| // Copyright lowRISC contributors. |
| // Licensed under the Apache License, Version 2.0, see LICENSE for details. |
| // SPDX-License-Identifier: Apache-2.0 |
| |
| `include "prim_assert.sv" |
| |
| /** |
| * OpenTitan Big Number Accelerator (OTBN) |
| */ |
| module otbn |
| import prim_alert_pkg::*; |
| import otbn_pkg::*; |
| import otbn_reg_pkg::*; |
| #( |
| parameter bit Stub = 1'b0, |
| parameter regfile_e RegFile = RegFileFF, |
| parameter logic [NumAlerts-1:0] AlertAsyncOn = {NumAlerts{1'b1}}, |
| |
| // Default seed for URND PRNG |
| parameter urnd_prng_seed_t RndCnstUrndPrngSeed = RndCnstUrndPrngSeedDefault, |
| |
| // Enable internal secure wipe |
| parameter bit SecWipeEn = 1'b0, |
| |
| // Default seed and nonce for scrambling |
| parameter otp_ctrl_pkg::otbn_key_t RndCnstOtbnKey = RndCnstOtbnKeyDefault, |
| parameter otp_ctrl_pkg::otbn_nonce_t RndCnstOtbnNonce = RndCnstOtbnNonceDefault |
| ) ( |
| input clk_i, |
| input rst_ni, |
| |
| input tlul_pkg::tl_h2d_t tl_i, |
| output tlul_pkg::tl_d2h_t tl_o, |
| |
| // Inter-module signals |
| output logic idle_o, |
| output logic idle_otp_o, |
| |
| // Interrupts |
| output logic intr_done_o, |
| |
| // Alerts |
| input prim_alert_pkg::alert_rx_t [NumAlerts-1:0] alert_rx_i, |
| output prim_alert_pkg::alert_tx_t [NumAlerts-1:0] alert_tx_o, |
| |
| // Lifecycle interface |
| input lc_ctrl_pkg::lc_tx_t lc_escalate_en_i, |
| |
| // Memory configuration |
| input prim_ram_1p_pkg::ram_1p_cfg_t ram_cfg_i, |
| |
| // EDN clock and interface |
| input clk_edn_i, |
| input rst_edn_ni, |
| output edn_pkg::edn_req_t edn_rnd_o, |
| input edn_pkg::edn_rsp_t edn_rnd_i, |
| |
| output edn_pkg::edn_req_t edn_urnd_o, |
| input edn_pkg::edn_rsp_t edn_urnd_i, |
| |
| // Key request to OTP (running on clk_fixed) |
| input clk_otp_i, |
| input rst_otp_ni, |
| output otp_ctrl_pkg::otbn_otp_key_req_t otbn_otp_key_o, |
| input otp_ctrl_pkg::otbn_otp_key_rsp_t otbn_otp_key_i, |
| |
| input keymgr_pkg::otbn_key_req_t keymgr_key_i |
| ); |
| |
| import prim_util_pkg::vbits; |
| |
| logic rst_n; |
| |
| // hold module in reset permanently when stubbing |
| if (Stub) begin : gen_stub_otbn |
| assign rst_n = 1'b0; |
| end else begin : gen_real_otbn |
| assign rst_n = rst_ni; |
| end |
| |
| // The OTBN_*_SIZE parameters are auto-generated by regtool and come from the bus window sizes; |
| // they are given in bytes and must be powers of two. |
| // |
| // Note that DMEM is actually twice as big as is accessible from the register interface, so we |
| // have to double the apparent size here. |
| localparam int ImemSizeByte = int'(otbn_reg_pkg::OTBN_IMEM_SIZE); |
| localparam int DmemSizeByte = int'(2 * otbn_reg_pkg::OTBN_DMEM_SIZE); |
| |
| localparam int ImemAddrWidth = vbits(ImemSizeByte); |
| localparam int DmemAddrWidth = vbits(DmemSizeByte); |
| |
| `ASSERT_INIT(ImemSizePowerOfTwo, 2 ** ImemAddrWidth == ImemSizeByte) |
| `ASSERT_INIT(DmemSizePowerOfTwo, 2 ** DmemAddrWidth == DmemSizeByte) |
| |
| logic start_d, start_q; |
| logic busy_execute_d, busy_execute_q; |
| logic done, locked, idle; |
| logic illegal_bus_access_d, illegal_bus_access_q; |
| |
| logic recoverable_err; |
| logic reg_intg_violation; |
| err_bits_t err_bits, err_bits_d, err_bits_q; |
| logic err_bits_en; |
| |
| // ERR_BITS register should be cleared due to a write request from the host processor |
| // when OTBN is not running. |
| logic err_bits_clear; |
| |
| logic software_errs_fatal_q, software_errs_fatal_d; |
| |
| otbn_reg2hw_t reg2hw; |
| otbn_hw2reg_t hw2reg; |
| |
| // Bus device windows, as specified in otbn.hjson |
| typedef enum logic { |
| TlWinImem = 1'b0, |
| TlWinDmem = 1'b1 |
| } tl_win_e; |
| |
| tlul_pkg::tl_h2d_t tl_win_h2d[2]; |
| tlul_pkg::tl_d2h_t tl_win_d2h[2]; |
| |
| // The clock can be gated and some registers can be updated as long as OTBN isn't currently |
| // running. Other registers can only be updated when OTBN is in the Idle state (which also implies |
| // !locked). |
| logic is_not_running; |
| assign is_not_running = ~busy_execute_q; |
| |
| // Inter-module signals ====================================================== |
| |
| // Note: This is not the same thing as STATUS == IDLE. For example, we want to allow clock gating |
| // when locked. |
| assign idle_o = is_not_running; |
| |
| // TODO: These two signals aren't technically in the same clock domain. Sort out how we do the |
| // signalling properly. |
| assign idle_otp_o = idle_o; |
| |
| // Lifecycle ================================================================== |
| |
| lc_ctrl_pkg::lc_tx_t lc_escalate_en; |
| prim_lc_sync #( |
| .NumCopies(1) |
| ) u_lc_escalate_en_sync ( |
| .clk_i, |
| .rst_ni, |
| .lc_en_i(lc_escalate_en_i), |
| .lc_en_o(lc_escalate_en) |
| ); |
| |
| // Reduce the life cycle escalation signal to a single bit to be used within this cycle. |
| logic lifecycle_escalation; |
| assign lifecycle_escalation = lc_escalate_en != lc_ctrl_pkg::Off; |
| |
| // Interrupts ================================================================ |
| |
| prim_intr_hw #( |
| .Width(1) |
| ) u_intr_hw_done ( |
| .clk_i, |
| .rst_ni (rst_n), |
| .event_intr_i (done), |
| .reg2hw_intr_enable_q_i(reg2hw.intr_enable.q), |
| .reg2hw_intr_test_q_i (reg2hw.intr_test.q), |
| .reg2hw_intr_test_qe_i (reg2hw.intr_test.qe), |
| .reg2hw_intr_state_q_i (reg2hw.intr_state.q), |
| .hw2reg_intr_state_de_o(hw2reg.intr_state.de), |
| .hw2reg_intr_state_d_o (hw2reg.intr_state.d), |
| .intr_o (intr_done_o) |
| ); |
| |
| // Instruction Memory (IMEM) ================================================= |
| |
| localparam int ImemSizeWords = ImemSizeByte / 4; |
| localparam int ImemIndexWidth = vbits(ImemSizeWords); |
| |
| // Access select to IMEM: core (1), or bus (0) |
| logic imem_access_core; |
| |
| logic imem_req; |
| logic imem_write; |
| logic [ImemIndexWidth-1:0] imem_index; |
| logic [38:0] imem_wdata; |
| logic [38:0] imem_wmask; |
| logic [38:0] imem_rdata; |
| logic imem_rvalid; |
| logic imem_illegal_bus_access; |
| |
| logic imem_req_core; |
| logic imem_write_core; |
| logic [ImemIndexWidth-1:0] imem_index_core; |
| logic [38:0] imem_rdata_core; |
| logic imem_rvalid_core; |
| logic insn_fetch_err; |
| |
| logic imem_req_bus; |
| logic imem_dummy_response_q, imem_dummy_response_d; |
| logic imem_write_bus; |
| logic [ImemIndexWidth-1:0] imem_index_bus; |
| logic [38:0] imem_wdata_bus; |
| logic [38:0] imem_wmask_bus; |
| logic [38:0] imem_rdata_bus; |
| logic [top_pkg::TL_DBW-1:0] imem_byte_mask_bus; |
| logic imem_rvalid_bus; |
| logic [1:0] imem_rerror_bus; |
| |
| logic imem_bus_intg_violation; |
| |
| typedef struct packed { |
| logic imem; |
| logic [14:0] index; |
| logic [31:0] wr_data; |
| } mem_crc_data_in_t; |
| |
| logic mem_crc_data_in_valid; |
| mem_crc_data_in_t mem_crc_data_in; |
| logic set_crc; |
| logic [31:0] crc_in, crc_out; |
| |
| logic [ImemAddrWidth-1:0] imem_addr_core; |
| assign imem_index_core = imem_addr_core[ImemAddrWidth-1:2]; |
| |
| logic [1:0] unused_imem_addr_core_wordbits; |
| assign unused_imem_addr_core_wordbits = imem_addr_core[1:0]; |
| |
| otp_ctrl_pkg::otbn_key_t otbn_imem_scramble_key; |
| otbn_imem_nonce_t otbn_imem_scramble_nonce; |
| logic otbn_imem_scramble_valid; |
| logic unused_otbn_imem_scramble_key_seed_valid; |
| |
| otp_ctrl_pkg::otbn_key_t otbn_dmem_scramble_key; |
| otbn_dmem_nonce_t otbn_dmem_scramble_nonce; |
| logic otbn_dmem_scramble_valid; |
| logic unused_otbn_dmem_scramble_key_seed_valid; |
| |
| logic otbn_scramble_state_error; |
| |
| otbn_scramble_ctrl #( |
| .RndCnstOtbnKey (RndCnstOtbnKey), |
| .RndCnstOtbnNonce(RndCnstOtbnNonce) |
| ) u_otbn_scramble_ctrl ( |
| .clk_i, |
| .rst_ni, |
| |
| .clk_otp_i, |
| .rst_otp_ni, |
| |
| .otbn_otp_key_o, |
| .otbn_otp_key_i, |
| |
| .otbn_dmem_scramble_key_o (otbn_dmem_scramble_key), |
| .otbn_dmem_scramble_nonce_o (otbn_dmem_scramble_nonce), |
| .otbn_dmem_scramble_valid_o (otbn_dmem_scramble_valid), |
| .otbn_dmem_scramble_key_seed_valid_o(unused_otbn_dmem_scramble_key_seed_valid), |
| |
| .otbn_imem_scramble_key_o (otbn_imem_scramble_key), |
| .otbn_imem_scramble_nonce_o (otbn_imem_scramble_nonce), |
| .otbn_imem_scramble_valid_o (otbn_imem_scramble_valid), |
| .otbn_imem_scramble_key_seed_valid_o(unused_otbn_imem_scramble_key_seed_valid), |
| |
| .otbn_dmem_scramble_new_req_i(1'b0), |
| .otbn_imem_scramble_new_req_i(1'b0), |
| |
| .state_error_o(otbn_scramble_state_error) |
| ); |
| |
| prim_ram_1p_scr #( |
| .Width (39), |
| .Depth (ImemSizeWords), |
| .DataBitsPerMask(39), |
| .EnableParity (0), |
| .DiffWidth (39) |
| ) u_imem ( |
| .clk_i, |
| .rst_ni(rst_n), |
| |
| .key_valid_i(otbn_imem_scramble_valid), |
| .key_i (otbn_imem_scramble_key), |
| .nonce_i (otbn_imem_scramble_nonce), |
| |
| .req_i (imem_req), |
| // TODO: OTBN should always get grant when active, wire up grant and add check it occurs, |
| // trigger fatal alert if it doesn't. |
| .gnt_o (), |
| .write_i (imem_write), |
| .addr_i (imem_index), |
| .wdata_i (imem_wdata), |
| .wmask_i (imem_wmask), |
| .intg_error_i(1'b0), |
| |
| .rdata_o (imem_rdata), |
| .rvalid_o(imem_rvalid), |
| .raddr_o (), |
| .rerror_o(), |
| .cfg_i (ram_cfg_i) |
| ); |
| |
| // IMEM access from main TL-UL bus |
| logic imem_gnt_bus; |
| // Always grant to bus accesses, when OTBN is running a dummy response is returned |
| assign imem_gnt_bus = imem_req_bus; |
| |
| import prim_mubi_pkg::MuBi4False; |
| tlul_adapter_sram #( |
| .SramAw (ImemIndexWidth), |
| .SramDw (32), |
| .Outstanding (1), |
| .ByteAccess (0), |
| .ErrOnRead (0), |
| .EnableDataIntgPt(1) |
| ) u_tlul_adapter_sram_imem ( |
| .clk_i, |
| .rst_ni (rst_n), |
| .tl_i (tl_win_h2d[TlWinImem]), |
| .tl_o (tl_win_d2h[TlWinImem]), |
| .en_ifetch_i (MuBi4False), |
| .req_o (imem_req_bus), |
| .req_type_o (), |
| .gnt_i (imem_gnt_bus), |
| .we_o (imem_write_bus), |
| .addr_o (imem_index_bus), |
| .wdata_o (imem_wdata_bus), |
| .wmask_o (imem_wmask_bus), |
| .intg_error_o(imem_bus_intg_violation), |
| .rdata_i (imem_rdata_bus), |
| .rvalid_i (imem_rvalid_bus), |
| .rerror_i (imem_rerror_bus) |
| ); |
| |
| |
| // Mux core and bus access into IMEM |
| assign imem_access_core = busy_execute_q | start_q; |
| |
| assign imem_req = imem_access_core ? imem_req_core : imem_req_bus; |
| assign imem_write = imem_access_core ? imem_write_core : imem_write_bus; |
| assign imem_index = imem_access_core ? imem_index_core : imem_index_bus; |
| assign imem_wdata = imem_access_core ? '0 : imem_wdata_bus; |
| |
| assign imem_illegal_bus_access = imem_req_bus & imem_access_core; |
| |
| assign imem_dummy_response_d = imem_illegal_bus_access; |
| always_ff @(posedge clk_i or negedge rst_ni) begin |
| if (!rst_ni) begin |
| imem_dummy_response_q <= 1'b0; |
| end else begin |
| imem_dummy_response_q <= imem_dummy_response_d; |
| end |
| end |
| |
| // The instruction memory only supports 32b word writes, so we hardcode its |
| // wmask here. |
| // |
| // Since this could cause confusion if the bus tried to do a partial write |
| // (which wasn't caught in the TLUL adapter for some reason), we assert that |
| // the wmask signal from the bus is indeed '1 when it requests a write. We |
| // don't have the corresponding check for writes from the core because the |
| // core cannot perform writes (and has no imem_wmask_o port). |
| assign imem_wmask = imem_access_core ? '1 : imem_wmask_bus; |
| `ASSERT(ImemWmaskBusIsFullWord_A, imem_req_bus && imem_write_bus |-> imem_wmask_bus == '1) |
| |
| // Explicitly tie off bus interface during core operation to avoid leaking |
| // the currently executed instruction from IMEM through the bus |
| // unintentionally. |
| assign imem_rdata_bus = !imem_access_core && !illegal_bus_access_q ? imem_rdata : 39'b0; |
| assign imem_rdata_core = imem_rdata; |
| |
| // When an illegal bus access is seen, always return a dummy response the follow cycle. |
| assign imem_rvalid_bus = (~imem_access_core & imem_rvalid) | imem_dummy_response_q; |
| assign imem_rvalid_core = imem_access_core ? imem_rvalid : 1'b0; |
| |
| assign imem_byte_mask_bus = tl_win_h2d[TlWinImem].a_mask; |
| |
| // No imem errors reported for bus reads. Integrity is carried through on the bus so integrity |
| // checking on TL responses will pick up any errors. |
| assign imem_rerror_bus = 2'b00; |
| |
| // Data Memory (DMEM) ======================================================== |
| |
| localparam int DmemSizeWords = DmemSizeByte / (WLEN / 8); |
| localparam int DmemIndexWidth = vbits(DmemSizeWords); |
| |
| // Access select to DMEM: core (1), or bus (0) |
| logic dmem_access_core; |
| |
| logic dmem_req; |
| logic dmem_write; |
| logic [DmemIndexWidth-1:0] dmem_index; |
| logic [ExtWLEN-1:0] dmem_wdata; |
| logic [ExtWLEN-1:0] dmem_wmask; |
| logic [ExtWLEN-1:0] dmem_rdata; |
| logic dmem_rvalid; |
| logic [BaseWordsPerWLEN*2-1:0] dmem_rerror_vec; |
| logic dmem_rerror; |
| logic dmem_illegal_bus_access; |
| |
| logic dmem_req_core; |
| logic dmem_write_core; |
| logic [DmemIndexWidth-1:0] dmem_index_core; |
| logic [ExtWLEN-1:0] dmem_wdata_core; |
| logic [ExtWLEN-1:0] dmem_wmask_core; |
| logic [BaseWordsPerWLEN-1:0] dmem_rmask_core_q, dmem_rmask_core_d; |
| logic [ExtWLEN-1:0] dmem_rdata_core; |
| logic dmem_rvalid_core; |
| logic dmem_rerror_core; |
| |
| logic dmem_req_bus; |
| logic dmem_dummy_response_q, dmem_dummy_response_d; |
| logic dmem_write_bus; |
| logic [DmemIndexWidth-2:0] dmem_index_bus; |
| logic [ExtWLEN-1:0] dmem_wdata_bus; |
| logic [ExtWLEN-1:0] dmem_wmask_bus; |
| logic [ExtWLEN-1:0] dmem_rdata_bus; |
| logic [DmemAddrWidth-1:0] dmem_addr_bus; |
| logic unused_dmem_addr_bus; |
| logic [31:0] dmem_wdata_narrow_bus; |
| logic [top_pkg::TL_DBW-1:0] dmem_byte_mask_bus; |
| logic dmem_rvalid_bus; |
| logic [1:0] dmem_rerror_bus; |
| |
| logic dmem_bus_intg_violation; |
| |
| logic [DmemAddrWidth-1:0] dmem_addr_core; |
| assign dmem_index_core = dmem_addr_core[DmemAddrWidth-1:DmemAddrWidth-DmemIndexWidth]; |
| |
| logic unused_dmem_addr_core_wordbits; |
| assign unused_dmem_addr_core_wordbits = ^dmem_addr_core[DmemAddrWidth-DmemIndexWidth-1:0]; |
| |
| prim_ram_1p_scr #( |
| .Width (ExtWLEN), |
| .Depth (DmemSizeWords), |
| .DataBitsPerMask (39), |
| .EnableParity (0), |
| .DiffWidth (39), |
| .ReplicateKeyStream(1) |
| ) u_dmem ( |
| .clk_i, |
| .rst_ni(rst_n), |
| |
| .key_valid_i(otbn_dmem_scramble_valid), |
| .key_i (otbn_dmem_scramble_key), |
| .nonce_i (otbn_dmem_scramble_nonce), |
| |
| .req_i (dmem_req), |
| // TODO: OTBN should always get grant when active, wire up grant and add check it occurs, |
| // trigger fatal alert if it doesn't. |
| .gnt_o (), |
| .write_i (dmem_write), |
| .addr_i (dmem_index), |
| .wdata_i (dmem_wdata), |
| .wmask_i (dmem_wmask), |
| .intg_error_i(1'b0), |
| |
| .rdata_o (dmem_rdata), |
| .rvalid_o(dmem_rvalid), |
| .raddr_o (), |
| .rerror_o(), |
| .cfg_i (ram_cfg_i) |
| ); |
| |
| always_ff @(posedge clk_i or negedge rst_ni) begin |
| if (!rst_ni) begin |
| dmem_rmask_core_q <= '0; |
| end else begin |
| if (dmem_req_core) begin |
| dmem_rmask_core_q <= dmem_rmask_core_d; |
| end |
| end |
| end |
| |
| for (genvar i_word = 0; i_word < BaseWordsPerWLEN; ++i_word) begin : g_dmem_intg_check |
| logic [1:0] dmem_rerror_raw; |
| |
| // Separate check for dmem read data integrity outside of `u_dmem` as `prim_ram_1p_adv` doesn't |
| // have functionality for only integrity checking, just fully integrated ECC. Integrity bits are |
| // implemented on a 32-bit granule so separate checks are required for each. |
| prim_secded_inv_39_32_dec u_dmem_intg_check ( |
| .data_i (dmem_rdata[i_word*39+:39]), |
| .data_o (), |
| .syndrome_o(), |
| .err_o (dmem_rerror_raw) |
| ); |
| |
| // Only report an error where the word was actually accessed. Otherwise uninitialised memory |
| // that OTBN isn't using will cause false errors. dmem_rerror is only reported for reads from |
| // OTBN. For Ibex reads integrity checking on TL responses will serve the same purpose. |
| assign dmem_rerror_vec[i_word*2 +: 2] = dmem_rerror_raw & |
| {2{dmem_rmask_core_q[i_word] & dmem_rvalid & dmem_access_core}}; |
| end |
| |
| // dmem_rerror_vec is 2 bits wide and is used to report ECC errors. Bit 1 is set if there's an |
| // uncorrectable error and bit 0 is set if there's a correctable error. However, we're treating |
| // all errors as fatal, so OR the two signals together. |
| assign dmem_rerror = |dmem_rerror_vec; |
| |
| // DMEM access from main TL-UL bus |
| logic dmem_gnt_bus; |
| // Always grant to bus accesses, when OTBN is running a dummy response is returned |
| assign dmem_gnt_bus = dmem_req_bus; |
| |
| tlul_adapter_sram #( |
| .SramAw (DmemIndexWidth - 1), |
| .SramDw (WLEN), |
| .Outstanding (1), |
| .ByteAccess (0), |
| .ErrOnRead (0), |
| .EnableDataIntgPt(1) |
| ) u_tlul_adapter_sram_dmem ( |
| .clk_i, |
| .rst_ni (rst_n), |
| .tl_i (tl_win_h2d[TlWinDmem]), |
| .tl_o (tl_win_d2h[TlWinDmem]), |
| .en_ifetch_i (MuBi4False), |
| .req_o (dmem_req_bus), |
| .req_type_o (), |
| .gnt_i (dmem_gnt_bus), |
| .we_o (dmem_write_bus), |
| .addr_o (dmem_index_bus), |
| .wdata_o (dmem_wdata_bus), |
| .wmask_o (dmem_wmask_bus), |
| .intg_error_o(dmem_bus_intg_violation), |
| .rdata_i (dmem_rdata_bus), |
| .rvalid_i (dmem_rvalid_bus), |
| .rerror_i (dmem_rerror_bus) |
| ); |
| |
| // Mux core and bus access into dmem |
| assign dmem_access_core = busy_execute_q; |
| |
| assign dmem_req = dmem_access_core ? dmem_req_core : dmem_req_bus; |
| assign dmem_write = dmem_access_core ? dmem_write_core : dmem_write_bus; |
| assign dmem_wmask = dmem_access_core ? dmem_wmask_core : dmem_wmask_bus; |
| assign dmem_index = dmem_access_core ? dmem_index_core : {1'b0, dmem_index_bus}; |
| assign dmem_wdata = dmem_access_core ? dmem_wdata_core : dmem_wdata_bus; |
| |
| assign dmem_illegal_bus_access = dmem_req_bus & dmem_access_core; |
| |
| assign dmem_dummy_response_d = dmem_illegal_bus_access; |
| always_ff @(posedge clk_i or negedge rst_ni) begin |
| if (!rst_ni) begin |
| dmem_dummy_response_q <= 1'b0; |
| end else begin |
| dmem_dummy_response_q <= dmem_dummy_response_d; |
| end |
| end |
| |
| // Explicitly tie off bus interface during core operation to avoid leaking |
| // DMEM data through the bus unintentionally. Once an illegal bus access is seen always return |
| // 0 data. |
| assign dmem_rdata_bus = !dmem_access_core && !illegal_bus_access_q ? dmem_rdata : '0; |
| assign dmem_rdata_core = dmem_rdata; |
| |
| // When an illegal bus access is seen, always return a dummy response the follow cycle. |
| assign dmem_rvalid_bus = (~dmem_access_core & dmem_rvalid) | dmem_dummy_response_q; |
| assign dmem_rvalid_core = dmem_access_core ? dmem_rvalid : 1'b0; |
| |
| // No dmem errors reported for bus reads. Integrity is carried through on the bus so integrity |
| // checking on TL responses will pick up any errors. |
| assign dmem_rerror_bus = 2'b00; |
| assign dmem_rerror_core = dmem_rerror; |
| |
| assign dmem_addr_bus = tl_win_h2d[TlWinDmem].a_address[DmemAddrWidth-1:0]; |
| assign dmem_wdata_narrow_bus = tl_win_h2d[TlWinDmem].a_data[31:0]; |
| assign dmem_byte_mask_bus = tl_win_h2d[TlWinDmem].a_mask; |
| |
| // Memory Load Integrity ===================================================== |
| // CRC logic below assumes a incoming data bus width of 32 bits |
| `ASSERT_INIT(TLDWIs32Bit_A, top_pkg::TL_DW == 32) |
| |
| // Only advance CRC calculation on full 32-bit writes; |
| assign mem_crc_data_in_valid = ~(dmem_access_core | imem_access_core) & |
| ((imem_req_bus & (imem_byte_mask_bus == 4'hf)) | |
| (dmem_req_bus & (dmem_byte_mask_bus == 4'hf))); |
| |
| assign mem_crc_data_in.wr_data = imem_req_bus ? imem_wdata_bus[31:0] : |
| dmem_wdata_narrow_bus[31:0]; |
| assign mem_crc_data_in.index = imem_req_bus ? {{15 - ImemIndexWidth{1'b0}}, imem_index_bus} : |
| {{15 - (DmemAddrWidth - 2){1'b0}}, |
| dmem_addr_bus[DmemAddrWidth-1:2]}; |
| assign mem_crc_data_in.imem = imem_req_bus; |
| |
| // Only the bits that factor into the dmem index and dmem word enables are required |
| assign unused_dmem_addr_bus = ^{dmem_addr_bus[DmemAddrWidth-1:DmemIndexWidth], |
| dmem_addr_bus[1:0]}; |
| |
| prim_crc32 #( |
| .BytesPerWord(6) |
| ) u_mem_load_crc32 ( |
| .clk_i (clk_i), |
| .rst_ni(rst_ni), |
| |
| .set_crc_i(set_crc), |
| .crc_in_i (crc_in), |
| |
| .data_valid_i(mem_crc_data_in_valid), |
| .data_i (mem_crc_data_in), |
| .crc_out_o (crc_out) |
| ); |
| |
| assign set_crc = reg2hw.load_checksum.qe; |
| assign crc_in = reg2hw.load_checksum.q; |
| assign hw2reg.load_checksum.d = crc_out; |
| |
| // Registers ================================================================= |
| |
| logic reg_bus_intg_violation; |
| |
| otbn_reg_top u_reg ( |
| .clk_i, |
| .rst_ni (rst_n), |
| .tl_i, |
| .tl_o, |
| .tl_win_o(tl_win_h2d), |
| .tl_win_i(tl_win_d2h), |
| |
| .reg2hw, |
| .hw2reg, |
| |
| .intg_err_o(reg_bus_intg_violation), |
| .devmode_i (1'b1) |
| ); |
| |
| logic bus_intg_violation; |
| assign bus_intg_violation = (imem_bus_intg_violation | dmem_bus_intg_violation | |
| reg_bus_intg_violation); |
| |
| // CMD register |
| // start is flopped to avoid long timing paths from the TL fabric into OTBN internals. |
| assign start_d = reg2hw.cmd.qe & (reg2hw.cmd.q == CmdExecute) & idle; |
| assign illegal_bus_access_d = dmem_illegal_bus_access | imem_illegal_bus_access; |
| |
| // Flop `illegal_bus_access_q` so we know an illegal bus access has happened and to break a timing |
| // path from the TL interface into the OTBN core. |
| always_ff @(posedge clk_i or negedge rst_ni) begin |
| if (!rst_ni) begin |
| start_q <= 1'b0; |
| illegal_bus_access_q <= 1'b0; |
| end else begin |
| start_q <= start_d; |
| illegal_bus_access_q <= illegal_bus_access_d; |
| end |
| end |
| |
| // STATUS register |
| always_comb begin |
| unique case (1'b1) |
| busy_execute_q: hw2reg.status.d = StatusBusyExecute; |
| locked: hw2reg.status.d = StatusLocked; |
| idle: hw2reg.status.d = StatusIdle; |
| // TODO: Add other busy flags |
| |
| // Default case should not be reachable (checked by OtbnStatesOneHot assertion below) |
| default: hw2reg.status.d = StatusLocked; |
| endcase |
| end |
| assign hw2reg.status.de = 1'b1; |
| |
| `ASSERT(OtbnStatesOneHot, $onehot({busy_execute_q, locked, idle})) |
| |
| // CTRL register |
| assign software_errs_fatal_d = |
| reg2hw.ctrl.qe && idle ? reg2hw.ctrl.q : |
| software_errs_fatal_q; |
| |
| always_ff @(posedge clk_i or negedge rst_ni) begin |
| if (!rst_ni) begin |
| software_errs_fatal_q <= 1'b0; |
| end else begin |
| software_errs_fatal_q <= software_errs_fatal_d; |
| end |
| end |
| |
| assign hw2reg.ctrl.d = software_errs_fatal_q; |
| |
| // ERR_BITS register |
| // The error bits for an OTBN operation get stored on the cycle that done is |
| // asserted. Software is expected to read them out before starting the next operation. |
| |
| assign hw2reg.err_bits.bad_data_addr.d = err_bits_q.bad_data_addr; |
| assign hw2reg.err_bits.bad_insn_addr.d = err_bits_q.bad_insn_addr; |
| assign hw2reg.err_bits.call_stack.d = err_bits_q.call_stack; |
| assign hw2reg.err_bits.illegal_insn.d = err_bits_q.illegal_insn; |
| assign hw2reg.err_bits.loop.d = err_bits_q.loop; |
| assign hw2reg.err_bits.key_invalid.d = err_bits_q.key_invalid; |
| assign hw2reg.err_bits.imem_intg_violation.d = err_bits_q.imem_intg_violation; |
| assign hw2reg.err_bits.dmem_intg_violation.d = err_bits_q.dmem_intg_violation; |
| assign hw2reg.err_bits.reg_intg_violation.d = err_bits_q.reg_intg_violation; |
| assign hw2reg.err_bits.bus_intg_violation.d = err_bits_q.bus_intg_violation; |
| assign hw2reg.err_bits.bad_internal_state.d = err_bits_q.bad_internal_state; |
| assign hw2reg.err_bits.illegal_bus_access.d = err_bits_q.illegal_bus_access; |
| assign hw2reg.err_bits.lifecycle_escalation.d = err_bits_q.lifecycle_escalation; |
| assign hw2reg.err_bits.fatal_software.d = err_bits_q.fatal_software; |
| |
| assign err_bits_clear = reg2hw.err_bits.bad_data_addr.qe & is_not_running; |
| assign err_bits_d = err_bits_clear ? '0 : err_bits; |
| assign err_bits_en = err_bits_clear | done; |
| |
| logic unused_reg2hw_err_bits; |
| |
| // Majority of reg2hw.err_bits is unused as write values are ignored, all writes clear the |
| // register to 0. |
| assign unused_reg2hw_err_bits = ^{reg2hw.err_bits.bad_data_addr.q, |
| reg2hw.err_bits.bad_insn_addr, |
| reg2hw.err_bits.call_stack, |
| reg2hw.err_bits.illegal_insn, |
| reg2hw.err_bits.loop, |
| reg2hw.err_bits.key_invalid, |
| reg2hw.err_bits.imem_intg_violation, |
| reg2hw.err_bits.dmem_intg_violation, |
| reg2hw.err_bits.reg_intg_violation, |
| reg2hw.err_bits.bus_intg_violation, |
| reg2hw.err_bits.bad_internal_state, |
| reg2hw.err_bits.illegal_bus_access, |
| reg2hw.err_bits.lifecycle_escalation, |
| reg2hw.err_bits.fatal_software}; |
| |
| always_ff @(posedge clk_i or negedge rst_ni) begin |
| if (!rst_ni) begin |
| err_bits_q <= '0; |
| end else if (err_bits_en) begin |
| err_bits_q <= err_bits_d; |
| end |
| end |
| |
| // FATAL_ALERT_CAUSE register. The .de and .d values are equal for each bit, so that it can only |
| // be set, not cleared. |
| assign hw2reg.fatal_alert_cause.imem_intg_violation.de = insn_fetch_err; |
| assign hw2reg.fatal_alert_cause.imem_intg_violation.d = insn_fetch_err; |
| assign hw2reg.fatal_alert_cause.dmem_intg_violation.de = dmem_rerror; |
| assign hw2reg.fatal_alert_cause.dmem_intg_violation.d = dmem_rerror; |
| assign hw2reg.fatal_alert_cause.reg_intg_violation.de = reg_intg_violation; |
| assign hw2reg.fatal_alert_cause.reg_intg_violation.d = reg_intg_violation; |
| assign hw2reg.fatal_alert_cause.bus_intg_violation.de = bus_intg_violation; |
| assign hw2reg.fatal_alert_cause.bus_intg_violation.d = bus_intg_violation; |
| assign hw2reg.fatal_alert_cause.bad_internal_state.de = 0; |
| assign hw2reg.fatal_alert_cause.bad_internal_state.d = 0; |
| assign hw2reg.fatal_alert_cause.illegal_bus_access.de = illegal_bus_access_d; |
| assign hw2reg.fatal_alert_cause.illegal_bus_access.d = illegal_bus_access_d; |
| assign hw2reg.fatal_alert_cause.lifecycle_escalation.de = lifecycle_escalation; |
| assign hw2reg.fatal_alert_cause.lifecycle_escalation.d = lifecycle_escalation; |
| assign hw2reg.fatal_alert_cause.fatal_software.de = done; |
| assign hw2reg.fatal_alert_cause.fatal_software.d = err_bits_d.fatal_software; |
| |
| // INSN_CNT register |
| logic [31:0] insn_cnt; |
| logic insn_cnt_clear; |
| logic unused_insn_cnt_q; |
| assign hw2reg.insn_cnt.d = insn_cnt; |
| assign insn_cnt_clear = (reg2hw.insn_cnt.qe & is_not_running) | lifecycle_escalation; |
| // Ignore all write data to insn_cnt. All writes zero the register. |
| assign unused_insn_cnt_q = ^reg2hw.insn_cnt.q; |
| |
| // Alerts ==================================================================== |
| |
| logic [NumAlerts-1:0] alert_test; |
| assign alert_test[AlertFatal] = reg2hw.alert_test.fatal.q & reg2hw.alert_test.fatal.qe; |
| assign alert_test[AlertRecov] = reg2hw.alert_test.recov.q & reg2hw.alert_test.recov.qe; |
| |
| logic [NumAlerts-1:0] alerts; |
| assign alerts[AlertFatal] = insn_fetch_err | |
| dmem_rerror | |
| bus_intg_violation | |
| reg_intg_violation | |
| illegal_bus_access_d | |
| lifecycle_escalation | |
| err_bits.fatal_software; |
| |
| assign alerts[AlertRecov] = recoverable_err & done; |
| |
| for (genvar i = 0; i < NumAlerts; i++) begin : gen_alert_tx |
| prim_alert_sender #( |
| .AsyncOn(AlertAsyncOn[i]), |
| .IsFatal(i == AlertFatal) |
| ) u_prim_alert_sender ( |
| .clk_i, |
| .rst_ni (rst_n), |
| .alert_test_i (alert_test[i]), |
| .alert_req_i (alerts[i]), |
| .alert_ack_o (), |
| .alert_state_o(), |
| .alert_rx_i (alert_rx_i[i]), |
| .alert_tx_o (alert_tx_o[i]) |
| ); |
| end |
| |
| |
| // EDN Connections ============================================================ |
| logic edn_rnd_req, edn_rnd_ack; |
| logic [EdnDataWidth-1:0] edn_rnd_data; |
| |
| logic edn_urnd_req, edn_urnd_ack; |
| logic [EdnDataWidth-1:0] edn_urnd_data; |
| |
| // These synchronize the data coming from EDN and stack the 32 bit EDN words to achieve an |
| // internal entropy width of 256 bit. |
| |
| prim_edn_req #( |
| .OutWidth(EdnDataWidth) |
| ) u_prim_edn_rnd_req ( |
| .clk_i, |
| .rst_ni ( rst_n ), |
| .req_chk_i ( 1'b1 ), |
| .req_i ( edn_rnd_req ), |
| .ack_o ( edn_rnd_ack ), |
| .data_o ( edn_rnd_data ), |
| .fips_o ( ), // unused |
| .clk_edn_i, |
| .rst_edn_ni, |
| .edn_o ( edn_rnd_o ), |
| .edn_i ( edn_rnd_i ) |
| ); |
| |
| prim_edn_req #( |
| .OutWidth(EdnDataWidth) |
| ) u_prim_edn_urnd_req ( |
| .clk_i, |
| .rst_ni ( rst_n ), |
| .req_chk_i ( 1'b1 ), |
| .req_i ( edn_urnd_req ), |
| .ack_o ( edn_urnd_ack ), |
| .data_o ( edn_urnd_data ), |
| .fips_o ( ), // unused |
| .clk_edn_i, |
| .rst_edn_ni, |
| .edn_o ( edn_urnd_o ), |
| .edn_i ( edn_urnd_i ) |
| ); |
| |
| |
| // OTBN Core ================================================================= |
| |
| always_ff @(posedge clk_i or negedge rst_n) begin |
| if (!rst_n) begin |
| busy_execute_q <= 1'b0; |
| end else begin |
| busy_execute_q <= busy_execute_d; |
| end |
| end |
| assign busy_execute_d = (busy_execute_q | start_d) & ~done; |
| |
| `ifdef OTBN_BUILD_MODEL |
| // Build both model and RTL implementation into the design, and switch at runtime through a |
| // plusarg. |
| |
| // Set the plusarg +OTBN_USE_MODEL=1 to use the model (ISS) instead of the RTL implementation. |
| bit otbn_use_model; |
| initial begin |
| $value$plusargs("OTBN_USE_MODEL=%d", otbn_use_model); |
| end |
| |
| // Mux between model and RTL implementation at runtime. |
| logic done_rr_model, done_rtl; |
| logic locked_model, locked_rtl; |
| logic start_model, start_rtl; |
| err_bits_t err_bits_model, err_bits_rtl; |
| logic recoverable_err_model, recoverable_err_rtl; |
| logic [31:0] insn_cnt_model, insn_cnt_rtl; |
| logic edn_rnd_req_model, edn_rnd_req_rtl; |
| logic edn_urnd_req_model, edn_urnd_req_rtl; |
| |
| edn_pkg::edn_rsp_t edn_rnd_model_i; |
| |
| edn_pkg::edn_rsp_t edn_urnd_model_i; |
| |
| logic edn_rnd_data_valid; |
| logic edn_urnd_data_valid; |
| |
| // Note that the "done" signal will come two cycles later when using the model as a core than it |
| // does when using the RTL |
| assign done = otbn_use_model ? done_rr_model : done_rtl; |
| assign locked = otbn_use_model ? locked_model : locked_rtl; |
| assign err_bits = otbn_use_model ? err_bits_model : err_bits_rtl; |
| assign recoverable_err = otbn_use_model ? recoverable_err_model : recoverable_err_rtl; |
| assign insn_cnt = otbn_use_model ? insn_cnt_model : insn_cnt_rtl; |
| assign start_model = start_q & otbn_use_model; |
| assign start_rtl = start_q & ~otbn_use_model; |
| |
| // Model (Instruction Set Simulator) |
| assign edn_rnd_model_i = otbn_use_model ? edn_rnd_i : '0; |
| assign edn_rnd_req = otbn_use_model ? edn_rnd_req_model : edn_rnd_req_rtl; |
| assign edn_rnd_data_valid = edn_rnd_req & edn_rnd_ack; |
| |
| assign edn_urnd_model_i = otbn_use_model ? edn_urnd_i : '0; |
| assign edn_urnd_req = otbn_use_model ? edn_urnd_req_model : edn_urnd_req_rtl; |
| assign edn_urnd_data_valid = edn_urnd_req & edn_urnd_ack; |
| |
| otbn_core_model #( |
| .MemScope(".."), |
| .DesignScope(""), |
| .SecWipeEn(SecWipeEn) |
| ) u_otbn_core_model ( |
| .clk_i, |
| .clk_edn_i, |
| |
| .rst_ni (rst_n), |
| .rst_edn_ni, |
| |
| .start_i (start_model), |
| |
| .lc_escalate_en_i (lc_escalate_en_i == lc_ctrl_pkg::On), |
| |
| .err_bits_o (err_bits_model), |
| |
| .edn_rnd_i (edn_rnd_model_i), |
| .edn_rnd_o (edn_rnd_req_model), |
| .edn_rnd_cdc_done_i (edn_rnd_data_valid), |
| |
| .edn_urnd_i (edn_urnd_model_i), |
| .edn_urnd_o (edn_urnd_req_model), |
| .edn_urnd_cdc_done_i (edn_urnd_data_valid), |
| |
| .status_o (), |
| .insn_cnt_o (insn_cnt_model), |
| |
| .done_rr_o (done_rr_model), |
| |
| .err_o () |
| ); |
| |
| assign recoverable_err_model = |{err_bits_model.key_invalid, |
| err_bits_model.loop, |
| err_bits_model.illegal_insn, |
| err_bits_model.call_stack, |
| err_bits_model.bad_insn_addr, |
| err_bits_model.bad_data_addr} & |
| ~software_errs_fatal_q; |
| |
| assign locked_model = 1'b0; |
| |
| // RTL implementation |
| otbn_core #( |
| .RegFile(RegFile), |
| .DmemSizeByte(DmemSizeByte), |
| .ImemSizeByte(ImemSizeByte), |
| .SecWipeEn(SecWipeEn), |
| .RndCnstUrndPrngSeed(RndCnstUrndPrngSeed) |
| ) u_otbn_core ( |
| .clk_i, |
| .rst_ni (rst_n), |
| |
| .start_i (start_rtl), |
| .done_o (done_rtl), |
| .locked_o (locked_rtl), |
| |
| .err_bits_o (err_bits_rtl), |
| .recoverable_err_o (recoverable_err_rtl), |
| .reg_intg_violation_o (reg_intg_violation), |
| |
| .imem_req_o (imem_req_core), |
| .imem_addr_o (imem_addr_core), |
| .imem_rdata_i (imem_rdata_core), |
| .imem_rvalid_i (imem_rvalid_core), |
| |
| .insn_fetch_err_o (insn_fetch_err), |
| |
| .dmem_req_o (dmem_req_core), |
| .dmem_write_o (dmem_write_core), |
| .dmem_addr_o (dmem_addr_core), |
| .dmem_wdata_o (dmem_wdata_core), |
| .dmem_wmask_o (dmem_wmask_core), |
| .dmem_rmask_o (dmem_rmask_core_d), |
| .dmem_rdata_i (dmem_rdata_core), |
| .dmem_rvalid_i (dmem_rvalid_core), |
| .dmem_rerror_i (dmem_rerror_core), |
| |
| .edn_rnd_req_o (edn_rnd_req_rtl), |
| .edn_rnd_ack_i (edn_rnd_ack), |
| .edn_rnd_data_i (edn_rnd_data), |
| |
| .edn_urnd_req_o (edn_urnd_req_rtl), |
| .edn_urnd_ack_i (edn_urnd_ack), |
| .edn_urnd_data_i (edn_urnd_data), |
| |
| .insn_cnt_o (insn_cnt_rtl), |
| .insn_cnt_clear_i (insn_cnt_clear), |
| |
| .bus_intg_violation_i (bus_intg_violation), |
| .illegal_bus_access_i (illegal_bus_access_q), |
| .lifecycle_escalation_i (lifecycle_escalation), |
| |
| .software_errs_fatal_i (software_errs_fatal_q), |
| |
| .otbn_scramble_state_error_i (otbn_scramble_state_error), |
| |
| .sideload_key_shares_i (keymgr_key_i.key), |
| .sideload_key_shares_valid_i ({2{keymgr_key_i.valid}}) |
| ); |
| `else |
| |
| otbn_core #( |
| .RegFile(RegFile), |
| .DmemSizeByte(DmemSizeByte), |
| .ImemSizeByte(ImemSizeByte), |
| .SecWipeEn(SecWipeEn), |
| .RndCnstUrndPrngSeed(RndCnstUrndPrngSeed) |
| ) u_otbn_core ( |
| .clk_i, |
| .rst_ni (rst_n), |
| |
| .start_i (start_q), |
| .done_o (done), |
| .locked_o (locked), |
| |
| .err_bits_o (err_bits), |
| .recoverable_err_o (recoverable_err), |
| .reg_intg_violation_o (reg_intg_violation), |
| |
| .imem_req_o (imem_req_core), |
| .imem_addr_o (imem_addr_core), |
| .imem_rdata_i (imem_rdata_core), |
| .imem_rvalid_i (imem_rvalid_core), |
| |
| .insn_fetch_err_o (insn_fetch_err), |
| |
| .dmem_req_o (dmem_req_core), |
| .dmem_write_o (dmem_write_core), |
| .dmem_addr_o (dmem_addr_core), |
| .dmem_wdata_o (dmem_wdata_core), |
| .dmem_wmask_o (dmem_wmask_core), |
| .dmem_rmask_o (dmem_rmask_core_d), |
| .dmem_rdata_i (dmem_rdata_core), |
| .dmem_rvalid_i (dmem_rvalid_core), |
| .dmem_rerror_i (dmem_rerror_core), |
| |
| .edn_rnd_req_o (edn_rnd_req), |
| .edn_rnd_ack_i (edn_rnd_ack), |
| .edn_rnd_data_i (edn_rnd_data), |
| |
| .edn_urnd_req_o (edn_urnd_req), |
| .edn_urnd_ack_i (edn_urnd_ack), |
| .edn_urnd_data_i (edn_urnd_data), |
| |
| .insn_cnt_o (insn_cnt), |
| .insn_cnt_clear_i (insn_cnt_clear), |
| |
| .bus_intg_violation_i (bus_intg_violation), |
| .illegal_bus_access_i (illegal_bus_access_q), |
| .lifecycle_escalation_i (lifecycle_escalation), |
| |
| .software_errs_fatal_i (software_errs_fatal_q), |
| |
| .otbn_scramble_state_error_i (otbn_scramble_state_error), |
| |
| .sideload_key_shares_i (keymgr_key_i.key), |
| .sideload_key_shares_valid_i ({2{keymgr_key_i.valid}}) |
| ); |
| `endif |
| |
| // We're idle if we're neither busy executing something nor locked |
| assign idle = ~(busy_execute_q | locked); |
| |
| // The core can never signal a write to IMEM |
| assign imem_write_core = 1'b0; |
| |
| |
| // Asserts =================================================================== |
| |
| // All outputs should be known value after reset |
| `ASSERT_KNOWN(TlODValidKnown_A, tl_o.d_valid) |
| `ASSERT_KNOWN(TlOAReadyKnown_A, tl_o.a_ready) |
| `ASSERT_KNOWN(IdleOKnown_A, idle_o) |
| `ASSERT_KNOWN(IdleOtpOKnown_A, idle_otp_o, clk_otp_i, !rst_otp_ni) |
| `ASSERT_KNOWN(IntrDoneOKnown_A, intr_done_o) |
| `ASSERT_KNOWN(AlertTxOKnown_A, alert_tx_o) |
| `ASSERT_KNOWN(EdnRndOKnown_A, edn_rnd_o, clk_edn_i, !rst_edn_ni) |
| `ASSERT_KNOWN(EdnUrndOKnown_A, edn_urnd_o, clk_edn_i, !rst_edn_ni) |
| `ASSERT_KNOWN(OtbnOtpKeyO_A, otbn_otp_key_o, clk_otp_i, !rst_otp_ni) |
| |
| // Incoming key must be valid (other inputs go via prim modules that handle the X checks). |
| `ASSERT_KNOWN(KeyMgrKeyValid_A, keymgr_key_i.valid) |
| |
| // In locked state, the readable registers INSN_CNT, IMEM, and DMEM are expected to always read 0 |
| // when accessed from the bus. For INSN_CNT, we use "|=>" so that the assertion lines up with |
| // "status.q" (a signal that isn't directly accessible here). |
| `ASSERT(LockedInsnCntReadsZero_A, (hw2reg.status.d == StatusLocked) |=> insn_cnt == 'd0) |
| `ASSERT(NonIdleImemReadsZero_A, |
| (hw2reg.status.d != StatusIdle) & imem_rvalid_bus |-> imem_rdata_bus == 'd0) |
| `ASSERT(NonIdleDmemReadsZero_A, |
| (hw2reg.status.d != StatusIdle) & dmem_rvalid_bus |-> dmem_rdata_bus == 'd0) |
| |
| // Constraint from package, check here as we cannot have `ASSERT_INIT in package |
| `ASSERT_INIT(WsrESizeMatchesParameter_A, $bits(wsr_e) == WsrNumWidth) |
| |
| `ASSERT_PRIM_FSM_ERROR_TRIGGER_ALERT(OtbnStartStopFsmCheck_A, |
| u_otbn_core.u_otbn_start_stop_control.u_state_regs, alert_tx_o[1]) |
| `ASSERT_PRIM_FSM_ERROR_TRIGGER_ALERT(OtbnControllerFsmCheck_A, |
| u_otbn_core.u_otbn_controller.u_state_regs, alert_tx_o[1]) |
| `ASSERT_PRIM_FSM_ERROR_TRIGGER_ALERT(OtbnScrambleCtrlFsmCheck_A, |
| u_otbn_scramble_ctrl.u_state_regs, alert_tx_o[1]) |
| |
| endmodule |