blob: f3d51b0e87bd73f779d3d7d551608f0f32854cde [file] [log] [blame]
// Copyright lowRISC contributors.
// Licensed under the Apache License, Version 2.0, see LICENSE for details.
// SPDX-License-Identifier: Apache-2.0
#include "sw/device/lib/arch/device.h"
#include "sw/device/lib/base/mmio.h"
#include "sw/device/lib/common.h"
#include "sw/device/lib/dif/dif_plic.h"
#include "sw/device/lib/dif/dif_uart.h"
#include "sw/device/lib/handler.h"
#include "sw/device/lib/irq.h"
#include "sw/device/lib/print_log.h"
#include "sw/device/lib/runtime/hart.h"
#include "sw/device/lib/runtime/ibex.h"
#define UART0_BASE_ADDR 0x40000000u
#define PLIC0_BASE_ADDR 0x40090000u
#define PLIC_TARGET kDifPlicTargetIbex0
#define PLIC_PRIORITY_MIN 0u
#define PLIC_PRIORITY_MAX 3u
static dif_plic_t plic0;
static dif_uart_t uart0;
// These flags are used in the test routine to verify that a corresponding
// interrupt has elapsed, and has been serviced.
static bool uart_rx_overflow_handled = false;
static bool uart_tx_empty_handled = false;
static bool uart_handled_more_than_once = false;
void uart_print_char(char c) {
if (!dif_uart_byte_send_polled(&uart0, (uint8_t)c)) {
abort();
}
}
print_char_func uart_print_char_p = &uart_print_char;
static void debug_msg_and_abort(const char *msg) {
print_log(uart_print_char_p, msg);
print_log(uart_print_char_p, "FAIL!\n");
abort();
}
/**
* UART interrupt handler
*
* Services UART interrupts, sets the appropriate flags that are used to
* determine success or failure of the test.
*/
static void handler_uart_isr(const dif_irq_claim_data_t *data) {
const dif_uart_t *uart = &uart0;
dif_uart_interrupt_t uart_irq;
switch (data->source) {
case kDifPlicIrqIdUartRxOverflow:
uart_irq = kDifUartInterruptRxOverflow;
// It is an error if this IRQ is asserted more than once.
if (uart_rx_overflow_handled) {
uart_handled_more_than_once = true;
} else {
uart_rx_overflow_handled = true;
}
break;
case kDifPlicIrqIdUartTxOverflow:
uart_irq = kDifUartInterruptTxEmpty;
// It is an error if this IRQ is asserted more than once.
if (uart_tx_empty_handled) {
uart_handled_more_than_once = true;
} else {
uart_tx_empty_handled = true;
}
break;
default:
debug_msg_and_abort("HANDLER UART: ISR is not implemented!\n");
}
if (!dif_uart_irq_state_clear(uart, uart_irq)) {
debug_msg_and_abort("HANDLER UART: ISR failed to clear IRQ!\n");
}
}
/**
* External interrupt handler
*
* Handles all peripheral interrupts on Ibex. PLIC asserts an external interrupt
* line to the CPU, which results in a call to this handler. This handler
* overrides the default implementation, and prototype for this handler must
* include appropriate attributes.
*/
void handler_irq_external(void) {
// Claim the IRQ by reading the Ibex specific CC register.
dif_irq_claim_data_t claim_data;
if (!dif_plic_irq_claim(&plic0, PLIC_TARGET, &claim_data)) {
debug_msg_and_abort("HANDLER: ISR is not implemented!\n");
}
// Check if the interrupted peripheral is UART.
if (claim_data.peripheral != kDifPlicPeripheralUart) {
debug_msg_and_abort("HANDLER: ISR interrupted peripheral is not UART!\n");
}
handler_uart_isr(&claim_data);
// Complete the IRQ by writing the IRQ source to the Ibex specific CC
// register.
if (!dif_plic_irq_complete(&plic0, &claim_data)) {
debug_msg_and_abort("HANDLER: unable to complete the IRQ request!\n");
}
}
static void uart_initialise(mmio_region_t base_addr, dif_uart_t *uart) {
dif_uart_config_t config = {
.baudrate = kUartBaudrate,
.clk_freq_hz = kClockFreqHz,
.parity_enable = kDifUartDisable,
.parity = kDifUartParityEven,
};
// No debug output in case of UART initialisation failure.
if (!dif_uart_init(base_addr, &config, uart)) {
abort();
}
}
static bool plic_initialise(mmio_region_t base_addr, dif_plic_t *plic) {
if (!dif_plic_init(base_addr, plic)) {
print_log(uart_print_char_p, "PLIC: init failed!\n");
return false;
}
return true;
}
/**
* Configures all the relevant interrupts in UART.
*/
static bool uart_configure_irqs(dif_uart_t *uart) {
if (!dif_uart_irq_enable(&uart0, kDifUartInterruptRxOverflow,
kDifUartEnable)) {
print_log(uart_print_char_p, "UART: RX overflow IRQ enable failed!\n");
return false;
}
if (!dif_uart_irq_enable(&uart0, kDifUartInterruptTxEmpty, kDifUartEnable)) {
print_log(uart_print_char_p, "UART: TX empty IRQ enable failed!\n");
return false;
}
return true;
}
/**
* Configures all the relevant interrupts in PLIC.
*/
static bool plic_configure_irqs(dif_plic_t *plic) {
// Set IRQ triggers to be level triggered
if (!dif_plic_irq_trigger_type_set(plic, kDifPlicIrqIdUartRxOverflow,
kDifPlicDisable)) {
print_log(uart_print_char_p,
"PLIC: RX overflow trigger type set failed!\n");
return false;
}
if (!dif_plic_irq_trigger_type_set(plic, kDifPlicIrqIdUartTxOverflow,
kDifPlicDisable)) {
print_log(uart_print_char_p, "PLIC: TX empty trigger type set failed!\n");
return false;
}
// Set IRQ priorities to MAX
if (!dif_plic_irq_priority_set(plic, kDifPlicIrqIdUartRxOverflow,
PLIC_PRIORITY_MAX)) {
print_log(uart_print_char_p,
"PLIC: priority set for RX overflow failed!\n");
return false;
}
if (!dif_plic_irq_priority_set(plic, kDifPlicIrqIdUartTxOverflow,
PLIC_PRIORITY_MAX)) {
print_log(uart_print_char_p, "PLIC: priority set for TX empty failed!\n");
return false;
}
// Set Ibex IRQ priority threshold level
if (!dif_plic_target_threshold_set(&plic0, PLIC_TARGET, PLIC_PRIORITY_MIN)) {
print_log(uart_print_char_p, "PLIC: threshold set failed!\n");
return false;
}
// Enable IRQs in PLIC
if (!dif_plic_irq_enable_set(plic, kDifPlicIrqIdUartRxOverflow, PLIC_TARGET,
kDifPlicEnable)) {
print_log(uart_print_char_p,
"PLIC: interrupt Enable for RX overflow failed!\n");
return false;
}
if (!dif_plic_irq_enable_set(plic, kDifPlicIrqIdUartTxOverflow, PLIC_TARGET,
kDifPlicEnable)) {
print_log(uart_print_char_p,
"PLIC: interrupt Enable for TX empty failed!\n");
return false;
}
return true;
}
static bool execute_test(dif_uart_t *uart) {
// Force UART RX overflow interrupt.
if (!dif_uart_irq_force(uart, kDifUartInterruptRxOverflow)) {
print_log(uart_print_char_p, "TEST: failed to force RX overflow IRQ!\n");
return false;
}
// Check if the IRQ has occured and has been handled appropriately.
if (!uart_rx_overflow_handled) {
usleep(10);
}
if (!uart_rx_overflow_handled) {
print_log(uart_print_char_p,
"TEST: RX overflow IRQ has not been handled!\n");
return false;
}
// Check that the IRQ has not been asserted more than once.
if (uart_handled_more_than_once) {
print_log(uart_print_char_p,
"TEST: RX overflow IRQ was asserted more than once!\n");
return false;
}
// Force UART TX empty interrupt.
if (!dif_uart_irq_force(uart, kDifUartInterruptTxEmpty)) {
print_log(uart_print_char_p, "TEST: failed to force TX empty IRQ!\n");
return false;
}
// Check if the IRQ has occured and has been handled appropriately.
if (!uart_tx_empty_handled) {
usleep(10);
}
if (!uart_tx_empty_handled) {
print_log(uart_print_char_p, "TEST: TX empty IRQ has not been handled!\n");
return false;
}
// Check that the IRQ has not been asserted more than once.
if (uart_handled_more_than_once) {
print_log(uart_print_char_p,
"TEST: TX empty IRQ was asserted more than once!\n");
return false;
}
return true;
}
int main(int argc, char **argv) {
// Enable IRQs on Ibex
irq_global_ctrl(true);
irq_external_ctrl(true);
// No debug output in case of UART initialisation failure.
mmio_region_t uart_base_addr = mmio_region_from_addr(UART0_BASE_ADDR);
uart_initialise(uart_base_addr, &uart0);
mmio_region_t plic_base_addr = mmio_region_from_addr(PLIC0_BASE_ADDR);
if (!plic_initialise(plic_base_addr, &plic0)) {
print_log(uart_print_char_p, "FAIL!\n");
return -1;
}
if (!uart_configure_irqs(&uart0) || !plic_configure_irqs(&plic0)) {
print_log(uart_print_char_p, "FAIL!\n");
return -1;
}
if (!execute_test(&uart0)) {
print_log(uart_print_char_p, "FAIL!\n");
return -1;
}
print_log(uart_print_char_p, "PASS!\n");
return 0;
}