| // Copyright lowRISC contributors. |
| // Licensed under the Apache License, Version 2.0, see LICENSE for details. |
| // SPDX-License-Identifier: Apache-2.0 |
| |
| `include "prim_assert.sv" |
| |
| /** |
| * OTBN alu block for the bignum instruction subset |
| * |
| * This ALU supports all of the 'plain' arithmetic and logic bignum instructions, BN.MULQACC is |
| * implemented in a separate block. |
| * |
| * One barrel shifter and two adders (X and Y) are implemented along with the logic operators |
| * (AND,OR,XOR,NOT). |
| * |
| * The adders have 256-bit operands with a carry_in and optional invert on the second operand. This |
| * can be used to implement subtraction (a - b == a + ~b + 1). BN.SUBB/BN.ADDC are implemented by |
| * feeding in the carry flag as carry in rather than a fixed 0 or 1. |
| * |
| * The shifter takes a 512-bit input (to implement BN.RSHI, concatenate and right shift) and shifts |
| * right by up to 256-bits. The lower (256-bit) half of the input and output can be reversed to |
| * allow left shift implementation. There is no concatenate and left shift instruction so reversing |
| * isn't required over the full width. |
| * |
| * The dataflow between the adders and shifter is in the diagram below. This arrangement allows the |
| * implementation of the pseudo-mod (BN.ADDM/BN.SUBM) instructions in a single cycle whilst |
| * minimising the critical path. The pseudo-mod instructions do not have a shifted input so X can |
| * compute the initial add/sub and Y computes the pseudo-mod result. For all other add/sub |
| * operations Y computes the operation with one of the inputs supplied by the shifter and the other |
| * from operand_a. |
| * |
| * Both adder X and the shifter get supplied with operand_a and operand_b from the operation_i |
| * input. In addition the shifter gets a shift amount (shift_amt) and can use 0 instead of |
| * operand_a. The shifter concatenates operand_a (or 0) and operand_b together before shifting with |
| * operand_a in the upper (256-bit) half {operand_a/0, operand_b}. This allows the shifter to pass |
| * through operand_b simply by not performing a shift. |
| * |
| * A 0 |
| * | | |
| * \-----/ |
| * \---/ |
| * A B | B shift_amt |
| * | | | | | |
| * +-----------+ +-----------+ |
| * | Adder X | | Shifter | |
| * +-----------+ +-----------+ |
| * | | |
| * |----+ +----| |
| * | | | | |
| * X result | | Shifter result |
| * | | |
| * | | +-----------+ |
| * A | | +---| MOD WSR | |
| * | | | | +-----------+ |
| * \-----/ \-----/ |
| * \---/ \---/ |
| * | | |
| * | | |
| * +-----------+ |
| * | Adder Y | |
| * +-----------+ |
| * | |
| * Y result |
| */ |
| |
| |
| module otbn_alu_bignum |
| import otbn_pkg::*; |
| ( |
| input logic clk_i, |
| input logic rst_ni, |
| |
| input alu_bignum_operation_t operation_i, |
| output logic [WLEN-1:0] operation_result_o, |
| output logic selection_flag_o, |
| |
| input ispr_e ispr_addr_i, |
| input logic [31:0] ispr_base_wdata_i, |
| input logic [BaseWordsPerWLEN-1:0] ispr_base_wr_en_i, |
| input logic [WLEN-1:0] ispr_bignum_wdata_i, |
| input logic ispr_bignum_wr_en_i, |
| input logic ispr_init_i, |
| output logic [WLEN-1:0] ispr_rdata_o, |
| |
| input logic [WLEN-1:0] ispr_acc_i, |
| output logic [WLEN-1:0] ispr_acc_wr_data_o, |
| output logic ispr_acc_wr_en_o, |
| |
| input logic sec_wipe_mod_urnd_i, |
| input logic sec_wipe_zero_i, |
| |
| input flags_t mac_operation_flags_i, |
| input flags_t mac_operation_flags_en_i, |
| |
| input logic [WLEN-1:0] rnd_data_i, |
| input logic [WLEN-1:0] urnd_data_i, |
| |
| input logic [1:0][SideloadKeyWidth-1:0] sideload_key_shares_i |
| ); |
| /////////// |
| // ISPRs // |
| /////////// |
| |
| flags_t flags_q [NFlagGroups]; |
| flags_t flags_d [NFlagGroups]; |
| logic [NFlagGroups*FlagsWidth-1:0] flags_flattened; |
| logic [NFlagGroups-1:0] flags_en; |
| logic [NFlagGroups-1:0] is_operation_flag_group; |
| flags_t selected_flags; |
| flags_t adder_update_flags; |
| logic adder_update_flags_en, adder_update_flags_en_raw; |
| flags_t logic_update_flags; |
| logic logic_update_flags_en, logic_update_flags_en_raw; |
| flags_t mac_update_flags; |
| logic mac_update_flags_en; |
| logic ispr_update_flags_en; |
| |
| assign adder_update_flags_en = operation_i.alu_flag_en & adder_update_flags_en_raw; |
| assign logic_update_flags_en = operation_i.alu_flag_en & logic_update_flags_en_raw; |
| assign mac_update_flags_en = operation_i.mac_flag_en; |
| |
| assign ispr_update_flags_en = ispr_base_wr_en_i[0] & (ispr_addr_i == IsprFlags); |
| |
| `ASSERT(UpdateFlagsOnehot, $onehot0({ispr_init_i, adder_update_flags_en, logic_update_flags_en, |
| mac_update_flags_en, ispr_update_flags_en})) |
| |
| assign selected_flags = flags_q[operation_i.flag_group]; |
| |
| assign mac_update_flags = (selected_flags & ~mac_operation_flags_en_i) | |
| (mac_operation_flags_i & mac_operation_flags_en_i); |
| |
| for (genvar i_fg = 0; i_fg < NFlagGroups; i_fg++) begin : g_flag_groups |
| always_ff @(posedge clk_i or negedge rst_ni) begin |
| if (!rst_ni) begin |
| flags_q[i_fg] <= '{Z : 1'b0, L : 1'b0, M : 1'b0, C : 1'b0}; |
| end else if (flags_en[i_fg]) begin |
| flags_q[i_fg] <= flags_d[i_fg]; |
| end |
| end |
| |
| assign is_operation_flag_group[i_fg] = operation_i.flag_group == i_fg; |
| |
| assign flags_flattened[i_fg*FlagsWidth+:FlagsWidth] = flags_q[i_fg]; |
| |
| // Flag updates can come from the Y adder result, the logical operation result or from an ISPR |
| // write. |
| always_comb begin |
| flags_d[i_fg] = adder_update_flags; |
| |
| unique case (1'b1) |
| ispr_init_i: flags_d[i_fg] = '0; |
| adder_update_flags_en: flags_d[i_fg] = adder_update_flags; |
| logic_update_flags_en: flags_d[i_fg] = logic_update_flags; |
| mac_update_flags_en: flags_d[i_fg] = mac_update_flags; |
| ispr_update_flags_en: flags_d[i_fg] = ispr_base_wdata_i[i_fg*FlagsWidth+:FlagsWidth]; |
| sec_wipe_zero_i: flags_d[i_fg] = '0; |
| default: ; |
| endcase |
| end |
| |
| assign flags_en[i_fg] = ispr_init_i | ispr_update_flags_en | |
| (adder_update_flags_en & is_operation_flag_group[i_fg]) | |
| (logic_update_flags_en & is_operation_flag_group[i_fg]) | |
| (mac_update_flags_en & is_operation_flag_group[i_fg]) | |
| sec_wipe_zero_i; |
| end |
| |
| |
| logic [WLEN-1:0] mod_q; |
| logic [WLEN-1:0] mod_d; |
| logic [BaseWordsPerWLEN-1:0] mod_wr_en; |
| |
| for (genvar i_word = 0; i_word < BaseWordsPerWLEN; i_word++) begin : g_mod_words |
| always_ff @(posedge clk_i or negedge rst_ni) begin |
| if (!rst_ni) begin |
| mod_q[i_word*32+:32] <= '0; |
| end else if (mod_wr_en[i_word]) begin |
| mod_q[i_word*32+:32] <= mod_d[i_word*32+:32]; |
| end |
| end |
| |
| always_comb begin |
| |
| unique case (1'b1) |
| sec_wipe_mod_urnd_i: mod_d[i_word*32+:32] = urnd_data_i[i_word*32+:32]; |
| sec_wipe_zero_i: mod_d[i_word*32+:32] = 32'd0; |
| default: mod_d[i_word*32+:32] = ispr_bignum_wdata_i[i_word*32+:32]; |
| endcase |
| |
| `ASSERT(ModSecWipeSelOneHot, $onehot0({sec_wipe_mod_urnd_i, sec_wipe_zero_i})) |
| |
| unique case (1'b1) |
| ispr_init_i: mod_d[i_word*32+:32] = '0; |
| ispr_base_wr_en_i[i_word]: mod_d[i_word*32+:32] = ispr_base_wdata_i; |
| default: ; |
| endcase |
| end |
| |
| `ASSERT(ModWrSelOneHot, $onehot0({ispr_init_i, ispr_base_wr_en_i[i_word]})) |
| |
| assign mod_wr_en[i_word] = ispr_init_i | |
| ((ispr_addr_i == IsprMod) & (ispr_base_wr_en_i[i_word] | ispr_bignum_wr_en_i)) | |
| sec_wipe_mod_urnd_i | sec_wipe_zero_i; |
| end |
| |
| assign ispr_acc_wr_en_o = ((ispr_addr_i == IsprAcc) & ispr_bignum_wr_en_i) | ispr_init_i; |
| assign ispr_acc_wr_data_o = ispr_init_i ? '0 : ispr_bignum_wdata_i; |
| |
| always_comb begin |
| ispr_rdata_o = mod_q; |
| |
| unique case (ispr_addr_i) |
| IsprMod: ispr_rdata_o = mod_q; |
| IsprRnd: ispr_rdata_o = rnd_data_i; |
| IsprUrnd: ispr_rdata_o = urnd_data_i; |
| IsprAcc: ispr_rdata_o = ispr_acc_i; |
| IsprFlags: ispr_rdata_o = {{(WLEN - (NFlagGroups * FlagsWidth)){1'b0}}, flags_flattened}; |
| IsprKeyS0L: ispr_rdata_o = sideload_key_shares_i[0][255:0]; |
| IsprKeyS0H: ispr_rdata_o = {{(WLEN - (SideloadKeyWidth - 256)){1'b0}}, |
| sideload_key_shares_i[0][SideloadKeyWidth-1:256]}; |
| IsprKeyS1L: ispr_rdata_o = sideload_key_shares_i[1][255:0]; |
| IsprKeyS1H: ispr_rdata_o = {{(WLEN - (SideloadKeyWidth - 256)){1'b0}}, |
| sideload_key_shares_i[1][SideloadKeyWidth-1:256]}; |
| default: ; |
| endcase |
| end |
| |
| ///////////// |
| // Shifter // |
| ///////////// |
| |
| logic shift_right; |
| logic [WLEN-1:0] shifter_in_upper, shifter_in_lower, shifter_in_lower_reverse; |
| logic [WLEN*2-1:0] shifter_in; |
| logic [WLEN*2-1:0] shifter_out; |
| logic [WLEN-1:0] shifter_out_lower_reverse, shifter_res, unused_shifter_out_upper; |
| |
| assign shifter_in_upper = operation_i.op == AluOpBignumRshi ? operation_i.operand_a : '0; |
| assign shifter_in_lower = operation_i.operand_b; |
| |
| for (genvar i = 0; i < WLEN; i++) begin : g_shifter_in_lower_reverse |
| assign shifter_in_lower_reverse[i] = shifter_in_lower[WLEN-i-1]; |
| end |
| |
| assign shifter_in = {shifter_in_upper, shift_right ? shifter_in_lower : shifter_in_lower_reverse}; |
| |
| assign shifter_out = shifter_in >> operation_i.shift_amt; |
| |
| for (genvar i = 0; i < WLEN; i++) begin : g_shifter_out_lower_reverse |
| assign shifter_out_lower_reverse[i] = shifter_out[WLEN-i-1]; |
| end |
| |
| assign shifter_res = shift_right ? shifter_out[WLEN-1:0] : shifter_out_lower_reverse; |
| |
| // Only the lower WLEN bits of the shift result are returned. |
| assign unused_shifter_out_upper = shifter_out[WLEN*2-1:WLEN]; |
| |
| ////////////////// |
| // Adders X & Y // |
| ////////////////// |
| |
| logic [WLEN:0] adder_x_op_a, adder_x_op_b; |
| logic adder_x_carry_in; |
| logic adder_x_op_b_invert; |
| logic [WLEN+1:0] adder_x_res; |
| |
| logic [WLEN:0] adder_y_op_a, adder_y_op_b; |
| logic adder_y_carry_in; |
| logic adder_y_op_b_invert; |
| logic [WLEN+1:0] adder_y_res; |
| |
| logic shift_mod_sel; |
| logic [WLEN-1:0] shift_mod_mux_out; |
| logic x_res_operand_a_sel; |
| logic [WLEN-1:0] x_res_operand_a_mux_out; |
| |
| assign adder_x_op_a = {operation_i.operand_a, 1'b1}; |
| assign adder_x_op_b = {adder_x_op_b_invert ? ~operation_i.operand_b : operation_i.operand_b, |
| adder_x_carry_in}; |
| |
| assign adder_x_res = adder_x_op_a + adder_x_op_b; |
| |
| assign x_res_operand_a_mux_out = x_res_operand_a_sel ? adder_x_res[WLEN:1] : |
| operation_i.operand_a; |
| assign shift_mod_mux_out = shift_mod_sel ? shifter_res : mod_q; |
| |
| assign adder_y_op_a = {x_res_operand_a_mux_out, 1'b1}; |
| assign adder_y_op_b = {adder_y_op_b_invert ? ~shift_mod_mux_out : shift_mod_mux_out, |
| adder_y_carry_in}; |
| |
| assign adder_y_res = adder_y_op_a + adder_y_op_b; |
| |
| assign adder_update_flags.C = (operation_i.op == AluOpBignumAdd || |
| operation_i.op == AluOpBignumAddc) ? adder_y_res[WLEN+1] : |
| ~adder_y_res[WLEN+1]; |
| assign adder_update_flags.M = adder_y_res[WLEN]; |
| assign adder_update_flags.L = adder_y_res[1]; |
| assign adder_update_flags.Z = ~|adder_y_res[WLEN:1]; |
| |
| // The LSb of the adder results are unused. |
| logic unused_adder_x_res_lsb, unused_adder_y_res_lsb; |
| assign unused_adder_x_res_lsb = adder_x_res[0]; |
| assign unused_adder_y_res_lsb = adder_y_res[0]; |
| |
| ////////////////////////////// |
| // Shifter & Adders control // |
| ////////////////////////////// |
| |
| always_comb begin |
| shift_right = 1'b0; |
| adder_x_carry_in = 1'b0; |
| adder_x_op_b_invert = 1'b0; |
| x_res_operand_a_sel = 1'b0; |
| shift_mod_sel = 1'b0; |
| adder_y_carry_in = 1'b0; |
| adder_y_op_b_invert = 1'b0; |
| adder_update_flags_en_raw = 1'b0; |
| logic_update_flags_en_raw = 1'b0; |
| |
| unique case (operation_i.op) |
| AluOpBignumAdd: begin |
| // Shifter computes B [>>|<<] shift_amt |
| // Y computes A + shifter_res |
| // X ignored |
| shift_right = operation_i.shift_right; |
| x_res_operand_a_sel = 1'b0; |
| shift_mod_sel = 1'b1; |
| adder_y_carry_in = 1'b0; |
| adder_y_op_b_invert = 1'b0; |
| adder_update_flags_en_raw = 1'b1; |
| end |
| AluOpBignumAddc: begin |
| // Shifter computes B [>>|<<] shift_amt |
| // Y computes A + shifter_res + flags.C |
| // X ignored |
| shift_right = operation_i.shift_right; |
| x_res_operand_a_sel = 1'b0; |
| shift_mod_sel = 1'b1; |
| adder_y_carry_in = selected_flags.C; |
| adder_y_op_b_invert = 1'b0; |
| adder_update_flags_en_raw = 1'b1; |
| end |
| AluOpBignumAddm: begin |
| // X computes A + B |
| // Y computes adder_x_res - mod = adder_x_res + ~mod + 1 |
| // Shifter ignored |
| // Output mux chooses result based on top bit of X result (whether mod subtraction in |
| // Y should be applied or not) |
| adder_x_carry_in = 1'b0; |
| adder_x_op_b_invert = 1'b0; |
| x_res_operand_a_sel = 1'b1; |
| shift_mod_sel = 1'b0; |
| adder_y_carry_in = 1'b1; |
| adder_y_op_b_invert = 1'b1; |
| end |
| AluOpBignumSub: begin |
| // Shifter computes B [>>|<<] shift_amt |
| // Y computes A - shifter_res = A + ~shifter_res + 1 |
| // X ignored |
| shift_right = operation_i.shift_right; |
| x_res_operand_a_sel = 1'b0; |
| shift_mod_sel = 1'b1; |
| adder_y_carry_in = 1'b1; |
| adder_y_op_b_invert = 1'b1; |
| adder_update_flags_en_raw = 1'b1; |
| end |
| AluOpBignumSubb: begin |
| // Shifter computes B [>>|<<] shift_amt |
| // Y computes A - shifter_res + ~flags.C = A + ~shifter_res + flags.C |
| // X ignored |
| shift_right = operation_i.shift_right; |
| x_res_operand_a_sel = 1'b0; |
| shift_mod_sel = 1'b1; |
| adder_y_carry_in = ~selected_flags.C; |
| adder_y_op_b_invert = 1'b1; |
| adder_update_flags_en_raw = 1'b1; |
| end |
| AluOpBignumSubm: begin |
| // X computes A - B = A + ~B + 1 |
| // Y computes adder_x_res + mod |
| // Shifter ignored |
| // Output mux chooses result based on top bit of X result (whether subtraction in Y should |
| // be applied or not) |
| adder_x_carry_in = 1'b1; |
| adder_x_op_b_invert = 1'b1; |
| x_res_operand_a_sel = 1'b1; |
| shift_mod_sel = 1'b0; |
| adder_y_carry_in = 1'b0; |
| adder_y_op_b_invert = 1'b0; |
| end |
| AluOpBignumRshi: begin |
| // Shifter computes {A, B} >> shift_amt |
| // X, Y ignored |
| shift_right = 1'b1; |
| end |
| AluOpBignumXor, |
| AluOpBignumOr, |
| AluOpBignumAnd, |
| AluOpBignumNot: begin |
| // Shift computes one operand for the logical operation |
| // X & Y ignored |
| shift_right = operation_i.shift_right; |
| logic_update_flags_en_raw = 1'b1; |
| end |
| default: ; |
| endcase |
| end |
| |
| //////////////////////// |
| // Logical operations // |
| //////////////////////// |
| |
| logic [WLEN-1:0] logical_res; |
| |
| always_comb begin |
| logical_res = ~operation_i.operand_a; |
| |
| unique case (operation_i.op) |
| AluOpBignumXor: logical_res = operation_i.operand_a ^ shifter_res; |
| AluOpBignumOr: logical_res = operation_i.operand_a | shifter_res; |
| AluOpBignumAnd: logical_res = operation_i.operand_a & shifter_res; |
| AluOpBignumNot: logical_res = ~shifter_res; |
| default: ; |
| endcase |
| end |
| |
| // Logical operations only update M, L and Z; C must remain at its old value. |
| assign logic_update_flags.C = selected_flags.C; |
| assign logic_update_flags.M = logical_res[WLEN-1]; |
| assign logic_update_flags.L = logical_res[0]; |
| assign logic_update_flags.Z = ~|logical_res; |
| |
| ///////////////////////////////// |
| // Conditional Select Flag Mux // |
| ///////////////////////////////// |
| |
| always_comb begin |
| unique case (operation_i.sel_flag) |
| FlagC: selection_flag_o = selected_flags.C; |
| FlagM: selection_flag_o = selected_flags.M; |
| FlagL: selection_flag_o = selected_flags.L; |
| // FlagZ case |
| default: selection_flag_o = selected_flags.Z; |
| endcase |
| end |
| |
| //////////////////////// |
| // Output multiplexer // |
| //////////////////////// |
| |
| always_comb begin |
| operation_result_o = adder_y_res[WLEN:1]; |
| |
| unique case(operation_i.op) |
| AluOpBignumAdd, |
| AluOpBignumAddc, |
| AluOpBignumSub, |
| AluOpBignumSubb: begin |
| operation_result_o = adder_y_res[WLEN:1]; |
| end |
| |
| // For pseudo-mod operations the result depends upon initial a + b / a - b result that is |
| // computed in X. Operation to add/subtract mod (X + mod / X - mod) is computed in Y. |
| // Subtraction is computed using in the X & Y adders as a - b == a + ~b + 1. Note that for |
| // a - b the top bit of the result will be set if a - b >= 0 and otherwise clear. |
| |
| // BN.ADDM - X = a + b, Y = X - mod, subtract mod if a + b >= mod |
| // * If X generates carry a + b > mod (as mod is 256-bit) - Select Y result |
| // * If Y generates carry X - mod == (a + b) - mod >= 0 hence a + b >= mod, note this is only |
| // valid if X does not generate carry - Select Y result |
| // * If neither happen a + b < mod - Select X result |
| AluOpBignumAddm: begin |
| if (adder_x_res[WLEN+1] || adder_y_res[WLEN+1]) begin |
| operation_result_o = adder_y_res[WLEN:1]; |
| end else begin |
| operation_result_o = adder_x_res[WLEN:1]; |
| end |
| end |
| |
| // BN.SUBM - X = a - b, Y = X + mod, add mod if a - b < 0 |
| // * If X generates carry a - b >= 0 - Select X result |
| // * Otherwise select Y result |
| AluOpBignumSubm: begin |
| if (adder_x_res[WLEN+1]) begin |
| operation_result_o = adder_x_res[WLEN:1]; |
| end else begin |
| operation_result_o = adder_y_res[WLEN:1]; |
| end |
| end |
| |
| AluOpBignumRshi: begin |
| operation_result_o = shifter_res[WLEN-1:0]; |
| end |
| |
| AluOpBignumXor, |
| AluOpBignumOr, |
| AluOpBignumAnd, |
| AluOpBignumNot: begin |
| operation_result_o = logical_res; |
| end |
| default: ; |
| endcase |
| end |
| endmodule |