|  | /* Copyright lowRISC Contributors. | 
|  | * Copyright 2016 The Chromium OS Authors. All rights reserved. | 
|  | * Use of this source code is governed by a BSD-style license that can be | 
|  | * found in the LICENSE.dcrypto file. | 
|  | * | 
|  | * Derived from code in | 
|  | * https://chromium.googlesource.com/chromiumos/platform/ec/+/refs/heads/cr50_stab/chip/g/dcrypto/dcrypto_p256.c | 
|  | */ | 
|  |  | 
|  | .globl p256_isoncurve | 
|  | .globl p256_scalar_mult | 
|  | .globl p256_base_mult | 
|  | .globl p256_sign | 
|  | .globl p256_verify | 
|  | .globl proj_add | 
|  |  | 
|  | .text | 
|  |  | 
|  | /** | 
|  | * 256-bit modular multiplication based on Barrett reduction algorithm. | 
|  | * | 
|  | * Returns c = a * b mod p | 
|  | * | 
|  | * Expects two 256 bit operands, 256 bit modulus and pre-computed parameter u | 
|  | * for Barrett reduction (usually greek mu in literature). u is expected | 
|  | * without the leading 1 at bit 256. u has to be pre-computed as | 
|  | * u = floor(2^512/p). | 
|  | * This guarantees that u > 2^256, however, in order for u to be at | 
|  | * most 2^257-1, it has to be ensured that p >= 2^255 + 1. | 
|  | * | 
|  | * This implementation mostly follows the description in the | 
|  | * "Handbook of Applied Cryptography" in Algorithm 14.42. | 
|  | * Differences: | 
|  | *   - This implementation incorporates a multiplication before the reduction. | 
|  | *     Therefore it expects two operands (a, b) instead of a wider integer x. | 
|  | *   - The computation of q2 ignores the MSbs of q1 and u to allow using | 
|  | *     a 256x256 bit multiplication. This is compensated later by | 
|  | *     individual (conditional) additions. | 
|  | *   - The truncations in step 2 of HAC 14.42 in the form of (... mod b^(k+1) ) | 
|  | *     are not implemented here and the full register width is used. This | 
|  | *     allows to omit computation of r1 (since r1=x) and step 3 of HAC 14.42 | 
|  | *   - There is only a single conditional subtraction of the modulus at the end | 
|  | * | 
|  | * Note that this implementation is targeted and tested to be used with modulus | 
|  | * and Barrett constant of the P-256 underlying finite field only. For a | 
|  | * generic modulus a 2nd conditional subtraction of the modulus has to be | 
|  | * added or the modulus has to be in a range such that it can be mathematically | 
|  | * proven that a single subtraction is sufficient. | 
|  | * | 
|  | * Flags: Flags have no meaning beyond the scope of this subroutine. | 
|  | * | 
|  | * @param[in]  w24: a, first 256 bit operand (a * b < 2^256 * p) | 
|  | * @param[in]  w25: b, second 256 bit operand (a * b < 2^256 * p) | 
|  | * @param[in]  w29: p, modulus of P-256 underlying finite field | 
|  | * @param[in]  w28: u, lower 256 bit of Barrett constant for curve P-256 | 
|  | * @param[in]  w31: all-zero | 
|  | * @param[in]  MOD: p, modulus of P-256 underlying finite field | 
|  | * @param[out]  w19: c, result | 
|  | * | 
|  | * clobbered registers: w19, w20, w21, w22, w23, w24, w25 | 
|  | * clobbered flag groups: FG0 | 
|  | */ | 
|  | mod_mul_256x256: | 
|  | /* Compute the integer product of the operands x = a * b | 
|  | x = [w20, w19] = a * b = w24 * w25 | 
|  | => max. length x: 512 bit */ | 
|  | bn.mulqacc.z          w24.0, w25.0,  0 | 
|  | bn.mulqacc            w24.1, w25.0, 64 | 
|  | bn.mulqacc.so  w19.L, w24.0, w25.1, 64 | 
|  | bn.mulqacc            w24.2, w25.0,  0 | 
|  | bn.mulqacc            w24.1, w25.1,  0 | 
|  | bn.mulqacc            w24.0, w25.2,  0 | 
|  | bn.mulqacc            w24.3, w25.0, 64 | 
|  | bn.mulqacc            w24.2, w25.1, 64 | 
|  | bn.mulqacc            w24.1, w25.2, 64 | 
|  | bn.mulqacc.so  w19.U, w24.0, w25.3, 64 | 
|  | bn.mulqacc            w24.3, w25.1,  0 | 
|  | bn.mulqacc            w24.2, w25.2,  0 | 
|  | bn.mulqacc            w24.1, w25.3,  0 | 
|  | bn.mulqacc            w24.3, w25.2, 64 | 
|  | bn.mulqacc.so  w20.L, w24.2, w25.3, 64 | 
|  | bn.mulqacc.so  w20.U, w24.3, w25.3,  0 | 
|  | bn.add    w20, w20, w31 | 
|  |  | 
|  | /* Store correction factor to compensate for later neglected MSb of x. | 
|  | x is 512 bit wide and therefore the 255 bit right shifted version q1 | 
|  | (below) contains 257 bit. Bit 256 of q1 is neglected to allow using a | 
|  | 256x256 multiplier. For the MSb of x being set we temporary store u | 
|  | (or zero) here to be used in a later constant time correction of a | 
|  | multiplication with u. Note that this requires the MSb flag being carried | 
|  | over from the multiplication routine. */ | 
|  | bn.sel    w22, w28, w31, M | 
|  |  | 
|  | /* Compute q1' = q1[255:0] = x >> 255 | 
|  | w21 = q1' = [w20, w19] >> 255 */ | 
|  | bn.rshi   w21, w20, w19 >> 255 | 
|  |  | 
|  | /* Compute q2 = q1*u | 
|  | Instead of full q2 (which would be up to 514 bits) we ignore the MSb of u | 
|  | and the MSb of q1 and correct this later. This allows using a 256x256 | 
|  | multiplier. | 
|  | => max. length q2': 512 bit | 
|  | q2' = q1[255:0]*u[255:0] = [w20, w19] = w21 * w28 */ | 
|  | bn.mulqacc.z          w21.0, w28.0,  0 | 
|  | bn.mulqacc            w21.1, w28.0, 64 | 
|  | bn.mulqacc.so  w23.L, w21.0, w28.1, 64 | 
|  | bn.mulqacc            w21.2, w28.0,  0 | 
|  | bn.mulqacc            w21.1, w28.1,  0 | 
|  | bn.mulqacc            w21.0, w28.2,  0 | 
|  | bn.mulqacc            w21.3, w28.0, 64 | 
|  | bn.mulqacc            w21.2, w28.1, 64 | 
|  | bn.mulqacc            w21.1, w28.2, 64 | 
|  | bn.mulqacc.so  w23.U, w21.0, w28.3, 64 | 
|  | bn.mulqacc            w21.3, w28.1,  0 | 
|  | bn.mulqacc            w21.2, w28.2,  0 | 
|  | bn.mulqacc            w21.1, w28.3,  0 | 
|  | bn.mulqacc            w21.3, w28.2, 64 | 
|  | bn.mulqacc.so  w24.L, w21.2, w28.3, 64 | 
|  | bn.mulqacc.so  w24.U, w21.3, w28.3,  0 | 
|  | bn.add    w20, w20, w31 | 
|  |  | 
|  | /* q3 = q2 >> 257 | 
|  | In this step, the compensation for the neglected MSbs of q1 and u is | 
|  | carried out underway. To add them in the q2 domain, they would have to be | 
|  | left shifted by 256 bit first. To directly add them we first shift q2' by | 
|  | 256 bit to the right (by dropping the lower 256 bit), perform the | 
|  | additions, and shift the result another bit to the right. | 
|  |  | 
|  | /* w25 = q1[256] = x[511:256] >> 255 */ | 
|  | bn.rshi   w25, w31, w20 >> 255 | 
|  |  | 
|  | /* compensate for neglected MSB of u, by adding full q1 | 
|  | this is unconditional since MSB of u is always 1 | 
|  | [w25, w24] = q2'' <= q2'[511:256] + q1 = [w25, w24] <= w24 + [w25, w21] */ | 
|  | bn.add    w24, w24, w21 | 
|  | bn.addc   w25, w25, w31 | 
|  |  | 
|  | /* compensate for neglected MSB of q1, by conditionally adding u */ | 
|  | /* [w25, w24] = q2''' <= q2'' + [0 or u] = [w25, w24] + w22 */ | 
|  | bn.add    w24, w24, w22 | 
|  | bn.addc   w25, w25, w31 | 
|  |  | 
|  | /* q3 = w21 = q2''' >> 1 */ | 
|  | bn.rshi   w21, w25, w24 >> 1 | 
|  |  | 
|  | /* [w23, w22] <= q3 * p  */ | 
|  | bn.mulqacc.z          w29.0, w21.0,  0 | 
|  | bn.mulqacc            w29.1, w21.0, 64 | 
|  | bn.mulqacc.so  w22.L, w29.0, w21.1, 64 | 
|  | bn.mulqacc            w29.2, w21.0,  0 | 
|  | bn.mulqacc            w29.1, w21.1,  0 | 
|  | bn.mulqacc            w29.0, w21.2,  0 | 
|  | bn.mulqacc            w29.3, w21.0, 64 | 
|  | bn.mulqacc            w29.2, w21.1, 64 | 
|  | bn.mulqacc            w29.1, w21.2, 64 | 
|  | bn.mulqacc.so  w22.U, w29.0, w21.3, 64 | 
|  | bn.mulqacc            w29.3, w21.1,  0 | 
|  | bn.mulqacc            w29.2, w21.2,  0 | 
|  | bn.mulqacc            w29.1, w21.3,  0 | 
|  | bn.mulqacc            w29.3, w21.2, 64 | 
|  | bn.mulqacc.so  w23.L, w29.2, w21.3, 64 | 
|  | bn.mulqacc.so  w23.U, w29.3, w21.3,  0 | 
|  | bn.add    w23, w23, w31 | 
|  |  | 
|  | /* We compute the final remainder r by subtracting the estimate q3 from x. | 
|  | In the generic algorithm, r is already the reduced result or it is off by | 
|  | either p or 2p. For the special case of the modulus of P-256 it can be | 
|  | shown that r can only be off by max p. Therefore, only a single | 
|  | conditional correction is required. | 
|  | [w20, w22] = r <= [w20, w19] - [w23, w22] = x - q3*p  */ | 
|  | bn.sub    w22, w19, w22 | 
|  | bn.subb   w20, w20, w23 | 
|  |  | 
|  | /* r cannot be wider than 257 bit. Therefore it is r > p if bit 256 of r is | 
|  | set and we need to subtract the modulus */ | 
|  | bn.sel    w21, w29, w31, L | 
|  | bn.sub    w21, w22, w21 | 
|  |  | 
|  | /* this performs the correction in case r is only 256 bit long but still | 
|  | greater than the modulus */ | 
|  | bn.addm   w19, w21, w31 | 
|  |  | 
|  | ret | 
|  |  | 
|  |  | 
|  | /** | 
|  | * Checks if a point is a valid curve point on curve P-256 (secp256r1) | 
|  | * | 
|  | * Returns r = x^3 + ax + b  mod p | 
|  | *     and s = y^2  mod p | 
|  | *         with x,y being the affine coordinates of the curve point | 
|  | *              a, b and p being the domain parameters of P-256 | 
|  | * | 
|  | * This routine checks if a point with given x- and y-coordinate is a valid | 
|  | * curve point on P-256. | 
|  | * The routine checks whether the coordinates are a solution of the | 
|  | * Weierstrass equation y^2 = x^3 + ax + b  mod p. | 
|  | * The routine makes use of the property that the domain parameter 'a' can be | 
|  | * written as a=-3 for the P-256 curve, hence the routine is limited to P-256. | 
|  | * The routine does not return a boolean result but computes the left side | 
|  | * and the right sight of the Weierstrass equation and leaves the final | 
|  | * comparison to the caller. | 
|  | * The routine runs in constant time. | 
|  | * | 
|  | * Flags: Flags have no meaning beyond the scope of this subroutine. | 
|  | * | 
|  | * @param[in]  dmem[12]: dptr_r, pointer to dmem location where right | 
|  | *                               side result r will be stored | 
|  | * @param[in]  dmem[16]: dptr_s, pointer to dmem location where left side | 
|  | *                               result s will be stored | 
|  | * @param[in]  dmem[20]: dptr_x, pointer to dmem location containing affine | 
|  | *                               x-coordinate of input point | 
|  | * @param[in]  dmem[24]: dptr_y, pointer to dmem location containing affine | 
|  | *                               y-coordinate of input point | 
|  | * | 
|  | * clobbered registers: x2, x3, x19, x20, w0, w19 to w25 | 
|  | * clobbered flag groups: FG0 | 
|  | */ | 
|  | p256_isoncurve: | 
|  |  | 
|  | /* setup all-zero reg */ | 
|  | bn.xor    w31, w31, w31 | 
|  |  | 
|  | /* load dmem pointer to signature r in dmem: x19 <= dptr_r = dmem[12] */ | 
|  | la        x19, dptr_r | 
|  | lw        x19, 0(x19) | 
|  |  | 
|  | /* load dmem pointer to signature s in dmem: x20 <= dptr_s = dmem[16] */ | 
|  | la        x20, dptr_s | 
|  | lw        x20, 0(x20) | 
|  |  | 
|  | /* setup modulus p and Barrett constant u | 
|  | MOD <= w29 <= dmem[p256_p] = p; w28 <= dmem[p256_u_p] = u_p */ | 
|  | li        x2, 29 | 
|  | la        x3, p256_p | 
|  | bn.lid    x2, 0(x3) | 
|  | bn.wsrw   0, w29 | 
|  | li        x2, 28 | 
|  | la        x3, p256_u_p | 
|  | bn.lid    x2, 0(x3) | 
|  |  | 
|  | /* load domain parameter b from dmem | 
|  | w27 <= b = dmem[p256_b] */ | 
|  | li        x2, 27 | 
|  | la        x3, p256_b | 
|  | bn.lid    x2, 0(x3) | 
|  |  | 
|  | /* load affine y-coordinate of curve point from dmem | 
|  | w26 <= dmem[dptr_y] = dmem[24] */ | 
|  | la        x3, dptr_y | 
|  | lw        x3, 0(x3) | 
|  | li        x2, 24 | 
|  | bn.lid    x2, 0(x3) | 
|  |  | 
|  | /* w19 <= y^2 = w24*w24 */ | 
|  | bn.mov    w25, w24 | 
|  | jal       x1, mod_mul_256x256 | 
|  |  | 
|  | /* store left side result: dmem[dptr_s] <= w0 = y^2  mod p */ | 
|  | li        x2, 19 | 
|  | bn.sid    x2, 0(x20) | 
|  |  | 
|  | /* load affine x-coordinate of curve point from dmem | 
|  | w26 <= dmem[dptr_x] = dmem[20] */ | 
|  | la        x3, dptr_x | 
|  | lw        x3, 0(x3) | 
|  | li        x2, 26 | 
|  | bn.lid    x2, 0(x3) | 
|  |  | 
|  | /* w19 <= x^2 = w26*w26 */ | 
|  | bn.mov    w25, w26 | 
|  | bn.mov    w24, w26 | 
|  | jal       x1, mod_mul_256x256 | 
|  |  | 
|  | /* w19 = x^3 <= x^2 * x = w25*w24 = w26*w19 */ | 
|  | bn.mov    w25, w19 | 
|  | bn.mov    w24, w26 | 
|  | jal       x1, mod_mul_256x256 | 
|  |  | 
|  | /* for curve P-256, 'a' can be written as a = -3, therefore we subtract | 
|  | x three times from x^3. | 
|  | w19 = x^3 + ax <= x^3 - 3x  mod p */ | 
|  | bn.subm   w19, w19, w26 | 
|  | bn.subm   w19, w19, w26 | 
|  | bn.subm   w19, w19, w26 | 
|  |  | 
|  | /* w24 <= x^3 + ax + b mod p = w19 + w27 mod p */ | 
|  | bn.addm   w19, w19, w27 | 
|  |  | 
|  | /* store right side result: dmem[dptr_s] <= w19 = x^3 + ax + b mod p */ | 
|  | li        x2, 19 | 
|  | bn.sid    x2, 0(x19) | 
|  |  | 
|  | ret | 
|  |  | 
|  |  | 
|  | /** | 
|  | * P-256 point addition in projective coordinates | 
|  | * | 
|  | * returns R = (x_r, y_r, z_r) <= P+Q = (x_p, y_p, z_p) + (x_q, y_q, z_q) | 
|  | *         with R, P and Q being valid P-256 curve points | 
|  | *           in projective coordinates | 
|  | * | 
|  | * This routine adds two valid P-256 curve points in projective space. | 
|  | * Point addition is performed based on the complete formulas of Bosma and | 
|  | * Lenstra for Weierstrass curves as first published in [1] and | 
|  | * optimized in [2]. | 
|  | * The implemented version follows Algorithm 4 of [2] which is an optimized | 
|  | * variant for Weierstrass curves with domain parameter 'a' set to a=-3. | 
|  | * Numbering of the steps below and naming of symbols follows the | 
|  | * terminology of Algorithm 4 of [2]. | 
|  | * The routine is limited to P-256 curve points due to: | 
|  | *   - fixed a=-3 domain parameter | 
|  | *   - usage of a P-256 optimized Barrett multiplication kernel | 
|  | * This routine runs in constant time. | 
|  | * | 
|  | * [1] https://doi.org/10.1006/jnth.1995.1088 | 
|  | * [2] https://doi.org/10.1007/978-3-662-49890-3_16 | 
|  | * | 
|  | * @param[in]  w8: x_p, x-coordinate of input point P | 
|  | * @param[in]  w9: y_p, y-coordinate of input point P | 
|  | * @param[in]  w10: z_p, z-coordinate of input point P | 
|  | * @param[in]  w11: x_q, x-coordinate of input point Q | 
|  | * @param[in]  w12: y_q, x-coordinate of input point Q | 
|  | * @param[in]  w13: z_q, x-coordinate of input point Q | 
|  | * @param[in]  w27: b, curve domain parameter | 
|  | * @param[in]  w29: p, modulus, 2^256 > p > 2^255. | 
|  | * @param[in]  w28: u, pre-computed Barrett constant (without u[256]/MSb | 
|  | *                           of u which is always 1 for the allowed range. | 
|  | * @param[in]  w31: all-zero. | 
|  | * @param[in]  MOD: p, modulus, 2^256 > p > 2^255. | 
|  | * @param[out]  w11: x_r, x-coordinate of resulting point R | 
|  | * @param[out]  w12: y_r, x-coordinate of resulting point R | 
|  | * @param[out]  w13: z_r, x-coordinate of resulting point R | 
|  | * | 
|  | * Flags: Flags have no meaning beyond the scope of this subroutine. | 
|  | * | 
|  | * clobbered registers: w11 to w25 | 
|  | * clobbered flag groups: FG0 | 
|  | */ | 
|  | proj_add: | 
|  | /* mapping of parameters to symbols of [2] (Algorithm 4): | 
|  | X1 = x_p; Y1 = y_p; Z1 = z_p; X2 = x_q; Y2 = y_q; Z2 = z_q | 
|  | X3 = x_r; Y3 = y_r; Z3 = z_r */ | 
|  |  | 
|  | /* 1: w14 = t0 <= X1*X2 = w11*w8 */ | 
|  | bn.mov    w24, w11 | 
|  | bn.mov    w25, w8 | 
|  | jal       x1, mod_mul_256x256 | 
|  | bn.mov    w14, w19 | 
|  |  | 
|  | /* 2: w15 = t1 <= Y1*Y2 = w12*w9 */ | 
|  | bn.mov    w24, w12 | 
|  | bn.mov    w25, w9 | 
|  | jal       x1, mod_mul_256x256 | 
|  | bn.mov    w15, w19 | 
|  |  | 
|  | /* 3: w16 = t2 <= Z1*Z2 = w13*w10*/ | 
|  | bn.mov    w24, w13 | 
|  | bn.mov    w25, w10 | 
|  | jal       x1, mod_mul_256x256 | 
|  | bn.mov    w16, w19 | 
|  |  | 
|  | /* 5: w17 = t4 <= X2+Y2 = w11 + w12 */ | 
|  | bn.addm   w17, w11, w12 | 
|  |  | 
|  | /* 4: w18 = t3 <= X1+Y1 = w8+w9 */ | 
|  | bn.addm   w18, w8, w9 | 
|  |  | 
|  | /* 6: w19 = t3 <= t3*t4 = w18*w17 */ | 
|  | bn.mov    w24, w17 | 
|  | bn.mov    w25, w18 | 
|  | jal       x1, mod_mul_256x256 | 
|  |  | 
|  | /* 7: w18 = t4 <= t0+t1 = w14+w15 */ | 
|  | bn.addm   w18, w14, w15 | 
|  |  | 
|  | /* 8: w17 = t3 <= t3 - t4 = w19 - w18 */ | 
|  | bn.subm   w17, w19, w18 | 
|  |  | 
|  | /* 10: w18 = X3 <= Y2 + Z2 = w12 + w13 */ | 
|  | bn.addm   w18, w12, w13 | 
|  |  | 
|  | /* 9: w19 = t4 <= Y1 + Z1 = w9 + w10 */ | 
|  | bn.addm   w19, w9, w10 | 
|  |  | 
|  | /* 11: w18 = t4 <= t4 * X3 = w19 * w18 */ | 
|  | bn.mov    w24, w18 | 
|  | bn.mov    w25, w19 | 
|  | jal       x1, mod_mul_256x256 | 
|  | bn.mov    w18, w19 | 
|  |  | 
|  | /* 12: w19 = X3 <= t1 + t2 = w15 + w16 */ | 
|  | bn.addm   w19, w15, w16 | 
|  |  | 
|  | /* 13: w18 = t4 <= t4 - X3 = w18 + w19 */ | 
|  | bn.subm   w18, w18, w19 | 
|  |  | 
|  | /* 15: w19 = Y3 <= X2 + Z2 = w11 + w13 */ | 
|  | bn.addm   w19, w11, w13 | 
|  |  | 
|  | /* 14: w12 = X3 <= X1 + Z1 = w8 + w10 */ | 
|  | bn.addm   w12, w8, w10 | 
|  |  | 
|  | /* 16: w11 = X3 <= X3 * Y3 = w12 * w19 */ | 
|  | bn.mov    w24, w19 | 
|  | bn.mov    w25, w12 | 
|  | jal       x1, mod_mul_256x256 | 
|  | bn.mov    w11, w19 | 
|  |  | 
|  | /* 17: w12 = Y3 <= t0 + t2 = w14 + w16 */ | 
|  | bn.addm   w12, w14, w16 | 
|  |  | 
|  | /* 18: w12 = Y3 <= X3 - Y3 = w11 - w12 */ | 
|  | bn.subm   w12, w11, w12 | 
|  |  | 
|  | /* 19: w19 = Z3 <= b * t2 =  w27 * w16 */ | 
|  | bn.mov    w24, w27 | 
|  | bn.mov    w25, w16 | 
|  | jal       x1, mod_mul_256x256 | 
|  |  | 
|  | /* 20: w11 = X3 <= Y3 -Z3 = w12 - w19 */ | 
|  | bn.subm   w11, w12, w19 | 
|  |  | 
|  | /* 21: w13 = Z3 <= X3 + X3 = w11 + w11 */ | 
|  | bn.addm   w13, w11, w11 | 
|  |  | 
|  | /* 22: w11 = X3 <= w11 + w13 = X3 + Z3 */ | 
|  | bn.addm   w11, w11, w13 | 
|  |  | 
|  | /* 23: w13 = Z3 <= t1 - X3 = w15 - w11 */ | 
|  | bn.subm   w13, w15, w11 | 
|  |  | 
|  | /* 24: w11 = X3 <= t1 + X3 = w15 + w11 */ | 
|  | bn.addm   w11, w15, w11 | 
|  |  | 
|  | /* 25: w19 = Y3 <= w27 * w12 = b * Y3 */ | 
|  | bn.mov    w24, w27 | 
|  | bn.mov    w25, w12 | 
|  | jal       x1, mod_mul_256x256 | 
|  |  | 
|  | /* 26: w15 = t1 <= t2 + t2 = w16 + w16 */ | 
|  | bn.addm   w15, w16, w16 | 
|  |  | 
|  | /* 27: w16 = t2 <= t1 + t2 = w15 + w16 */ | 
|  | bn.addm   w16, w15, w16 | 
|  |  | 
|  | /* 28: w12 = Y3 <= Y3 - t2 = w19 - w16 */ | 
|  | bn.subm   w12, w19, w16 | 
|  |  | 
|  | /* 29: w12 = Y3 <= Y3 - t0 = w12 - w14 */ | 
|  | bn.subm   w12, w12, w14 | 
|  |  | 
|  | /* 30: w15 = t1 <= Y3 + Y3 = w12 + w12 */ | 
|  | bn.addm   w15, w12, w12 | 
|  |  | 
|  | /* 31: w12 = Y3 <= t1 + Y3 = w15 + w12*/ | 
|  | bn.addm   w12, w15, w12 | 
|  |  | 
|  | /* 32: w15 = t1 <= t0 + t0 = w14 + w14 */ | 
|  | bn.addm   w15, w14, w14 | 
|  |  | 
|  | /* 33: w14 = t0 <= t1 + t0 = w15 + w14 */ | 
|  | bn.addm   w14, w15, w14 | 
|  |  | 
|  | /* 34: w14 = t0 <= t0 - t2 = w14 - w16 */ | 
|  | bn.subm   w14, w14, w16 | 
|  |  | 
|  | /* 35: w15 = t1 <= t4 * Y3 = w18 * w12 */ | 
|  | bn.mov    w24, w18 | 
|  | bn.mov    w25, w12 | 
|  | jal       x1, mod_mul_256x256 | 
|  | bn.mov    w15, w19 | 
|  |  | 
|  | /* 36: w16 = t2 <= t0 * Y3 = w14 * w12 */ | 
|  | bn.mov    w24, w14 | 
|  | bn.mov    w25, w12 | 
|  | jal       x1, mod_mul_256x256 | 
|  | bn.mov    w16, w19 | 
|  |  | 
|  | /* 37: w12 = Y3 <= X3 * Z3 = w11 * w13 */ | 
|  | bn.mov    w24, w11 | 
|  | bn.mov    w25, w13 | 
|  | jal       x1, mod_mul_256x256 | 
|  |  | 
|  | /* 38: w12 = Y3 <= Y3 + t2 = w19 + w16 */ | 
|  | bn.addm   w12, w19, w16 | 
|  |  | 
|  | /* 39: w19 = X3 <= t3 * X3 = w17 * w11 */ | 
|  | bn.mov    w24, w17 | 
|  | bn.mov    w25, w11 | 
|  | jal       x1, mod_mul_256x256 | 
|  |  | 
|  | /* 40: w11 = X3 <= X3 - t1 = w19 - w15 */ | 
|  | bn.subm   w11, w19, w15 | 
|  |  | 
|  | /* 41: w13 = Z3 <= t4 * Z3 = w18 * w13 */ | 
|  | bn.mov    w24, w18 | 
|  | bn.mov    w25, w13 | 
|  | jal       x1, mod_mul_256x256 | 
|  | bn.mov    w13, w19 | 
|  |  | 
|  | /* 42: w19 = t1 <= t3 * t0 = w17 * w14 */ | 
|  | bn.mov    w24, w17 | 
|  | bn.mov    w25, w14 | 
|  | jal       x1, mod_mul_256x256 | 
|  |  | 
|  | /* 43: w13 = Z3 <= Z3 + t1 = w13 + w19 */ | 
|  | bn.addm   w13, w13, w19 | 
|  |  | 
|  | ret | 
|  |  | 
|  |  | 
|  | /** | 
|  | * Convert projective coordinates of a P-256 curve point to affine coordinates | 
|  | * | 
|  | * returns P = (x_a, y_a) = (x/z mod p, y/z mod p) | 
|  | *         with P being a valid P-256 curve point | 
|  | *              x_a and y_a being the affine coordinates of said curve point | 
|  | *              x, y and z being a set of projective coordinates of said point | 
|  | *              and p being the modulus of the P-256 underlying finite field. | 
|  | * | 
|  | * This routine computes the affine coordinates for a set of projective | 
|  | * coordinates of a valid P-256 curve point. The routine performs the required | 
|  | * divisions by computing the multiplicative modular inverse of the | 
|  | * projective z-coordinate in the underlying finite field of the P-256 curve. | 
|  | * For inverse computation Fermat's little theorem is used, i.e. | 
|  | * we compute z^-1 = z^(p-2) mod p. | 
|  | * For exponentiation a 27 step addition chain is used. | 
|  | * This addition chain is (presumably?) the shortest addition chain known as | 
|  | * of today for the exponent exp = p - 2 = 2^256 -  2^224 + 2^6 + 2^64 - 1 - 2. | 
|  | * Origin of the chain can not fully be traced. [1] attributes it to a specific | 
|  | * patch to OpenSLL. The same addition chain is used in the OpenSSL and | 
|  | * BoringSSL crypto libraries. | 
|  | * This routine runs in constant time. | 
|  | * | 
|  | * [1] https://doi.org/10.1007/s13389-014-0090-x | 
|  | *     https://eprint.iacr.org/2013/816.pdf | 
|  | * | 
|  | * Flags: When leaving this subroutine, the M, L and Z flags of FG0 depend on | 
|  | *        the computed affine y-coordinate. | 
|  | * | 
|  | * @param[in]  w8: x, x-coordinate of curve point (projective) | 
|  | * @param[in]  w9: y, y-coordinate of curve point (projective) | 
|  | * @param[in]  w10: z, z-coordinate of curve point (projective) | 
|  | * @param[in]  w29: p, modulus, 2^256 > p > 2^255. | 
|  | * @param[in]  w28: u, pre-computed Barrett constant (without u[256]/MSb | 
|  | *                           of u which is always 1 for the allowed range. | 
|  | * @param[in]  MOD: p, modulus of the finite field of P-256 | 
|  | * @param[out]  w11: x_a, x-coordinate of curve point (affine) | 
|  | * @param[out]  w12: y_a, y-coordinate of curve point (affine) | 
|  | * | 
|  | * clobbered registers: w10 to w19, w24, w25 | 
|  | * clobbered flag groups: FG0 | 
|  | */ | 
|  | proj_to_affine: | 
|  |  | 
|  | /* 1: exp = 0x1 */ | 
|  | bn.addm   w10, w10, w31 | 
|  |  | 
|  | /* 2: exp = 0x2 = 2*0x1 */ | 
|  | bn.mov    w24, w10 | 
|  | bn.mov    w25, w10 | 
|  | jal       x1, mod_mul_256x256 | 
|  |  | 
|  | /* 3: exp = 0x3 = 0x2+0x1 */ | 
|  | bn.mov    w24, w19 | 
|  | bn.mov    w25, w10 | 
|  | jal       x1, mod_mul_256x256 | 
|  | bn.mov    w12, w19 | 
|  |  | 
|  | /* 4: exp = 0x6 = 2*0x3 */ | 
|  | bn.mov    w24, w19 | 
|  | bn.mov    w25, w19 | 
|  | jal       x1, mod_mul_256x256 | 
|  |  | 
|  | /* 5: exp = 0xc = 2*0x6 */ | 
|  | bn.mov    w24, w19 | 
|  | bn.mov    w25, w19 | 
|  | jal       x1, mod_mul_256x256 | 
|  |  | 
|  | /* 6: exp = 0xf = 0xc+0x3 */ | 
|  | bn.mov    w24, w19 | 
|  | bn.mov    w25, w12 | 
|  | jal       x1, mod_mul_256x256 | 
|  | bn.mov    w13, w19 | 
|  |  | 
|  | /* 7: exp = 0xf0 = 16*0xf */ | 
|  | loopi     4, 4 | 
|  | bn.mov    w24, w19 | 
|  | bn.mov    w25, w19 | 
|  | jal       x1, mod_mul_256x256 | 
|  | nop | 
|  |  | 
|  | /* 8: exp = 0xff = 0xf0+0xf */ | 
|  | bn.mov    w24, w19 | 
|  | bn.mov    w25, w13 | 
|  | jal       x1, mod_mul_256x256 | 
|  | bn.mov    w14, w19 | 
|  |  | 
|  | /* 9: exp = 0xff00 = 256*0xff */ | 
|  | loopi     8, 4 | 
|  | bn.mov    w24, w19 | 
|  | bn.mov    w25, w19 | 
|  | jal       x1, mod_mul_256x256 | 
|  | nop | 
|  |  | 
|  | /* 10: exp = 0xffff = 0xff00+0xff */ | 
|  | bn.mov    w24, w19 | 
|  | bn.mov    w25, w14 | 
|  | jal       x1, mod_mul_256x256 | 
|  | bn.mov    w15, w19 | 
|  |  | 
|  | /* 11: exp = 0xffff0000 = 2^16*0xffff */ | 
|  | loopi     16, 4 | 
|  | bn.mov    w24, w19 | 
|  | bn.mov    w25, w19 | 
|  | jal       x1, mod_mul_256x256 | 
|  | nop | 
|  |  | 
|  | /* 12: exp = 0xffffffff = 0xffff0000+0xffff */ | 
|  | bn.mov    w24, w19 | 
|  | bn.mov    w25, w15 | 
|  | jal       x1, mod_mul_256x256 | 
|  | bn.mov    w16, w19 | 
|  |  | 
|  | /* 13: exp = 0xffffffff00000000 = 2^32*0xffffffff */ | 
|  | loopi     32, 4 | 
|  | bn.mov    w24, w19 | 
|  | bn.mov    w25, w19 | 
|  | jal       x1, mod_mul_256x256 | 
|  | nop | 
|  | bn.mov    w17, w19 | 
|  |  | 
|  | /* 14: exp = 0xffffffff00000001 = 0xffffffff00000000+0x1 */ | 
|  | bn.mov    w24, w10 | 
|  | bn.mov    w25, w19 | 
|  | jal       x1, mod_mul_256x256 | 
|  |  | 
|  | /* 15: exp = | 
|  | 0xffffffff00000001000000000000000000000000000000000000000000000000 | 
|  | = 2^192*0xffffffff00000001 */ | 
|  | loopi     192, 4 | 
|  | bn.mov    w24, w19 | 
|  | bn.mov    w25, w19 | 
|  | jal       x1, mod_mul_256x256 | 
|  | nop | 
|  | bn.mov    w18, w19 | 
|  |  | 
|  | /* 16: exp = 0xffffffffffffffff = 0xffffffff00000000+0xffffffff */ | 
|  | bn.mov    w24, w17 | 
|  | bn.mov    w25, w16 | 
|  | jal       x1, mod_mul_256x256 | 
|  |  | 
|  | /* 17: exp = 0xffffffffffffffff0000 = 2^16*0xffffffffffffffff */ | 
|  | loopi     16, 4 | 
|  | bn.mov    w24, w19 | 
|  | bn.mov    w25, w19 | 
|  | jal       x1, mod_mul_256x256 | 
|  | nop | 
|  |  | 
|  | /* 18: exp = 0xffffffffffffffffffff = 0xffffffffffffffff0000+0xffff */ | 
|  | bn.mov    w24, w15 | 
|  | bn.mov    w25, w19 | 
|  | jal       x1, mod_mul_256x256 | 
|  |  | 
|  | /* 19: exp = 0xffffffffffffffffffff00 = 256*0xffffffffffffffffffff */ | 
|  | loopi     8, 4 | 
|  | bn.mov    w24, w19 | 
|  | bn.mov    w25, w19 | 
|  | jal       x1, mod_mul_256x256 | 
|  | nop | 
|  |  | 
|  | /* 20: exp = 0xffffffffffffffffffffff = 0xffffffffffffffffffff00+0xff */ | 
|  | bn.mov    w24, w14 | 
|  | bn.mov    w25, w19 | 
|  | jal       x1, mod_mul_256x256 | 
|  |  | 
|  | /* 21: exp = 0xffffffffffffffffffffff0 = 16*0xffffffffffffffffffffff */ | 
|  | loopi     4, 4 | 
|  | bn.mov    w24, w19 | 
|  | bn.mov    w25, w19 | 
|  | jal       x1, mod_mul_256x256 | 
|  | nop | 
|  |  | 
|  | /* 22: exp = 0xfffffffffffffffffffffff = 0xffffffffffffffffffffff0+0xf */ | 
|  | bn.mov    w24, w13 | 
|  | bn.mov    w25, w19 | 
|  | jal       x1, mod_mul_256x256 | 
|  |  | 
|  | /* 23: exp = 0x3ffffffffffffffffffffffc = 4*0xfffffffffffffffffffffff */ | 
|  | loopi     2, 4 | 
|  | bn.mov    w24, w19 | 
|  | bn.mov    w25, w19 | 
|  | jal       x1, mod_mul_256x256 | 
|  | nop | 
|  |  | 
|  | /* 24: exp = 0x3fffffffffffffffffffffff = 0x3ffffffffffffffffffffffc+0x3 */ | 
|  | bn.mov    w24, w12 | 
|  | bn.mov    w25, w19 | 
|  | jal       x1, mod_mul_256x256 | 
|  |  | 
|  | /* 25: exp = 0xfffffffffffffffffffffffc = 4*0x3fffffffffffffffffffffff */ | 
|  | loopi     2, 4 | 
|  | bn.mov    w24, w19 | 
|  | bn.mov    w25, w19 | 
|  | jal       x1, mod_mul_256x256 | 
|  | nop | 
|  |  | 
|  | /* 26: exp = 0xfffffffffffffffffffffffd = 0xfffffffffffffffffffffffc+0x1 */ | 
|  | bn.mov    w24, w10 | 
|  | bn.mov    w25, w19 | 
|  | jal       x1, mod_mul_256x256 | 
|  |  | 
|  | /* 27: exp = p-2 | 
|  | = 0xffffffff00000001000000000000000000000000fffffffffffffffffffffffd | 
|  | = 0xfffffffffffffffffffffffd | 
|  | + 0xffffffff00000001000000000000000000000000000000000000000000000000 | 
|  | w14 = z^exp = z^(p-2) = z^-1   mod p */ | 
|  | bn.mov    w24, w19 | 
|  | bn.mov    w25, w18 | 
|  | jal       x1, mod_mul_256x256 | 
|  | bn.mov    w14, w19 | 
|  |  | 
|  | /* convert x-coordinate to affine | 
|  | w11 = x_a = x/z = x * z^(-1) = w8 * w14 */ | 
|  | bn.mov    w24, w8 | 
|  | bn.mov    w25, w14 | 
|  | jal       x1, mod_mul_256x256 | 
|  | bn.mov    w11, w19 | 
|  |  | 
|  | /* convert y-coordinate to affine | 
|  | w12 = y_a = y/z = y * z^(-1) = w9 * w14 */ | 
|  | bn.mov    w24, w9 | 
|  | bn.mov    w25, w14 | 
|  | jal       x1, mod_mul_256x256 | 
|  | bn.mov    w12, w19 | 
|  |  | 
|  | ret | 
|  |  | 
|  |  | 
|  | /** | 
|  | * Variable time modular multiplicative inverse computation | 
|  | * | 
|  | * returns x_inv = x^-1 mod m | 
|  | * | 
|  | * This routine computes the modular multiplicative inverse for any x < m in | 
|  | * the field GF(m). | 
|  | * For inverse computation Fermat's little theorem is used, i.e. | 
|  | * we compute x^-1 = x^(m-2) mod m. | 
|  | * For exponentiation we use a standard, variable time (!) square and multiply | 
|  | * algorithm. | 
|  | * | 
|  | * @param[in]  w0: x, a 256 bit operand with x < m | 
|  | * @param[in]  w29: m, modulus, 2^256 > m > 2^255. | 
|  | * @param[in]  w28: u, lower 256 bit of pre-computed Barrett constant | 
|  | * @param[in]  w31, all-zero | 
|  | * @param[in]  MOD: m, modulus | 
|  | * @param[out]  w1: x_inv, modular multiplicative inverse | 
|  | * | 
|  | * Flags: Flags have no meaning beyond the scope of this subroutine. | 
|  | * | 
|  | * clobbered registers: w1, w2, w3, w19, w24, w25 | 
|  | * clobbered flag groups: FG0 | 
|  | */ | 
|  | mod_inv: | 
|  |  | 
|  | /* subtract 2 from modulus for Fermat's little theorem | 
|  | w2 = MOD - 2 = m - 2 */ | 
|  | bn.wsrr   w2, 0 | 
|  | bn.subi   w2, w2, 2 | 
|  |  | 
|  | /* init square and multiply: w1 = 1 */ | 
|  | bn.addi   w1, w31, 1 | 
|  |  | 
|  | /* square and multiply loop */ | 
|  | loopi     256, 14 | 
|  |  | 
|  | /* square: w3 = w19 = w24*w25 = w1^2  mod m */ | 
|  | bn.mov    w24, w1 | 
|  | bn.mov    w25, w1 | 
|  | jal       x1, mod_mul_256x256 | 
|  | bn.mov    w3, w19 | 
|  |  | 
|  | /* shift MSB into carry flag | 
|  | w2 = 2*w2 = w2 << 1 */ | 
|  | bn.add    w2, w2, w2 | 
|  |  | 
|  | /* skip multiplication if C flag not set */ | 
|  | bn.sel    w1, w1, w3, C | 
|  | csrrs     x2, 0x7c0, x0 | 
|  | andi      x2, x2, 1 | 
|  | beq       x2, x0, nomul | 
|  |  | 
|  | /* multiply: w1 = w19 = w24*w25 = w3*w0  mod m */ | 
|  | bn.mov    w24, w3 | 
|  | bn.mov    w25, w0 | 
|  | jal       x1, mod_mul_256x256 | 
|  | bn.mov    w1, w19 | 
|  |  | 
|  | nomul: | 
|  | nop | 
|  |  | 
|  | ret | 
|  |  | 
|  |  | 
|  | /** | 
|  | * Fetch curve point from dmem and randomize z-coordinate | 
|  | * | 
|  | * returns P = (x, y, z) = (x_a*z, y_a*z, z) | 
|  | *         with P being a valid P-256 curve point in projective coordinates | 
|  | *              x_a and y_a being the affine coordinates as fetched from dmem | 
|  | *              z being a randomized z-coordinate | 
|  | * | 
|  | * This routines fetches the affine x- and y-coordinates of a curve point from | 
|  | * dmem and computes a valid set of projective coordinates. The z-coordinate is | 
|  | * randomized and x and y are scaled appropriately. | 
|  | * This routine runs in constant time. | 
|  | * | 
|  | * @param[in]  x10: constant 24 | 
|  | * @param[in]  x21: dptr_x, pointer to dmem location containing affine | 
|  | *                          x-coordinate of input point | 
|  | * @param[in]  x22: dptr_y, pointer to dmem location containing affine | 
|  | *                          y-coordinate of input point | 
|  | * @param[in]  w28: u, lower 256 bit of Barrett constant for curve P-256 | 
|  | * @param[in]  w29: p, modulus of P-256 underlying finite field | 
|  | * @param[in]  w31: all-zero | 
|  | * @param[in]  MOD: p, modulus of P-256 underlying finite field | 
|  | * @param[out]  w26: z, random projective z-coordinate | 
|  | * @param[out]  w6: x, projective x-coordinate | 
|  | * @param[out]  w7: y, projective y-coordinate | 
|  | * | 
|  | * Flags: When leaving this subroutine, the M, L and Z flags of FG0 depend on | 
|  | *        the scaled projective y-coordinate. | 
|  | * | 
|  | * clobbered registers: w2, w6, w7, w19 to w26 | 
|  | * clobbered flag groups: FG0 | 
|  | */ | 
|  | fetch_proj_randomize: | 
|  |  | 
|  | /* get random number */ | 
|  | bn.wsrr   w2, 1 | 
|  |  | 
|  | /* reduce random number | 
|  | w26 = z <= w2 mod p */ | 
|  | bn.addm   w26, w2, w31 | 
|  |  | 
|  | /* fetch x-coordinate from dmem | 
|  | w24 = x_a <= dmem[x22] = dmem[dptr_x] */ | 
|  | bn.lid    x10, 0(x21) | 
|  |  | 
|  | /* scale x-coordinate | 
|  | w6 = x <= w24*w26 = x_a*z  mod p */ | 
|  | bn.mov    w25, w26 | 
|  | jal       x1, mod_mul_256x256 | 
|  | bn.mov    w6, w19 | 
|  |  | 
|  | /* fetch y-coordinate from dmem | 
|  | w24 = y_a <= dmem[x22] = dmem[dptr_y] */ | 
|  | bn.lid    x10, 0(x22) | 
|  |  | 
|  | /* scale y-coordinate | 
|  | w7 = y <= w24*w26 = y_a*z  mod p */ | 
|  | bn.mov    w25, w26 | 
|  | jal       x1, mod_mul_256x256 | 
|  | bn.mov    w7, w19 | 
|  |  | 
|  | ret | 
|  |  | 
|  |  | 
|  | /** | 
|  | * P-256 point doubling in projective space | 
|  | * | 
|  | * returns R = (x_r, y_r, z_r) <= 2*P = 2*(x_p, y_p, z_p) | 
|  | *         with R, P being valid P-256 curve points | 
|  | * | 
|  | * This routines doubles a given P-256 curve point in projective coordinate. | 
|  | * Internally this routine makes use of the point addition routine and | 
|  | * adds the point to itself. | 
|  | * This routine runs in constant time. | 
|  | * | 
|  | * @param[in]  w8: x_p, x-coordinate of input point | 
|  | * @param[in]  w9: y_p, y-coordinate of input point | 
|  | * @param[in]  w10: z_p, z-coordinate of input point | 
|  | * @param[in]  w27: b, curve domain parameter | 
|  | * @param[in]  w29: p, p, modulus of P-256 underlying finite field | 
|  | * @param[in]  w28: u, u, lower 256 bit of Barrett constant for curve P-256 | 
|  | * @param[in]  w31: all-zero. | 
|  | * @param[in]  MOD: p, modulus of P-256 underlying finite field | 
|  | * @param[out]  w11: x_r, x-coordinate of resulting point | 
|  | * @param[out]  w12: y_r, y-coordinate of resulting point | 
|  | * @param[out]  w13: z_r, z-coordinate of resulting point | 
|  | * | 
|  | * Flags: Flags have no meaning beyond the scope of this subroutine. | 
|  | * | 
|  | * clobbered registers: w11 to w25 | 
|  | * clobbered flag groups: FG0 | 
|  | */ | 
|  | proj_double: | 
|  |  | 
|  | /* Q = (x_q, y_q, z_q) = (w11, w12, w13) <= P = (x_p, y_p, z_p) | 
|  | = (w8, w9, w10) */ | 
|  | bn.mov    w11, w8 | 
|  | bn.mov    w12, w9 | 
|  | bn.mov    w13, w10 | 
|  |  | 
|  | /* R = (x_r, y_r, z_r) = (w11, w12, w13) = P+Q | 
|  | = (w8, w9, w10) + (w11, w12, w13) = (x_p, y_p, z_p) + (x_q, y_q, z_q) */ | 
|  | jal       x1, proj_add | 
|  |  | 
|  | ret | 
|  |  | 
|  |  | 
|  | /** | 
|  | * P-256 scalar point multiplication in affine space | 
|  | * | 
|  | * returns R = k*P = k*(x_p, y_p) | 
|  | *         with R, P being valid P-256 curve points in affine coordinates | 
|  | *              k being a 256 bit scalar | 
|  | * | 
|  | * This routine performs scalar multiplication based on the group laws | 
|  | * of Weierstrass curves. | 
|  | * A constant time double-and-add algorithm (sometimes referred to as | 
|  | * double-and-add-always) is used. | 
|  | * Due to the P-256 optimized implementations of the called routines for | 
|  | * point addition and doubling, this routine is limited to P-256. | 
|  | * The routine makes use of blinding by additive splitting the | 
|  | * exponent/scalar k into a random number (rnd) and rnd-k. The double-and-add | 
|  | * loop operates on both shares in parallel applying Shamir's trick. | 
|  | * | 
|  | * @param[in]  x21: dptr_x, pointer to affine x-coordinate in dmem | 
|  | * @param[in]  x22: dptr_y, pointer to affine y-coordinate in dmem | 
|  | * @param[in]  w0: k, scalar for multiplication | 
|  | * @param[in]  w1: rnd, blinding parameter | 
|  | * @param[in]  w27: b, curve domain parameter | 
|  | * @param[in]  w31: all-zero | 
|  | * @param[in]  MOD: p, modulus, 2^256 > p > 2^255. | 
|  | * @param[out]  w11: x_r, affine x-coordinate of resulting point | 
|  | * @param[out]  w12: y_r, affine y-coordinate of resulting point | 
|  | * | 
|  | * Flags: When leaving this subroutine, the M, L and Z flags of FG0 depend on | 
|  | *        the computed affine y-coordinate. | 
|  | * | 
|  | * clobbered registers: x2, x3, x10, w0 to w26 | 
|  | * clobbered flag groups: FG0 | 
|  | */ | 
|  | scalar_mult_int: | 
|  |  | 
|  | /* load order of base point G of P-256 | 
|  | w29 <= n = dmem[p256_n] */ | 
|  | li        x2, 29 | 
|  | la        x3, p256_n | 
|  | bn.lid    x2, 0(x3) | 
|  |  | 
|  | /* store n to MOD WSR */ | 
|  | bn.wsrw   0, w29 | 
|  |  | 
|  | /* 1st share (reduced rnd) | 
|  | rnd = w1 <= rnd mod n */ | 
|  | bn.addm   w1, w1, w31 | 
|  |  | 
|  | /* 2nd share (k-rnd) | 
|  | w0 = w0 - w1 = k - rnd mod n */ | 
|  | bn.subm   w0, w0, w1 | 
|  |  | 
|  | /* load field modulus p from dmem | 
|  | w29 <= p = dmem[p256_p] */ | 
|  | li        x2, 29 | 
|  | la        x3, p256_p | 
|  | bn.lid    x2, 0(x3) | 
|  |  | 
|  | /* store modulus to MOD WSR */ | 
|  | bn.wsrw   0, w29 | 
|  |  | 
|  | /* load lower 256 bit of Barrett constant u for modulus p from dmem | 
|  | w28 <= u = dmem[p256_u_p] */ | 
|  | li        x2, 28 | 
|  | la        x3, p256_u_p | 
|  | bn.lid    x2, 0(x3) | 
|  |  | 
|  | /* load domain parameter b from dmem | 
|  | w27 <= b = dmem[p256_b] */ | 
|  | li        x2, 27 | 
|  | la        x3, p256_b | 
|  | bn.lid    x2, 0(x3) | 
|  |  | 
|  | /* get randomized projective coodinates of curve point | 
|  | P = (x_p, y_p, z_p) = (w8, w9, w10) = (w6, w7, w26) = | 
|  | (x*z mod p, y*z mod p, z) */ | 
|  | li        x10, 24 | 
|  | jal       x1, fetch_proj_randomize | 
|  | bn.mov    w8, w6 | 
|  | bn.mov    w9, w7 | 
|  | bn.mov    w10, w26 | 
|  |  | 
|  | /* Init 2P, this will be used for the addition part in the double-and-add | 
|  | loop when the bit at the current index is 1 for both shares of the scalar. | 
|  | 2P = (w3, w4, w5) <= (w11, w12, w13) <= 2*(w8, w9, w10) = 2*P */ | 
|  | jal       x1, proj_double | 
|  | bn.mov    w3, w11 | 
|  | bn.mov    w4, w12 | 
|  | bn.mov    w5, w13 | 
|  |  | 
|  | /* init double-and-add with point in infinity | 
|  | Q = (w8, w9, w10) <= (0, 1, 0) */ | 
|  | bn.mov    w8, w31 | 
|  | bn.addi   w9, w31, 1 | 
|  | bn.mov    w10, w31 | 
|  |  | 
|  | /* double-and-add loop with decreasing index */ | 
|  | loopi     256, 32 | 
|  |  | 
|  | /* double point Q | 
|  | Q = (w11, w12, w13) <= 2*(w8, w9, w10) = 2*Q */ | 
|  | jal       x1, proj_double | 
|  |  | 
|  | /* re-fetch and randomize P again | 
|  | P = (w6, w7, w26) */ | 
|  | jal       x1, fetch_proj_randomize | 
|  |  | 
|  | /* probe if MSb of either of the two scalars (rnd or k-rnd) but not both | 
|  | is 1. | 
|  | If only one MSb is set, select P for addition | 
|  | If both MSbs are set, select 2P for addition | 
|  | (If neither MSB is set, also 2P will be selected but this will be | 
|  | discarded late) */ | 
|  | bn.xor    w8, w0, w1 | 
|  |  | 
|  | /* P = (w8, w9, w10) | 
|  | <= (w0[255] xor w1[256])?P=(w6, w7, w26):2P=(w3, w4, w5) */ | 
|  | bn.sel    w8, w6, w3, M | 
|  | bn.sel    w9, w7, w4, M | 
|  | bn.sel    w10, w26, w5, M | 
|  |  | 
|  | /* save doubling result to survive follow-up subroutine call | 
|  | Q = (w2, w6, w7) <= (w11, w12, w13) */ | 
|  | bn.mov    w2, w11 | 
|  | bn.mov    w6, w12 | 
|  | bn.mov    w7, w13 | 
|  |  | 
|  | /* add points | 
|  | Q+P = (w11, w12, w13) <= (w11, w12, w13) + (w8, w9, w10) */ | 
|  | jal       x1, proj_add | 
|  |  | 
|  | /* probe if MSb of either one or both of the two | 
|  | scalars (rnd or k-rnd) is 1.*/ | 
|  | bn.or     w8, w0, w1 | 
|  |  | 
|  | /* select doubling result (Q) or addition result (Q+P) | 
|  | Q = w0[255] or w1[255]?Q_a=(w11, w12, w13):Q=(w2, w6, w7) */ | 
|  | bn.sel    w8, w11, w2, M | 
|  | bn.sel    w9, w12, w6, M | 
|  | bn.sel    w10, w13, w7, M | 
|  |  | 
|  | /* rotate both scalars left 1 bit */ | 
|  | bn.rshi   w0, w0, w0 >> 255 | 
|  | bn.rshi   w1, w1, w1 >> 255 | 
|  |  | 
|  | /* init regs with random numbers */ | 
|  | bn.wsrr   w11, 1 | 
|  | bn.wsrr   w12, 1 | 
|  | bn.wsrr   w13, 1 | 
|  |  | 
|  | /* get a fresh random number and scale the coordinates of | 
|  | 2P = (w3, w4, w5) (scaling each projective coordinate with same | 
|  | factor results in same point) */ | 
|  | bn.wsrr   w2, 1 | 
|  |  | 
|  | /* w3 = w3 * w2 */ | 
|  | bn.mov    w24, w3 | 
|  | bn.mov    w25, w2 | 
|  | jal       x1, mod_mul_256x256 | 
|  | bn.mov    w3, w19 | 
|  |  | 
|  | /* w4 = w4 * w2 */ | 
|  | bn.mov    w24, w4 | 
|  | bn.mov    w25, w2 | 
|  | jal       x1, mod_mul_256x256 | 
|  | bn.mov    w4, w19 | 
|  |  | 
|  | /* w5 = w5 * w2 */ | 
|  | bn.mov    w24, w5 | 
|  | bn.mov    w25, w2 | 
|  | jal       x1, mod_mul_256x256 | 
|  | bn.mov    w5, w19 | 
|  |  | 
|  | /* convert back to affine coordinates | 
|  | R = (x_a, y_a) = (w11, w12) */ | 
|  | jal       x1, proj_to_affine | 
|  |  | 
|  | ret | 
|  |  | 
|  |  | 
|  | /** | 
|  | * P-256 ECDSA signature generation | 
|  | * | 
|  | * returns the signature as the pair r, s with | 
|  | *         r = x_1  mod n | 
|  | *     and s = k^(-1)(msg + r*d)  mod n | 
|  | *         with x_1 being the affine x-coordinate of the curve point k*G, | 
|  | *                  where G is the curve's base point. | 
|  | *              k being a supplied secret random number, | 
|  | *              n being the order of the base point G of P-256, | 
|  | *              msg being the msg to be signed, | 
|  | *              d being the private key. | 
|  | * | 
|  | * This routine runs in constant time. | 
|  | * | 
|  | * Note: Some versions of the ECDSA spec suggest that msg must be reduced | 
|  | * modulo n (e.g. RFC 6979, section 2.4). However, for this implementation, it | 
|  | * is sufficient that msg < 2^256, because the message is multiplied with | 
|  | * k^(-1) mod n, and our Barrett multiplication implementation accepts any | 
|  | * operands a and b such that a * b < 2^256 * p and fully reduces the result. | 
|  | * | 
|  | * @param[in]  dmem[0]: dptr_k, pointer to a 256 bit random secret in dmem | 
|  | * @param[in]  dmem[4]: dptr_rnd, pointer to location in dmem containing random | 
|  | *                                number for blinding | 
|  | * @param[in]  dmem[8]: dptr_msg, pointer to the message to be signed in dmem | 
|  | * @param[in]  dmem[12]: dptr_r, pointer to dmem location where s component | 
|  | *                               of signature will be placed | 
|  | * @param[in]  dmem[16]: dptr_s, pointer to dmem location where r component | 
|  | *                               of signature will be placed | 
|  | * @param[in]  dmem[28]: dptr_d, pointer to private key d in dmem | 
|  | * | 
|  | * Flags: When leaving this subroutine, the M, L and Z flags of FG0 depend on | 
|  | *        the computed affine y-coordinate. | 
|  | * | 
|  | * clobbered registers: x2, x3, x16 to x23, w0 to w26 | 
|  | * clobbered flag groups: FG0 | 
|  | */ | 
|  | p256_sign: | 
|  |  | 
|  | /* init all-zero register */ | 
|  | bn.xor    w31, w31, w31 | 
|  |  | 
|  | /* load dmem pointer to secret random scalar k: x16 <= dptr_k = dmem[0] */ | 
|  | la        x16, dptr_k | 
|  | lw        x16, 0(x16) | 
|  |  | 
|  | /* load dmem pointer to random number for blinding rnd in dmem: | 
|  | x17 <= dptr_rnd = dmem[4] */ | 
|  | la        x17, dptr_rnd | 
|  | lw        x17, 0(x17) | 
|  |  | 
|  | /* load dmem pointer to message msg in dmem: x18 <= dptr_msg = dmem[8] */ | 
|  | la        x18, dptr_msg | 
|  | lw        x18, 0(x18) | 
|  |  | 
|  | /* load dmem pointer to signature r in dmem: x19 <= dptr_r = dmem[12] */ | 
|  | la        x19, dptr_r | 
|  | lw        x19, 0(x19) | 
|  |  | 
|  | /* load dmem pointer to signature s in dmem: x20 <= dptr_s = dmem[16] */ | 
|  | la        x20, dptr_s | 
|  | lw        x20, 0(x20) | 
|  |  | 
|  | /* load dmem pointer to private key d in dmem: x23 <= d = dmem[28] */ | 
|  | la        x23, dptr_d | 
|  | lw        x23, 0(x23) | 
|  |  | 
|  | /* load secret random scalar k from dmem: w0 = dmem[dptr_k] */ | 
|  | li        x2, 0 | 
|  | bn.lid    x2, 0(x16) | 
|  |  | 
|  | /* load random number for blinding from dmem: w1 = dmem[dptr_rnd] */ | 
|  | li        x2, 1 | 
|  | bn.lid    x2, 0(x17) | 
|  |  | 
|  | /* scalar multiplication with base point | 
|  | (x_1, y_1) = (w11, w12) <= k*G = w0*(dmem[p256_gx], dmem[p256_gy]) */ | 
|  | la        x21, p256_gx | 
|  | la        x22, p256_gy | 
|  | jal       x1, scalar_mult_int | 
|  |  | 
|  | /* setup modulus n (curve order) and Barrett constant | 
|  | MOD <= w29 <= n = dmem[p256_n]; w28 <= u_n = dmem[p256_u_n]  */ | 
|  | li        x2, 29 | 
|  | la        x3, p256_n | 
|  | bn.lid    x2, 0(x3) | 
|  | bn.wsrw   0, w29 | 
|  | li        x2, 28 | 
|  | la        x3, p256_u_n | 
|  | bn.lid    x2, 0(x3) | 
|  |  | 
|  | /* re-load secret random number k from dmem: w0 <= k = dmem[dptr_k] */ | 
|  | li        x2, 0 | 
|  | bn.lid    x2, 0(x16) | 
|  |  | 
|  | /* modular multiplicative inverse of k | 
|  | w1 <= k^-1 mod n */ | 
|  | jal       x1, mod_inv | 
|  |  | 
|  | /* w19 = k^-1*d mod n; w24 = d = dmem[dptr_d] */ | 
|  | li        x2, 24 | 
|  | bn.lid    x2, 0(x23) | 
|  | bn.mov    w25, w1 | 
|  | jal       x1, mod_mul_256x256 | 
|  |  | 
|  | /* w24 = r <= w11  mod n */ | 
|  | bn.addm   w24, w11, w31 | 
|  |  | 
|  | /* store r of signature in dmem: dmem[dptr_r] <= r = w24 */ | 
|  | li        x2, 24 | 
|  | bn.sid    x2, 0(x19) | 
|  |  | 
|  | /* w0 = w19 <= w24*w25 = w24*w19 = r*k^-1*d  mod n */ | 
|  | bn.mov    w25, w19 | 
|  | jal       x1, mod_mul_256x256 | 
|  | bn.mov    w0, w19 | 
|  |  | 
|  | /* load message from dmem: w24 = msg <= dmem[dptr_msg] = dmem[x18] */ | 
|  | li        x2, 24 | 
|  | bn.lid    x2, 0(x18) | 
|  |  | 
|  | /* w19 = k^-1*msg <= w25*w24 = w1*w24  mod n */ | 
|  | bn.mov    w25, w1 | 
|  | jal       x1, mod_mul_256x256 | 
|  |  | 
|  | /* w0 = s <= w19 + w0 = k^-1*msg + r*k^-1*d  mod n */ | 
|  | bn.addm   w0, w19, w0 | 
|  |  | 
|  | /* store s of signature in dmem: dmem[dptr_s] <= s = w0 */ | 
|  | li        x2, 0 | 
|  | bn.sid    x2, 0(x20) | 
|  |  | 
|  | ret | 
|  |  | 
|  |  | 
|  | /** | 
|  | * P-256 scalar multiplication with base point G | 
|  | * | 
|  | * returns R = d*G = d*(x_g, y_g) | 
|  | *         with R and G being valid P-256 curve points in affine coordinates, | 
|  | *              furthermore G being the curves base point, | 
|  | *              d being a 256 bit scalar | 
|  | * | 
|  | * Performs a scalar multiplication of a scalar with the base point G of curve | 
|  | * P-256. | 
|  | * This routine runs in constant time. | 
|  | * | 
|  | * @param[in]  dmem[4]: dptr_rnd, pointer to location in dmem containing random | 
|  | *                      number for blinding | 
|  | * @param[in]  dmem[20]: dptr_x, pointer to affine x-coordinate in dmem | 
|  | * @param[in]  dmem[22]: dptr_y, pointer to affine y-coordinate in dmem | 
|  | * @param[in]  dmem[28]: dptr_d, pointer to location in dmem containing | 
|  | *                               scalar d | 
|  | * | 
|  | * Flags: Flags have no meaning beyond the scope of this subroutine. | 
|  | * | 
|  | * clobbered registers: x2, x3, x16, x17, x21, x22, w0 to w26 | 
|  | * clobbered flag groups: FG0 | 
|  | */ | 
|  | p256_base_mult: | 
|  |  | 
|  | /* init all-zero register */ | 
|  | bn.xor    w31, w31, w31 | 
|  |  | 
|  | /* load scalar d: w0 <= d = dmem[dptr_d] */ | 
|  | la        x16, dptr_d | 
|  | lw        x16, 0(x16) | 
|  |  | 
|  | /* load dmem pointer to random number for blinding rnd in dmem: | 
|  | x17 <= dptr_rnd = dmem[4] */ | 
|  | la        x17, dptr_rnd | 
|  | lw        x17, 0(x17) | 
|  |  | 
|  | /* set dmem pointers to base point coordinates */ | 
|  | la        x21, p256_gx | 
|  | la        x22, p256_gy | 
|  |  | 
|  | /* load private key d from dmem: w0 = dmem[dptr_d] */ | 
|  | li        x2, 0 | 
|  | bn.lid    x2, 0(x16) | 
|  |  | 
|  | /* load random number for blinding from dmem: w1 = dmem[dptr_rnd] */ | 
|  | li        x2, 1 | 
|  | bn.lid    x2, 0(x17) | 
|  |  | 
|  | /* call internal scalar multiplication routine | 
|  | R = (x_a, y_a) = (w11, w12) <= k*P = w0*P */ | 
|  | jal       x1, scalar_mult_int | 
|  |  | 
|  | /* set dmem pointer to point x-coordinate */ | 
|  | la        x21, dptr_x | 
|  | lw        x21, 0(x21) | 
|  |  | 
|  | /* set dmem pointer to point y-coordinate */ | 
|  | la        x22, dptr_y | 
|  | lw        x22, 0(x22) | 
|  |  | 
|  | /* store result (affine coordinates) in dmem | 
|  | dmem[x21] = dmem[dptr_x] <= x_a = w11 | 
|  | dmem[x22] = dmem[dptr_y] <= y_a = w12 */ | 
|  | li        x2, 11 | 
|  | bn.sid    x2++, 0(x21) | 
|  | bn.sid    x2, 0(x22) | 
|  |  | 
|  | ret | 
|  |  | 
|  |  | 
|  | /** | 
|  | * Variable time modular multiplicative inverse computation | 
|  | * | 
|  | * Returns c <= a^(-1) mod m | 
|  | *         with a being a bigint of length 256 bit with a < m | 
|  | *              m being the modulus with a length of 256 bit | 
|  | *              c being a 256-bit result | 
|  | * | 
|  | * This routine implements the computation of the modular multiplicative | 
|  | * inverse based on the binary GCD or Stein's algorithm. | 
|  | * The implemented variant is based on the | 
|  | * "right-shift binary extended GCD" as it is described in section 3.1 of [1] | 
|  | * (Algorithm 1). | 
|  | * [1] https://doi.org/10.1155/ES/2006/32192 | 
|  | * | 
|  | * Note that this is a variable time implementation. I.e. this routine will | 
|  | * show a data dependent timing and execution profile. Only use in situations | 
|  | * where a full white-box environment is acceptable. | 
|  | * | 
|  | * Flags: Flags have no meaning beyond the scope of this subroutine. | 
|  | * | 
|  | * @param[in]  w0: a, operand | 
|  | * @param[in]  MOD: m, modulus | 
|  | * @param[in]  w31: all-zero | 
|  | * @param[out]  w1: result c | 
|  | * | 
|  | * clobbered registers: x2, w2, w3, w4, w7 | 
|  | * clobbered flag groups: FG0 | 
|  | */ | 
|  | mod_inv_var: | 
|  |  | 
|  | /* w2 = r = 0 */ | 
|  | bn.mov    w2, w31 | 
|  |  | 
|  | /* w3 = s = 1 */ | 
|  | bn.addi   w3, w31, 1 | 
|  |  | 
|  | /* w4 = u = MOD */ | 
|  | bn.wsrr   w4, 0 | 
|  | bn.wsrr   w7, 0 | 
|  |  | 
|  | /* w5 = v = w0 */ | 
|  | bn.mov    w5, w0 | 
|  |  | 
|  | ebgcd_loop: | 
|  | /* test if u is odd */ | 
|  | bn.or     w4, w4, w4 | 
|  | csrrs     x2, 0x7c0, x0 | 
|  | andi      x2, x2, 4 | 
|  | bne       x2, x0, ebgcd_u_odd | 
|  |  | 
|  | /* u is even: */ | 
|  | /* w4 = u <= u/2 = w4 >> 1 */ | 
|  | bn.rshi   w4, w31, w4 >> 1 | 
|  |  | 
|  | /* test if r is odd */ | 
|  | bn.or     w2, w2, w2 | 
|  | csrrs     x2, 0x7c0, x0 | 
|  | andi      x2, x2, 4 | 
|  | bne       x2, x0, ebgcd_r_odd | 
|  |  | 
|  | /* r is even: */ | 
|  | /* w2 = r <= r/2 = w2 >> 1 */ | 
|  | bn.rshi   w2, w31, w2 >> 1 | 
|  | jal       x0, ebgcd_loop | 
|  |  | 
|  | ebgcd_r_odd: | 
|  | /* w2 = r <= (r + m)/2 = (w2 + w7) >> 1 */ | 
|  | bn.add    w2, w7, w2 | 
|  | bn.addc   w6, w31, w31 | 
|  | bn.rshi   w2, w6, w2 >> 1 | 
|  | jal       x0, ebgcd_loop | 
|  |  | 
|  | ebgcd_u_odd: | 
|  | /* test if v is odd */ | 
|  | bn.or     w5, w5, w5 | 
|  | csrrs     x2, 0x7c0, x0 | 
|  | andi      x2, x2, 4 | 
|  | bne       x2, x0, ebgcd_uv_odd | 
|  |  | 
|  | /* v is even: */ | 
|  | /* w5 = v <= v/2 = w5 >> 1 */ | 
|  | bn.rshi   w5, w31, w5 >> 1 | 
|  |  | 
|  | /* test if s is odd */ | 
|  | bn.or     w3, w3, w3 | 
|  | csrrs     x2, 0x7c0, x0 | 
|  | andi      x2, x2, 4 | 
|  | bne       x2, x0, ebgcd_s_odd | 
|  |  | 
|  | /* s is even: */ | 
|  | /* w3 = s <= s/2 = w3 >> 1 */ | 
|  | bn.rshi   w3, w31, w3 >> 1 | 
|  | jal       x0, ebgcd_loop | 
|  |  | 
|  | ebgcd_s_odd: | 
|  | /* w3 = s <= (s + m)/2 = (w3 + w7) >> 1 */ | 
|  | bn.add    w3, w7, w3 | 
|  | bn.addc   w6, w31, w31 | 
|  | bn.rshi   w3, w6, w3 >> 1 | 
|  | jal       x0, ebgcd_loop | 
|  |  | 
|  | ebgcd_uv_odd: | 
|  | /* test if v >= u */ | 
|  | bn.cmp    w5, w4 | 
|  | csrrs     x2, 0x7c0, x0 | 
|  | andi      x2, x2, 1 | 
|  | beq       x2, x0, ebgcd_v_gte_u | 
|  |  | 
|  | /* u > v: */ | 
|  | /* w2 = r <= r - s = w2 - w3; if (r < 0): r <= r + m */ | 
|  | bn.subm   w2, w2, w3 | 
|  |  | 
|  | /* w4 = u <= u - v = w4 - w5 */ | 
|  | bn.sub    w4, w4, w5 | 
|  | jal       x0, ebgcd_loop | 
|  |  | 
|  | ebgcd_v_gte_u: | 
|  | /* w3 = s <= s - r = w3 - w2; if (s < 0) s <= s + m */ | 
|  | bn.subm   w3, w3, w2 | 
|  |  | 
|  | /* w5 = v <= v - u = w5 - w4 */ | 
|  | bn.sub    w5, w5, w4 | 
|  |  | 
|  | /* if v > 0 go back to start of loop */ | 
|  | csrrs     x2, 0x7c0, x0 | 
|  | andi      x2, x2, 8 | 
|  | beq       x2, x0, ebgcd_loop | 
|  |  | 
|  | /* v <= 0: */ | 
|  | /* if (r > m): w1 = a = r - m = w2 - MOD else: w1 = a = r = w2 */ | 
|  | bn.addm   w1, w2, w31 | 
|  |  | 
|  | ret | 
|  |  | 
|  |  | 
|  | /** | 
|  | * P-256 ECDSA signature verification | 
|  | * | 
|  | * returns the affine x-coordinate of | 
|  | *         (x1, y1) = u1*G + u2*Q | 
|  | *         with u1 = z*s^-1 mod n  and  u2 = r*s^-1 mod n | 
|  | *         with G being the curve's base point, | 
|  | *              z being the message | 
|  | *              r, s being the signature | 
|  | *              Q being the public key. | 
|  | * | 
|  | * The routine computes the x1 coordinate and places it in dmem. x1 will be | 
|  | * reduced (mod n), however, the final comparison has to be performed on the | 
|  | * host side. The signature is valid if x1 == r. | 
|  | * This routine runs in variable time. | 
|  | * | 
|  | * @param[in]  dmem[8]: dptr_msg, pointer to the message to be verified in dmem | 
|  | * @param[in]  dmem[12]: dptr_r, pointer to s of signature in dmem | 
|  | * @param[in]  dmem[16]: dptr_s, pointer to r of signature in dmem | 
|  | * @param[in]  dmem[20]: dptr_x, pointer to x-coordinate of public key in dmem | 
|  | * @param[in]  dmem[20]: dptr_y, pointer to y-coordinate of public key in dmem | 
|  | * @param[in]  dmem[32]: dptr_x_r, pointer to dmem location where the reduced | 
|  | *                           affine x_r-coordinate will be stored (aka x_1) | 
|  | * | 
|  | * Flags: Flags have no meaning beyond the scope of this subroutine. | 
|  | * | 
|  | * clobbered registers: x2, x3, x13, x14, x17 to x24, w0 to w25 | 
|  | * clobbered flag groups: FG0 | 
|  | */ | 
|  | p256_verify: | 
|  |  | 
|  | /* init all-zero register */ | 
|  | bn.xor    w31, w31, w31 | 
|  |  | 
|  | /* load domain parameter b from dmem | 
|  | w27 <= b = dmem[p256_b] */ | 
|  | li        x2, 27 | 
|  | la        x3, p256_b | 
|  | bn.lid    x2, 0(x3) | 
|  |  | 
|  | /* load dmem pointer to x_r (result) from dmem: x17 <= dptr_x_r = dmem[32] */ | 
|  | la        x17, dptr_x_r | 
|  | lw        x17, 0(x17) | 
|  |  | 
|  | /* load dmem pointer to message msg in dmem: x18 <= dptr_msg = dmem[8] */ | 
|  | la        x18, dptr_msg | 
|  | lw        x18, 0(x18) | 
|  |  | 
|  | /* load dmem pointer to signature r in dmem: x19 <= dptr_r = dmem[12] */ | 
|  | la        x19, dptr_r | 
|  | lw        x19, 0(x19) | 
|  |  | 
|  | /* load dmem pointer to signature s in dmem: x20 <= dptr_s = dmem[16] */ | 
|  | la        x20, dptr_s | 
|  | lw        x20, 0(x20) | 
|  |  | 
|  | /* load dmem pointer to affine x-coordinate of public key from dmem: | 
|  | x21 <= dptr_x = dmem[20] */ | 
|  | la        x21, dptr_x | 
|  | lw        x21, 0(x21) | 
|  |  | 
|  | /* load dmem pointer to affine y-coordinate of public key from dmem: | 
|  | x22 <= dptr_y = dmem[24] */ | 
|  | la        x22, dptr_y | 
|  | lw        x22, 0(x22) | 
|  |  | 
|  | la        x23, p256_gx | 
|  | la        x24, p256_gy | 
|  |  | 
|  | /* load r of signature from dmem: w24 = r = dmem[dptr_r] */ | 
|  | li        x2, 11 | 
|  | bn.lid    x2, 0(x19) | 
|  |  | 
|  | /* setup modulus n (curve order) and Barrett constant | 
|  | MOD <= w29 <= n = dmem[p256_n]; w28 <= u_n = dmem[p256_u_n]  */ | 
|  | li        x2, 29 | 
|  | la        x3, p256_n | 
|  | bn.lid    x2, 0(x3) | 
|  | bn.wsrw   0, w29 | 
|  | li        x2, 28 | 
|  | la        x3, p256_u_n | 
|  | bn.lid    x2, 0(x3) | 
|  |  | 
|  | /* load s of signature from dmem: w0 = s = dmem[dptr_s] */ | 
|  | bn.lid    x0, 0(x20) | 
|  |  | 
|  | /* goto 'fail' if w0 == w31 <=> s == 0 */ | 
|  | bn.cmp    w0, w31 | 
|  | csrrs     x2, 0x7c0, x0 | 
|  | andi      x2, x2, 8 | 
|  | bne       x2, x0, fail | 
|  |  | 
|  | /* goto 'fail' if w0 >= w29 <=> s >= n */ | 
|  | bn.cmp    w0, w29 | 
|  | csrrs     x2, 0x7c0, x0 | 
|  | andi      x2, x2, 1 | 
|  | beq       x2, x0, fail | 
|  |  | 
|  | /* w1 = s^-1  mod n */ | 
|  | jal       x1, mod_inv_var | 
|  |  | 
|  | /* load r of signature from dmem: w24 = r = dmem[dptr_r] */ | 
|  | li        x2,  24 | 
|  | bn.lid    x2, 0(x19) | 
|  |  | 
|  | /* goto 'fail' if w24 == w31 <=> r == 0 */ | 
|  | bn.cmp    w24, w31 | 
|  | csrrs     x2, 0x7c0, x0 | 
|  | andi      x2, x2, 8 | 
|  | bne       x2, x0, fail | 
|  |  | 
|  | /* goto 'fail' if w0 >= w29 <=> r >= n */ | 
|  | bn.cmp    w24, w29 | 
|  | csrrs     x2, 0x7c0, x0 | 
|  | andi      x2, x2, 1 | 
|  | beq       x2, x0, fail | 
|  |  | 
|  | /* w25 = s^-1 = w1 */ | 
|  | bn.mov    w25, w1 | 
|  |  | 
|  | /* u2 = w0 = w19 <= w24*w25 = r*s^-1 mod n */ | 
|  | jal       x1, mod_mul_256x256 | 
|  | bn.mov    w0, w19 | 
|  |  | 
|  | /* load message, w24 = msg = dmem[dptr_msg] */ | 
|  | li        x2, 24 | 
|  | bn.lid    x2, 0(x18) | 
|  |  | 
|  | /* u1 = w1 = w19 <= w24*w25 = w24*w1 = msg*s^-1 mod n */ | 
|  | bn.mov    w25, w1 | 
|  | jal       x1, mod_mul_256x256 | 
|  | bn.mov    w1, w19 | 
|  |  | 
|  | /* setup modulus p and Barrett constant */ | 
|  | li        x2, 29 | 
|  | la        x3, p256_p | 
|  | bn.lid    x2, 0(x3) | 
|  | bn.wsrw   0, w29 | 
|  | li        x2, 28 | 
|  | la        x3, p256_u_p | 
|  | bn.lid    x2, 0(x3) | 
|  |  | 
|  | /* load public key Q from dmem and use in projective form (set z to 1) | 
|  | Q = (w11, w12, w13) = (dmem[dptr_x], dmem[dptr_y], 1) */ | 
|  | li        x2, 11 | 
|  | bn.lid    x2++, 0(x21) | 
|  | bn.lid    x2, 0(x22) | 
|  | bn.addi   w13, w31, 1 | 
|  |  | 
|  | /* load base point G and use in projective form (set z to 1) | 
|  | G = (w8, w9, w10) = (x_g, y_g, 1) */ | 
|  | li        x13, 8 | 
|  | li        x14, 9 | 
|  | bn.lid    x13, 0(x23) | 
|  | bn.lid    x14, 0(x24) | 
|  | bn.addi   w10, w31, 1 | 
|  |  | 
|  | /* The rest of the routine implements a variable time double-and-add | 
|  | algorithm. For the signature verification we need to compute the point | 
|  | C = (x1, y1) = u_1*G + u_2*Q. This can be done in a single | 
|  | double-and-add routine by using Shamir's Trick. */ | 
|  |  | 
|  | /* G+Q = (w3,w4,w5) = (w11,w12,w13) = (w8,w9,w10) (+) (w11,w12,w13) */ | 
|  | jal       x1, proj_add | 
|  | bn.mov    w3, w11 | 
|  | bn.mov    w4, w12 | 
|  | bn.mov    w5, w13 | 
|  |  | 
|  | /* w2 = u_2 & u_0 = w0 & w1*/ | 
|  | bn.and    w2, w0, w1 | 
|  |  | 
|  | /* init double and add algorithm with (0, 1, 0) */ | 
|  | bn.mov    w11, w31 | 
|  | bn.addi   w12, w31, 1 | 
|  | bn.mov    w13, w31 | 
|  |  | 
|  | /* main loop with dicreasing index i (i=255 downto 0) */ | 
|  | loopi     256, 31 | 
|  |  | 
|  | /* always double: C = (w11,w12,w13) <= 2 (*) C = 2 (*) (w11,w12,w13) */ | 
|  | bn.mov    w8, w11 | 
|  | bn.mov    w9, w12 | 
|  | bn.mov    w10, w13 | 
|  | jal       x1, proj_add | 
|  |  | 
|  | /* if either  u_1[i] == 0 or u_2[i] == 0 jump to 'no_both' */ | 
|  | bn.add    w2, w2, w2 | 
|  | csrrs     x2, 0x7c0, x0 | 
|  | andi      x2, x2, 1 | 
|  | beq       x2, x0, no_both | 
|  |  | 
|  | /* both bits at current index (u1[i] and u2[i]) are set: | 
|  | do C <= C + (P + Q) and jump to end */ | 
|  | bn.mov    w8, w3 | 
|  | bn.mov    w9, w4 | 
|  | bn.mov    w10, w5 | 
|  | jal       x1, proj_add | 
|  | jal       x0, no_q | 
|  |  | 
|  | /* either u1[i] or u2[i] is set, but not both */ | 
|  | no_both: | 
|  |  | 
|  | /* if u2[i] is not set jump to 'no_g' */ | 
|  | bn.add    w6, w0, w0 | 
|  | csrrs     x2, 0x7c0, x0 | 
|  | andi      x2, x2, 1 | 
|  | beq       x2, x0, no_g | 
|  |  | 
|  | /* u2[i] is set: do C <= C + Q */ | 
|  | bn.lid    x13, 0(x21) | 
|  | bn.lid    x14, 0(x22) | 
|  | bn.addi   w10, w31, 1 | 
|  | jal       x1, proj_add | 
|  |  | 
|  | no_g: | 
|  | /* if u1[i] is not set jump to 'no_q' */ | 
|  | bn.add    w6, w1, w1 | 
|  | csrrs     x2, 0x7c0, x0 | 
|  | andi      x2, x2, 1 | 
|  | beq       x2, x0, no_q | 
|  |  | 
|  | /* load base point x-coordinate | 
|  | w8 <= g_x = dmem [p256_gx]; w9 <= g_y = dmem[p256_gy] */ | 
|  | bn.lid    x13, 0(x23) | 
|  | bn.lid    x14, 0(x24) | 
|  |  | 
|  | /* u1[i] is set: do C <= C + G */ | 
|  | bn.addi   w10, w31, 1 | 
|  | jal       x1, proj_add | 
|  |  | 
|  | no_q: | 
|  | /* left shift w0 and w1 to decrease index */ | 
|  | bn.add    w0, w0, w0 | 
|  | bn.add    w1, w1, w1 | 
|  |  | 
|  | /* compute inverse of z-coordinate: w1 = z_c^-1  mod p */ | 
|  | bn.mov    w0, w13 | 
|  | jal       x1, mod_inv_var | 
|  |  | 
|  | /* convert x-coordinate of C back to affine: x1 = x_c * z_c^-1  mod p */ | 
|  | bn.mov    w24, w1 | 
|  | bn.mov    w25, w11 | 
|  | jal       x1, mod_mul_256x256 | 
|  |  | 
|  | /* final reduction: w24 = x1 <= x1 mod n */ | 
|  | la        x3, p256_n | 
|  | bn.lid    x0, 0(x3) | 
|  | bn.wsrw   0, w0 | 
|  | bn.subm   w24, w19, w31 | 
|  |  | 
|  | fail: | 
|  | /* store affine x-coordinate in dmem: dmem[dptr_x_r] = w24 = x_r */ | 
|  | li        x2, 24 | 
|  | bn.sid    x2, 0(x17) | 
|  |  | 
|  | ret | 
|  |  | 
|  |  | 
|  | /** | 
|  | * Externally callable wrapper for P-256 scalar point multiplication | 
|  | * | 
|  | * returns R = k*P = k*(x_p, y_p, z_p) | 
|  | *         with R, P being valid P-256 curve points in projective form, | 
|  | *              k being a 256 bit scalar. | 
|  | * | 
|  | * Sets up context and calls internal scalar multiplication routine. | 
|  | * This routine runs in constant time. | 
|  | * | 
|  | * @param[in]  dmem[0]: dK, pointer to location in dmem containing scalar k | 
|  | * @param[in]  dmem[4]: dRnd, pointer to location in dmem containing random | 
|  | *                        number for blinding | 
|  | * @param[in]  dmem[20]: dptr_x, pointer to affine x-coordinate in dmem | 
|  | * @param[in]  dmem[22]: dptr_y, pointer to affine y-coordinate in dmem | 
|  | * | 
|  | * Flags: When leaving this subroutine, the M, L and Z flags of FG0 depend on | 
|  | *        the computed affine y-coordinate. | 
|  | * | 
|  | * clobbered registers: x2, x3, x16, x17, x21, x22, w0 to w25 | 
|  | * clobbered flag groups: FG0 | 
|  | */ | 
|  | p256_scalar_mult: | 
|  |  | 
|  | /* init all-zero register */ | 
|  | bn.xor    w31, w31, w31 | 
|  |  | 
|  | /* load dmem pointer to scalar k: x16 <= dptr_k = dmem[0] */ | 
|  | la        x16, dptr_k | 
|  | lw        x16, 0(x16) | 
|  |  | 
|  | /* load dmem pointer to random number for blinding rnd in dmem: | 
|  | x17 <= dptr_rnd = dmem[4] */ | 
|  | la        x17, dptr_rnd | 
|  | lw        x17, 0(x17) | 
|  |  | 
|  | /* set dmem pointer to point x-coordinate */ | 
|  | la        x21, dptr_x | 
|  | lw        x21, 0(x21) | 
|  |  | 
|  | /* set dmem pointer to point y-coordinate */ | 
|  | la        x22, dptr_y | 
|  | lw        x22, 0(x22) | 
|  |  | 
|  | /* load private key d from dmem: w0 = dmem[dptr_d] */ | 
|  | li        x2, 0 | 
|  | bn.lid    x2, 0(x16) | 
|  |  | 
|  | /* load random number for blinding from dmem: w1 = dmem[dptr_rnd] */ | 
|  | li        x2, 1 | 
|  | bn.lid    x2, 0(x17) | 
|  |  | 
|  | /* call internal scalar multiplication routine | 
|  | R = (x_a, y_a) = (w11, w12) <= k*P = w0*P */ | 
|  | jal       x1, scalar_mult_int | 
|  |  | 
|  | /* store result (affine coordinates) in dmem | 
|  | dmem[x21] = dmem[dptr_x] <= x_a = w11 | 
|  | dmem[x22] = dmem[dptr_y] <= y_a = w12 */ | 
|  | li        x2, 11 | 
|  | bn.sid    x2++, 0(x21) | 
|  | bn.sid    x2, 0(x22) | 
|  |  | 
|  | ret | 
|  |  | 
|  | .section .data | 
|  |  | 
|  | /* pointer to k (dptr_k) */ | 
|  | .globl dptr_k | 
|  | .balign 4 | 
|  | dptr_k: | 
|  | .zero 4 | 
|  |  | 
|  | /* pointer to rnd (dptr_rnd) */ | 
|  | .globl dptr_rnd | 
|  | .balign 4 | 
|  | dptr_rnd: | 
|  | .zero 4 | 
|  |  | 
|  | /* pointer to msg (dptr_msg) */ | 
|  | .globl dptr_msg | 
|  | .balign 4 | 
|  | dptr_msg: | 
|  | .zero 4 | 
|  |  | 
|  | /* pointer to R (dptr_r) */ | 
|  | .globl dptr_r | 
|  | .balign 4 | 
|  | dptr_r: | 
|  | .zero 4 | 
|  |  | 
|  | /* pointer to S (dptr_s) */ | 
|  | .globl dptr_s | 
|  | .balign 4 | 
|  | dptr_s: | 
|  | .zero 4 | 
|  |  | 
|  | /* pointer to X (dptr_x) */ | 
|  | .globl dptr_x | 
|  | .balign 4 | 
|  | dptr_x: | 
|  | .zero 4 | 
|  |  | 
|  | /* pointer to Y (dptr_y) */ | 
|  | .globl dptr_y | 
|  | .balign 4 | 
|  | dptr_y: | 
|  | .zero 4 | 
|  |  | 
|  | /* pointer to D (dptr_d) */ | 
|  | .globl dptr_d | 
|  | .balign 4 | 
|  | dptr_d: | 
|  | .zero 4 | 
|  |  | 
|  | /* pointer to verification result x_r aka x_1 (dptr_x_r) */ | 
|  | .globl dptr_x_r | 
|  | .balign 4 | 
|  | dptr_x_r: | 
|  | .zero 4 | 
|  |  | 
|  | /* P-256 domain parameter b */ | 
|  | .globl p256_b | 
|  | .balign 32 | 
|  | p256_b: | 
|  | .word 0x27d2604b | 
|  | .word 0x3bce3c3e | 
|  | .word 0xcc53b0f6 | 
|  | .word 0x651d06b0 | 
|  | .word 0x769886bc | 
|  | .word 0xb3ebbd55 | 
|  | .word 0xaa3a93e7 | 
|  | .word 0x5ac635d8 | 
|  |  | 
|  | /* P-256 domain parameter p (modulus) */ | 
|  | .globl p256_p | 
|  | .balign 32 | 
|  | p256_p: | 
|  | .word 0xffffffff | 
|  | .word 0xffffffff | 
|  | .word 0xffffffff | 
|  | .word 0x00000000 | 
|  | .word 0x00000000 | 
|  | .word 0x00000000 | 
|  | .word 0x00000001 | 
|  | .word 0xffffffff | 
|  |  | 
|  | /* Barrett constant u for modulus p */ | 
|  | .globl p256_u_p | 
|  | .balign 32 | 
|  | p256_u_p: | 
|  | .word 0x00000003 | 
|  | .word 0x00000000 | 
|  | .word 0xffffffff | 
|  | .word 0xfffffffe | 
|  | .word 0xfffffffe | 
|  | .word 0xfffffffe | 
|  | .word 0xffffffff | 
|  | .word 0x00000000 | 
|  |  | 
|  | /* P-256 domain parameter n (order of base point) */ | 
|  | .globl p256_n | 
|  | .balign 32 | 
|  | p256_n: | 
|  | .word 0xfc632551 | 
|  | .word 0xf3b9cac2 | 
|  | .word 0xa7179e84 | 
|  | .word 0xbce6faad | 
|  | .word 0xffffffff | 
|  | .word 0xffffffff | 
|  | .word 0x00000000 | 
|  | .word 0xffffffff | 
|  |  | 
|  | /* Barrett constant u for n */ | 
|  | .globl p256_u_n | 
|  | .balign 32 | 
|  | p256_u_n: | 
|  | .word 0xeedf9bfe | 
|  | .word 0x012ffd85 | 
|  | .word 0xdf1a6c21 | 
|  | .word 0x43190552 | 
|  | .word 0xffffffff | 
|  | .word 0xfffffffe | 
|  | .word 0xffffffff | 
|  | .word 0x00000000 | 
|  |  | 
|  | /* P-256 basepoint G affine x-coordinate */ | 
|  | .globl p256_gx | 
|  | .balign 32 | 
|  | p256_gx: | 
|  | .word 0xd898c296 | 
|  | .word 0xf4a13945 | 
|  | .word 0x2deb33a0 | 
|  | .word 0x77037d81 | 
|  | .word 0x63a440f2 | 
|  | .word 0xf8bce6e5 | 
|  | .word 0xe12c4247 | 
|  | .word 0x6b17d1f2 | 
|  |  | 
|  | /* P-256 basepoint G affine y-coordinate */ | 
|  | .globl p256_gy | 
|  | .balign 32 | 
|  | p256_gy: | 
|  | .word 0x37bf51f5 | 
|  | .word 0xcbb64068 | 
|  | .word 0x6b315ece | 
|  | .word 0x2bce3357 | 
|  | .word 0x7c0f9e16 | 
|  | .word 0x8ee7eb4a | 
|  | .word 0xfe1a7f9b | 
|  | .word 0x4fe342e2 |