| output logic [Width-1:0] s_o |
| ); |
| /////////// |
| // Types // |
| /////////// |
| // x y z |
| typedef logic [4:0][4:0][W-1:0] box_t; // (x,y,z) state |
| typedef logic [W-1:0] lane_t; // (z) |
| typedef logic [4:0] [W-1:0] plane_t; // (x,z) |
| typedef logic [4:0][4:0] slice_t; // (x,y) |
| typedef logic [4:0][W-1:0] sheet_t; // (y,z) identical to plane_t |
| typedef logic [4:0] row_t; // (x) |
| typedef logic [4:0] col_t; // (y) identical to row_t |
| |
| ////////////// |
| // Keccak_f // |
| ////////////// |
| box_t state_in, keccak_f; |
| box_t theta_data, rho_data, pi_data, chi_data, iota_data; |
| assign state_in = bitarray_to_box(s_i); |
| assign theta_data = theta(state_in); |
| // Commented out rho function as vcs complains z-Offset%W isn't constant |
| //assign rho_data = rho(theta_data); |
| assign pi_data = pi(rho_data); |
| assign chi_data = chi(pi_data); |
| assign iota_data = iota(chi_data, rnd_i); |
| assign keccak_f = iota_data; |
| assign s_o = box_to_bitarray(keccak_f); |
| |
| // Rho ====================================================================== |
| // As RhoOffset[x][y] is considered as variable int in VCS, |
| // it is replaced with generate statement. |
| localparam int RhoOffset [5][5] = '{ |
| //y 0 1 2 3 4 x |
| '{ 0, 36, 3, 105, 210},// 0 |
| '{ 1, 300, 10, 45, 66},// 1 |
| '{ 190, 6, 171, 15, 253},// 2 |
| '{ 28, 55, 153, 21, 120},// 3 |
| '{ 91, 276, 231, 136, 78} // 4 |
| }; |
| for (genvar x = 0 ; x < 5 ; x++) begin : gen_rho_x |
| for (genvar y = 0 ; y < 5 ; y++) begin : gen_rho_y |
| localparam int Offset = RhoOffset[x][y]%W; |
| localparam int ShiftAmt = W- Offset; |
| if (Offset == 0) begin : gen_offset0 |
| assign rho_data[x][y][W-1:0] = theta_data[x][y][W-1:0]; |
| end else begin : gen_others |
| assign rho_data[x][y][W-1:0] = {theta_data[x][y][0+:ShiftAmt], |
| theta_data[x][y][ShiftAmt+:Offset]}; |
| end |
| end |
| end |
| |
| //////////////// |
| // Assertions // |
| //////////////// |
| |
| `ASSERT_INIT(ValidWidth_A, Width inside {25, 50, 100, 200, 400, 800, 1600}) |
| `ASSERT_INIT(ValidW_A, W inside {1, 2, 4, 8, 16, 32, 64}) |
| `ASSERT_INIT(ValidL_A, L inside {0, 1, 2, 3, 4, 5, 6}) |
| `ASSERT_INIT(ValidRound_A, MaxRound <= 24) // Keccak-f only |
| |
| /////////////// |
| // Functions // |
| /////////////// |
| |
| // Convert bitarray to 3D box |
| // Please take a look at FIPS PUB 202 |
| // https://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.202.pdf |
| // > For all triples (x,y,z) such that 0<=x<5, 0<=y<5, and 0<=z<w, |
| // > A[x,y,z]=S[w(5y+x)+z] |
| function automatic box_t bitarray_to_box(logic [Width-1:0] s_in); |
| automatic box_t box; |
| for (int y = 0 ; y < 5 ; y++) begin |
| for (int x = 0 ; x < 5 ; x++) begin |
| for (int z = 0 ; z < W ; z++) begin |
| box[x][y][z] = s_in[W*(5*y+x) + z]; |
| end |
| end |
| end |
| return box; |
| endfunction : bitarray_to_box |
| |
| // Convert 3D cube to bitarray |
| function automatic logic [Width-1:0] box_to_bitarray(box_t state); |
| automatic logic [Width-1:0] bitarray; |
| for (int y = 0 ; y < 5 ; y++) begin |
| for (int x = 0 ; x < 5 ; x++) begin |
| for (int z = 0 ; z < W ; z++) begin |
| bitarray[W*(5*y+x)+z] = state[x][y][z]; |
| end |
| end |
| end |
| return bitarray; |
| endfunction : box_to_bitarray |
| |
| // Step Mapping ============================================================= |
| // theta |
| // XOR each bit in the state with the parity of two columns |
| // C[x,z] = A[x,0,z] ^ A[x,1,z] ^ A[x,2,z] ^ A[x,3,z] ^ A[x,4,z] |
| // D[x,z] = C[x-1,z] ^ C[x+1,z-1] |
| // theta = A[x,y,z] ^ D[x,z] |
| function automatic box_t theta(box_t state); |
| plane_t c; |
| plane_t d; |
| box_t result; |
| for (int x = 0 ; x < 5 ; x++) begin |
| for (int z = 0 ; z < W ; z++) begin |
| c[x][z] = state[x][0][z] ^ state[x][1][z] |
| ^ state[x][2][z] ^ state[x][3][z] ^ state[x][4][z]; |
| end |
| end |
| for (int x = 0 ; x < 5 ; x++) begin |
| int index_x1, index_x2; |
| index_x1 = (x == 0) ? 4 : x-1; // (x-1)%5 |
| index_x2 = (x == 4) ? 0 : x+1; // (x+1)%5 |
| for (int z = 0 ; z < W ; z++) begin |
| int index_z; |
| index_z = (z == 0) ? W-1 : z-1; // (z+1)%W |
| d[x][z] = c[index_x1][z] ^ c[index_x2][index_z]; |
| end |
| end |
| for (int x = 0 ; x < 5 ; x++) begin |
| for (int y = 0 ; y < 5 ; y++) begin |
| for (int z = 0 ; z < W ; z++) begin |
| result[x][y][z] = state[x][y][z] ^ d[x][z]; |
| end |
| end |
| end |
| return result; |
| endfunction : theta |
| |
| // rho |
| |
| // Commented out entire rho function due to VCS elaboration error. |
| // (z-RhoOffset[x][y]%W) isn't considered as a constant in VCS. |
| // Even changing it to W-RhoOffset[x][y]%W and assign to ShiftAmt |
| // creates same error. |
| |
| // Offset : Look at Table 2 in FIPS PUB 202 |
| //localparam int RhoOffset [5][5] = '{ |
| // //y 0 1 2 3 4 x |
| // '{ 0, 36, 3, 105, 210},// 0 |
| // '{ 1, 300, 10, 45, 66},// 1 |
| // '{ 190, 6, 171, 15, 253},// 2 |
| // '{ 28, 55, 153, 21, 120},// 3 |
| // '{ 91, 276, 231, 136, 78} // 4 |
| //}; |
| |
| // rotate bits of each lane by offset |
| // 1. rho[0,0,z] = A[0,0,z] |
| // 2. Offset swap |
| // a. (x,y) := (1,0) |
| // b. for t [0..23] |
| // i. rho[x,y,z] = A[x,y,z-(t+1)(t+2)/2] |
| // ii. (x,y) = (y, (2x+3y)) |
| //function automatic box_t rho(box_t state); |
| // box_t result; |
| // for (int x = 0 ; x < 5 ; x++) begin |
| // for (int y = 0 ; y < 5 ; y++) begin |
| // for (int z = 0 ; z < W ; z++) begin |
| // automatic int index_z; |
| // index_z = (z-RhoOffset[x][y])%W; |
| // result[x][y][z] = state[x][y][(z-RhoOffset[x][y])%W]; |
| // end |
| // end |
| // end |
| // return result; |
| //endfunction : rho |
| |
| // pi |
| // rearrange the position of lanes |
| // pi[x,y,z] = state[(x+3y),x,z] |
| localparam int PiRotate [5][5] = '{ |
| //y 0 1 2 3 4 x |
| '{ 0, 3, 1, 4, 2},// 0 |
| '{ 1, 4, 2, 0, 3},// 1 |
| '{ 2, 0, 3, 1, 4},// 2 |
| '{ 3, 1, 4, 2, 0},// 3 |
| '{ 4, 2, 0, 3, 1} // 4 |
| }; |
| function automatic box_t pi(box_t state); |
| box_t result; |
| for (int x = 0 ; x < 5 ; x++) begin |
| for (int y = 0 ; y < 5 ; y++) begin |
| int index_x; |
| result[x][y][W-1:0] = state[PiRotate[x][y]][x][W-1:0]; |
| end |
| end |
| return result; |
| endfunction : pi |
| |
| // chi |
| // chi[x,y,z] = state[x,y,z] ^ ((state[x+1,y,z] ^ 1) & state[x+2,y,z]) |
| function automatic box_t chi(box_t state); |
| box_t result; |
| for (int x = 0 ; x < 5 ; x++) begin |
| int index_x1, index_x2; |
| index_x1 = (x == 4) ? 0 : x+1; |
| index_x2 = (x >= 3) ? x-3 : x+2; |
| for (int y = 0 ; y < 5 ; y++) begin |
| for (int z = 0 ; z < W ; z++) begin |
| result[x][y][z] = state[x][y][z] ^ |
| ((~state[index_x1][y][z]) |
| & state[index_x2][y][z]); |
| end |
| end |
| end |
| return result; |
| endfunction : chi |
| |
| // iota |
| // XOR (x,y) = (0,0) with round constant |
| |
| // RC parameter: Precomputed by util/keccak_rc.py. Only up-to 0..L-1 is used |
| // RC = '0 |
| // RC[2**j-1] = rc(j+7*rnd) |
| // rc(t) = |
| // 1. t%255 == 0 -> 1 |
| // 2. R[0:7] = 'b10000000 |
| // 3. for i = [1..t%255] |
| // a. R = 0 || R |
| // b. R[0] = R[0] ^ R[8] |
| // c. R[4] = R[4] ^ R[8] |
| // d. R[5] = R[5] ^ R[8] |
| // e. R[6] = R[6] ^ R[8] |
| // f. R = R[0:7] |
| // 4. return R[0] |
| // RC has L = [0..6] |
| // for lower L case, only chopping lower part of 64bit RC is sufficient. |
| localparam logic [63:0] RC [24] = '{ |
| 64'h 0000_0000_0000_0001, // Round 0 |
| 64'h 0000_0000_0000_8082, // Round 1 |
| 64'h 8000_0000_0000_808A, // Round 2 |
| 64'h 8000_0000_8000_8000, // Round 3 |
| 64'h 0000_0000_0000_808B, // Round 4 |
| 64'h 0000_0000_8000_0001, // Round 5 |
| 64'h 8000_0000_8000_8081, // Round 6 |
| 64'h 8000_0000_0000_8009, // Round 7 |
| 64'h 0000_0000_0000_008A, // Round 8 |
| 64'h 0000_0000_0000_0088, // Round 9 |
| 64'h 0000_0000_8000_8009, // Round 10 |
| 64'h 0000_0000_8000_000A, // Round 11 |
| 64'h 0000_0000_8000_808B, // Round 12 |
| 64'h 8000_0000_0000_008B, // Round 13 |
| 64'h 8000_0000_0000_8089, // Round 14 |
| 64'h 8000_0000_0000_8003, // Round 15 |
| 64'h 8000_0000_0000_8002, // Round 16 |
| 64'h 8000_0000_0000_0080, // Round 17 |
| 64'h 0000_0000_0000_800A, // Round 18 |
| 64'h 8000_0000_8000_000A, // Round 19 |
| 64'h 8000_0000_8000_8081, // Round 20 |
| 64'h 8000_0000_0000_8080, // Round 21 |
| 64'h 0000_0000_8000_0001, // Round 22 |
| 64'h 8000_0000_8000_8008 // Round 23 |
| }; |
| |
| // iota: XOR with RC for (x,y) = (0,0) |
| function automatic box_t iota(box_t state, logic [RndW-1:0] rnd); |
| box_t result; |
| result = state; |
| result[0][0][W-1:0] = state[0][0][W-1:0] ^ RC[rnd][W-1:0]; |
| |
| return result; |
| endfunction : iota |
| |
| // Round function : Rnd(A,i_r) |
| // Not used due to rho function issue described above. |
| |
| //function automatic box_t keccak_rnd(box_t state, logic [RndW-1:0] rnd); |
| // box_t keccak_state; |
| // keccak_state = iota(chi(pi(rho(theta(state)))), rnd); |
| // |
| // return keccak_state; |
| //endfunction : keccak_rnd |
| |
| endmodule |
| |