blob: ccbd42cf2c7f77418eeed118bbf2e96286b1b2de [file] [log] [blame]
// Copyright lowRISC contributors.
// Licensed under the Apache License, Version 2.0, see LICENSE for details.
// SPDX-License-Identifier: Apache-2.0
//
// Register Top module auto-generated by `reggen`
`include "prim_assert.sv"
module i2s_reg_top (
input clk_i,
input rst_ni,
input tlul_pkg::tl_h2d_t tl_i,
output tlul_pkg::tl_d2h_t tl_o,
// To HW
output i2s_reg_pkg::i2s_reg2hw_t reg2hw, // Write
input i2s_reg_pkg::i2s_hw2reg_t hw2reg, // Read
// Integrity check errors
output logic intg_err_o,
// Config
input devmode_i // If 1, explicit error return for unmapped register access
);
import i2s_reg_pkg::* ;
localparam int AW = 6;
localparam int DW = 32;
localparam int DBW = DW/8; // Byte Width
// register signals
logic reg_we;
logic reg_re;
logic [AW-1:0] reg_addr;
logic [DW-1:0] reg_wdata;
logic [DBW-1:0] reg_be;
logic [DW-1:0] reg_rdata;
logic reg_error;
logic addrmiss, wr_err;
logic [DW-1:0] reg_rdata_next;
logic reg_busy;
tlul_pkg::tl_h2d_t tl_reg_h2d;
tlul_pkg::tl_d2h_t tl_reg_d2h;
// incoming payload check
logic intg_err;
tlul_cmd_intg_chk u_chk (
.tl_i(tl_i),
.err_o(intg_err)
);
// also check for spurious write enables
logic reg_we_err;
logic [8:0] reg_we_check;
prim_reg_we_check #(
.OneHotWidth(9)
) u_prim_reg_we_check (
.clk_i(clk_i),
.rst_ni(rst_ni),
.oh_i (reg_we_check),
.en_i (reg_we && !addrmiss),
.err_o (reg_we_err)
);
logic err_q;
always_ff @(posedge clk_i or negedge rst_ni) begin
if (!rst_ni) begin
err_q <= '0;
end else if (intg_err || reg_we_err) begin
err_q <= 1'b1;
end
end
// integrity error output is permanent and should be used for alert generation
// register errors are transactional
assign intg_err_o = err_q | intg_err | reg_we_err;
// outgoing integrity generation
tlul_pkg::tl_d2h_t tl_o_pre;
tlul_rsp_intg_gen #(
.EnableRspIntgGen(1),
.EnableDataIntgGen(1)
) u_rsp_intg_gen (
.tl_i(tl_o_pre),
.tl_o(tl_o)
);
assign tl_reg_h2d = tl_i;
assign tl_o_pre = tl_reg_d2h;
tlul_adapter_reg #(
.RegAw(AW),
.RegDw(DW),
.EnableDataIntgGen(0)
) u_reg_if (
.clk_i (clk_i),
.rst_ni (rst_ni),
.tl_i (tl_reg_h2d),
.tl_o (tl_reg_d2h),
.en_ifetch_i(prim_mubi_pkg::MuBi4False),
.intg_error_o(),
.we_o (reg_we),
.re_o (reg_re),
.addr_o (reg_addr),
.wdata_o (reg_wdata),
.be_o (reg_be),
.busy_i (reg_busy),
.rdata_i (reg_rdata),
.error_i (reg_error)
);
// cdc oversampling signals
assign reg_rdata = reg_rdata_next ;
assign reg_error = (devmode_i & addrmiss) | wr_err | intg_err;
// Define SW related signals
// Format: <reg>_<field>_{wd|we|qs}
// or <reg>_{wd|we|qs} if field == 1 or 0
logic intr_state_we;
logic intr_state_tx_watermark_qs;
logic intr_state_tx_watermark_wd;
logic intr_state_rx_watermark_qs;
logic intr_state_rx_watermark_wd;
logic intr_state_tx_empty_qs;
logic intr_state_tx_empty_wd;
logic intr_state_rx_overflow_qs;
logic intr_state_rx_overflow_wd;
logic intr_enable_we;
logic intr_enable_tx_watermark_qs;
logic intr_enable_tx_watermark_wd;
logic intr_enable_rx_watermark_qs;
logic intr_enable_rx_watermark_wd;
logic intr_enable_tx_empty_qs;
logic intr_enable_tx_empty_wd;
logic intr_enable_rx_overflow_qs;
logic intr_enable_rx_overflow_wd;
logic intr_test_we;
logic intr_test_tx_watermark_wd;
logic intr_test_rx_watermark_wd;
logic intr_test_tx_empty_wd;
logic intr_test_rx_overflow_wd;
logic ctrl_we;
logic ctrl_tx_qs;
logic ctrl_tx_wd;
logic ctrl_rx_qs;
logic ctrl_rx_wd;
logic ctrl_slpbk_qs;
logic ctrl_slpbk_wd;
logic [6:0] ctrl_nco_rx_qs;
logic [6:0] ctrl_nco_rx_wd;
logic [6:0] ctrl_nco_tx_qs;
logic [6:0] ctrl_nco_tx_wd;
logic status_re;
logic status_txfull_qs;
logic status_rxfull_qs;
logic status_txempty_qs;
logic status_rxempty_qs;
logic rdata_re;
logic [31:0] rdata_qs;
logic wdata_we;
logic [31:0] wdata_wd;
logic fifo_ctrl_we;
logic fifo_ctrl_rxrst_wd;
logic fifo_ctrl_txrst_wd;
logic [2:0] fifo_ctrl_rxilvl_qs;
logic [2:0] fifo_ctrl_rxilvl_wd;
logic [1:0] fifo_ctrl_txilvl_qs;
logic [1:0] fifo_ctrl_txilvl_wd;
logic fifo_status_re;
logic [5:0] fifo_status_txlvl_qs;
logic [5:0] fifo_status_rxlvl_qs;
// Register instances
// R[intr_state]: V(False)
// F[tx_watermark]: 0:0
prim_subreg #(
.DW (1),
.SwAccess(prim_subreg_pkg::SwAccessW1C),
.RESVAL (1'h0)
) u_intr_state_tx_watermark (
.clk_i (clk_i),
.rst_ni (rst_ni),
// from register interface
.we (intr_state_we),
.wd (intr_state_tx_watermark_wd),
// from internal hardware
.de (hw2reg.intr_state.tx_watermark.de),
.d (hw2reg.intr_state.tx_watermark.d),
// to internal hardware
.qe (),
.q (reg2hw.intr_state.tx_watermark.q),
.ds (),
// to register interface (read)
.qs (intr_state_tx_watermark_qs)
);
// F[rx_watermark]: 1:1
prim_subreg #(
.DW (1),
.SwAccess(prim_subreg_pkg::SwAccessW1C),
.RESVAL (1'h0)
) u_intr_state_rx_watermark (
.clk_i (clk_i),
.rst_ni (rst_ni),
// from register interface
.we (intr_state_we),
.wd (intr_state_rx_watermark_wd),
// from internal hardware
.de (hw2reg.intr_state.rx_watermark.de),
.d (hw2reg.intr_state.rx_watermark.d),
// to internal hardware
.qe (),
.q (reg2hw.intr_state.rx_watermark.q),
.ds (),
// to register interface (read)
.qs (intr_state_rx_watermark_qs)
);
// F[tx_empty]: 2:2
prim_subreg #(
.DW (1),
.SwAccess(prim_subreg_pkg::SwAccessW1C),
.RESVAL (1'h0)
) u_intr_state_tx_empty (
.clk_i (clk_i),
.rst_ni (rst_ni),
// from register interface
.we (intr_state_we),
.wd (intr_state_tx_empty_wd),
// from internal hardware
.de (hw2reg.intr_state.tx_empty.de),
.d (hw2reg.intr_state.tx_empty.d),
// to internal hardware
.qe (),
.q (reg2hw.intr_state.tx_empty.q),
.ds (),
// to register interface (read)
.qs (intr_state_tx_empty_qs)
);
// F[rx_overflow]: 3:3
prim_subreg #(
.DW (1),
.SwAccess(prim_subreg_pkg::SwAccessW1C),
.RESVAL (1'h0)
) u_intr_state_rx_overflow (
.clk_i (clk_i),
.rst_ni (rst_ni),
// from register interface
.we (intr_state_we),
.wd (intr_state_rx_overflow_wd),
// from internal hardware
.de (hw2reg.intr_state.rx_overflow.de),
.d (hw2reg.intr_state.rx_overflow.d),
// to internal hardware
.qe (),
.q (reg2hw.intr_state.rx_overflow.q),
.ds (),
// to register interface (read)
.qs (intr_state_rx_overflow_qs)
);
// R[intr_enable]: V(False)
// F[tx_watermark]: 0:0
prim_subreg #(
.DW (1),
.SwAccess(prim_subreg_pkg::SwAccessRW),
.RESVAL (1'h0)
) u_intr_enable_tx_watermark (
.clk_i (clk_i),
.rst_ni (rst_ni),
// from register interface
.we (intr_enable_we),
.wd (intr_enable_tx_watermark_wd),
// from internal hardware
.de (1'b0),
.d ('0),
// to internal hardware
.qe (),
.q (reg2hw.intr_enable.tx_watermark.q),
.ds (),
// to register interface (read)
.qs (intr_enable_tx_watermark_qs)
);
// F[rx_watermark]: 1:1
prim_subreg #(
.DW (1),
.SwAccess(prim_subreg_pkg::SwAccessRW),
.RESVAL (1'h0)
) u_intr_enable_rx_watermark (
.clk_i (clk_i),
.rst_ni (rst_ni),
// from register interface
.we (intr_enable_we),
.wd (intr_enable_rx_watermark_wd),
// from internal hardware
.de (1'b0),
.d ('0),
// to internal hardware
.qe (),
.q (reg2hw.intr_enable.rx_watermark.q),
.ds (),
// to register interface (read)
.qs (intr_enable_rx_watermark_qs)
);
// F[tx_empty]: 2:2
prim_subreg #(
.DW (1),
.SwAccess(prim_subreg_pkg::SwAccessRW),
.RESVAL (1'h0)
) u_intr_enable_tx_empty (
.clk_i (clk_i),
.rst_ni (rst_ni),
// from register interface
.we (intr_enable_we),
.wd (intr_enable_tx_empty_wd),
// from internal hardware
.de (1'b0),
.d ('0),
// to internal hardware
.qe (),
.q (reg2hw.intr_enable.tx_empty.q),
.ds (),
// to register interface (read)
.qs (intr_enable_tx_empty_qs)
);
// F[rx_overflow]: 3:3
prim_subreg #(
.DW (1),
.SwAccess(prim_subreg_pkg::SwAccessRW),
.RESVAL (1'h0)
) u_intr_enable_rx_overflow (
.clk_i (clk_i),
.rst_ni (rst_ni),
// from register interface
.we (intr_enable_we),
.wd (intr_enable_rx_overflow_wd),
// from internal hardware
.de (1'b0),
.d ('0),
// to internal hardware
.qe (),
.q (reg2hw.intr_enable.rx_overflow.q),
.ds (),
// to register interface (read)
.qs (intr_enable_rx_overflow_qs)
);
// R[intr_test]: V(True)
logic intr_test_qe;
logic [3:0] intr_test_flds_we;
assign intr_test_qe = &intr_test_flds_we;
// F[tx_watermark]: 0:0
prim_subreg_ext #(
.DW (1)
) u_intr_test_tx_watermark (
.re (1'b0),
.we (intr_test_we),
.wd (intr_test_tx_watermark_wd),
.d ('0),
.qre (),
.qe (intr_test_flds_we[0]),
.q (reg2hw.intr_test.tx_watermark.q),
.ds (),
.qs ()
);
assign reg2hw.intr_test.tx_watermark.qe = intr_test_qe;
// F[rx_watermark]: 1:1
prim_subreg_ext #(
.DW (1)
) u_intr_test_rx_watermark (
.re (1'b0),
.we (intr_test_we),
.wd (intr_test_rx_watermark_wd),
.d ('0),
.qre (),
.qe (intr_test_flds_we[1]),
.q (reg2hw.intr_test.rx_watermark.q),
.ds (),
.qs ()
);
assign reg2hw.intr_test.rx_watermark.qe = intr_test_qe;
// F[tx_empty]: 2:2
prim_subreg_ext #(
.DW (1)
) u_intr_test_tx_empty (
.re (1'b0),
.we (intr_test_we),
.wd (intr_test_tx_empty_wd),
.d ('0),
.qre (),
.qe (intr_test_flds_we[2]),
.q (reg2hw.intr_test.tx_empty.q),
.ds (),
.qs ()
);
assign reg2hw.intr_test.tx_empty.qe = intr_test_qe;
// F[rx_overflow]: 3:3
prim_subreg_ext #(
.DW (1)
) u_intr_test_rx_overflow (
.re (1'b0),
.we (intr_test_we),
.wd (intr_test_rx_overflow_wd),
.d ('0),
.qre (),
.qe (intr_test_flds_we[3]),
.q (reg2hw.intr_test.rx_overflow.q),
.ds (),
.qs ()
);
assign reg2hw.intr_test.rx_overflow.qe = intr_test_qe;
// R[ctrl]: V(False)
// F[tx]: 0:0
prim_subreg #(
.DW (1),
.SwAccess(prim_subreg_pkg::SwAccessRW),
.RESVAL (1'h0)
) u_ctrl_tx (
.clk_i (clk_i),
.rst_ni (rst_ni),
// from register interface
.we (ctrl_we),
.wd (ctrl_tx_wd),
// from internal hardware
.de (1'b0),
.d ('0),
// to internal hardware
.qe (),
.q (reg2hw.ctrl.tx.q),
.ds (),
// to register interface (read)
.qs (ctrl_tx_qs)
);
// F[rx]: 1:1
prim_subreg #(
.DW (1),
.SwAccess(prim_subreg_pkg::SwAccessRW),
.RESVAL (1'h0)
) u_ctrl_rx (
.clk_i (clk_i),
.rst_ni (rst_ni),
// from register interface
.we (ctrl_we),
.wd (ctrl_rx_wd),
// from internal hardware
.de (1'b0),
.d ('0),
// to internal hardware
.qe (),
.q (reg2hw.ctrl.rx.q),
.ds (),
// to register interface (read)
.qs (ctrl_rx_qs)
);
// F[slpbk]: 2:2
prim_subreg #(
.DW (1),
.SwAccess(prim_subreg_pkg::SwAccessRW),
.RESVAL (1'h0)
) u_ctrl_slpbk (
.clk_i (clk_i),
.rst_ni (rst_ni),
// from register interface
.we (ctrl_we),
.wd (ctrl_slpbk_wd),
// from internal hardware
.de (1'b0),
.d ('0),
// to internal hardware
.qe (),
.q (reg2hw.ctrl.slpbk.q),
.ds (),
// to register interface (read)
.qs (ctrl_slpbk_qs)
);
// F[nco_rx]: 24:18
prim_subreg #(
.DW (7),
.SwAccess(prim_subreg_pkg::SwAccessRW),
.RESVAL (7'h1)
) u_ctrl_nco_rx (
.clk_i (clk_i),
.rst_ni (rst_ni),
// from register interface
.we (ctrl_we),
.wd (ctrl_nco_rx_wd),
// from internal hardware
.de (1'b0),
.d ('0),
// to internal hardware
.qe (),
.q (reg2hw.ctrl.nco_rx.q),
.ds (),
// to register interface (read)
.qs (ctrl_nco_rx_qs)
);
// F[nco_tx]: 31:25
prim_subreg #(
.DW (7),
.SwAccess(prim_subreg_pkg::SwAccessRW),
.RESVAL (7'h1)
) u_ctrl_nco_tx (
.clk_i (clk_i),
.rst_ni (rst_ni),
// from register interface
.we (ctrl_we),
.wd (ctrl_nco_tx_wd),
// from internal hardware
.de (1'b0),
.d ('0),
// to internal hardware
.qe (),
.q (reg2hw.ctrl.nco_tx.q),
.ds (),
// to register interface (read)
.qs (ctrl_nco_tx_qs)
);
// R[status]: V(True)
// F[txfull]: 0:0
prim_subreg_ext #(
.DW (1)
) u_status_txfull (
.re (status_re),
.we (1'b0),
.wd ('0),
.d (hw2reg.status.txfull.d),
.qre (reg2hw.status.txfull.re),
.qe (),
.q (reg2hw.status.txfull.q),
.ds (),
.qs (status_txfull_qs)
);
// F[rxfull]: 1:1
prim_subreg_ext #(
.DW (1)
) u_status_rxfull (
.re (status_re),
.we (1'b0),
.wd ('0),
.d (hw2reg.status.rxfull.d),
.qre (reg2hw.status.rxfull.re),
.qe (),
.q (reg2hw.status.rxfull.q),
.ds (),
.qs (status_rxfull_qs)
);
// F[txempty]: 2:2
prim_subreg_ext #(
.DW (1)
) u_status_txempty (
.re (status_re),
.we (1'b0),
.wd ('0),
.d (hw2reg.status.txempty.d),
.qre (reg2hw.status.txempty.re),
.qe (),
.q (reg2hw.status.txempty.q),
.ds (),
.qs (status_txempty_qs)
);
// F[rxempty]: 3:3
prim_subreg_ext #(
.DW (1)
) u_status_rxempty (
.re (status_re),
.we (1'b0),
.wd ('0),
.d (hw2reg.status.rxempty.d),
.qre (reg2hw.status.rxempty.re),
.qe (),
.q (reg2hw.status.rxempty.q),
.ds (),
.qs (status_rxempty_qs)
);
// R[rdata]: V(True)
prim_subreg_ext #(
.DW (32)
) u_rdata (
.re (rdata_re),
.we (1'b0),
.wd ('0),
.d (hw2reg.rdata.d),
.qre (reg2hw.rdata.re),
.qe (),
.q (reg2hw.rdata.q),
.ds (),
.qs (rdata_qs)
);
// R[wdata]: V(False)
logic wdata_qe;
logic [0:0] wdata_flds_we;
prim_flop #(
.Width(1),
.ResetValue(0)
) u_wdata0_qe (
.clk_i(clk_i),
.rst_ni(rst_ni),
.d_i(&wdata_flds_we),
.q_o(wdata_qe)
);
prim_subreg #(
.DW (32),
.SwAccess(prim_subreg_pkg::SwAccessWO),
.RESVAL (32'h0)
) u_wdata (
.clk_i (clk_i),
.rst_ni (rst_ni),
// from register interface
.we (wdata_we),
.wd (wdata_wd),
// from internal hardware
.de (1'b0),
.d ('0),
// to internal hardware
.qe (wdata_flds_we[0]),
.q (reg2hw.wdata.q),
.ds (),
// to register interface (read)
.qs ()
);
assign reg2hw.wdata.qe = wdata_qe;
// R[fifo_ctrl]: V(False)
logic fifo_ctrl_qe;
logic [3:0] fifo_ctrl_flds_we;
prim_flop #(
.Width(1),
.ResetValue(0)
) u_fifo_ctrl0_qe (
.clk_i(clk_i),
.rst_ni(rst_ni),
.d_i(&fifo_ctrl_flds_we),
.q_o(fifo_ctrl_qe)
);
// F[rxrst]: 0:0
prim_subreg #(
.DW (1),
.SwAccess(prim_subreg_pkg::SwAccessWO),
.RESVAL (1'h0)
) u_fifo_ctrl_rxrst (
.clk_i (clk_i),
.rst_ni (rst_ni),
// from register interface
.we (fifo_ctrl_we),
.wd (fifo_ctrl_rxrst_wd),
// from internal hardware
.de (1'b0),
.d ('0),
// to internal hardware
.qe (fifo_ctrl_flds_we[0]),
.q (reg2hw.fifo_ctrl.rxrst.q),
.ds (),
// to register interface (read)
.qs ()
);
assign reg2hw.fifo_ctrl.rxrst.qe = fifo_ctrl_qe;
// F[txrst]: 1:1
prim_subreg #(
.DW (1),
.SwAccess(prim_subreg_pkg::SwAccessWO),
.RESVAL (1'h0)
) u_fifo_ctrl_txrst (
.clk_i (clk_i),
.rst_ni (rst_ni),
// from register interface
.we (fifo_ctrl_we),
.wd (fifo_ctrl_txrst_wd),
// from internal hardware
.de (1'b0),
.d ('0),
// to internal hardware
.qe (fifo_ctrl_flds_we[1]),
.q (reg2hw.fifo_ctrl.txrst.q),
.ds (),
// to register interface (read)
.qs ()
);
assign reg2hw.fifo_ctrl.txrst.qe = fifo_ctrl_qe;
// F[rxilvl]: 4:2
prim_subreg #(
.DW (3),
.SwAccess(prim_subreg_pkg::SwAccessRW),
.RESVAL (3'h2)
) u_fifo_ctrl_rxilvl (
.clk_i (clk_i),
.rst_ni (rst_ni),
// from register interface
.we (fifo_ctrl_we),
.wd (fifo_ctrl_rxilvl_wd),
// from internal hardware
.de (hw2reg.fifo_ctrl.rxilvl.de),
.d (hw2reg.fifo_ctrl.rxilvl.d),
// to internal hardware
.qe (fifo_ctrl_flds_we[2]),
.q (reg2hw.fifo_ctrl.rxilvl.q),
.ds (),
// to register interface (read)
.qs (fifo_ctrl_rxilvl_qs)
);
assign reg2hw.fifo_ctrl.rxilvl.qe = fifo_ctrl_qe;
// F[txilvl]: 6:5
prim_subreg #(
.DW (2),
.SwAccess(prim_subreg_pkg::SwAccessRW),
.RESVAL (2'h2)
) u_fifo_ctrl_txilvl (
.clk_i (clk_i),
.rst_ni (rst_ni),
// from register interface
.we (fifo_ctrl_we),
.wd (fifo_ctrl_txilvl_wd),
// from internal hardware
.de (hw2reg.fifo_ctrl.txilvl.de),
.d (hw2reg.fifo_ctrl.txilvl.d),
// to internal hardware
.qe (fifo_ctrl_flds_we[3]),
.q (reg2hw.fifo_ctrl.txilvl.q),
.ds (),
// to register interface (read)
.qs (fifo_ctrl_txilvl_qs)
);
assign reg2hw.fifo_ctrl.txilvl.qe = fifo_ctrl_qe;
// R[fifo_status]: V(True)
// F[txlvl]: 5:0
prim_subreg_ext #(
.DW (6)
) u_fifo_status_txlvl (
.re (fifo_status_re),
.we (1'b0),
.wd ('0),
.d (hw2reg.fifo_status.txlvl.d),
.qre (),
.qe (),
.q (),
.ds (),
.qs (fifo_status_txlvl_qs)
);
// F[rxlvl]: 21:16
prim_subreg_ext #(
.DW (6)
) u_fifo_status_rxlvl (
.re (fifo_status_re),
.we (1'b0),
.wd ('0),
.d (hw2reg.fifo_status.rxlvl.d),
.qre (),
.qe (),
.q (),
.ds (),
.qs (fifo_status_rxlvl_qs)
);
logic [8:0] addr_hit;
always_comb begin
addr_hit = '0;
addr_hit[0] = (reg_addr == I2S_INTR_STATE_OFFSET);
addr_hit[1] = (reg_addr == I2S_INTR_ENABLE_OFFSET);
addr_hit[2] = (reg_addr == I2S_INTR_TEST_OFFSET);
addr_hit[3] = (reg_addr == I2S_CTRL_OFFSET);
addr_hit[4] = (reg_addr == I2S_STATUS_OFFSET);
addr_hit[5] = (reg_addr == I2S_RDATA_OFFSET);
addr_hit[6] = (reg_addr == I2S_WDATA_OFFSET);
addr_hit[7] = (reg_addr == I2S_FIFO_CTRL_OFFSET);
addr_hit[8] = (reg_addr == I2S_FIFO_STATUS_OFFSET);
end
assign addrmiss = (reg_re || reg_we) ? ~|addr_hit : 1'b0 ;
// Check sub-word write is permitted
always_comb begin
wr_err = (reg_we &
((addr_hit[0] & (|(I2S_PERMIT[0] & ~reg_be))) |
(addr_hit[1] & (|(I2S_PERMIT[1] & ~reg_be))) |
(addr_hit[2] & (|(I2S_PERMIT[2] & ~reg_be))) |
(addr_hit[3] & (|(I2S_PERMIT[3] & ~reg_be))) |
(addr_hit[4] & (|(I2S_PERMIT[4] & ~reg_be))) |
(addr_hit[5] & (|(I2S_PERMIT[5] & ~reg_be))) |
(addr_hit[6] & (|(I2S_PERMIT[6] & ~reg_be))) |
(addr_hit[7] & (|(I2S_PERMIT[7] & ~reg_be))) |
(addr_hit[8] & (|(I2S_PERMIT[8] & ~reg_be)))));
end
// Generate write-enables
assign intr_state_we = addr_hit[0] & reg_we & !reg_error;
assign intr_state_tx_watermark_wd = reg_wdata[0];
assign intr_state_rx_watermark_wd = reg_wdata[1];
assign intr_state_tx_empty_wd = reg_wdata[2];
assign intr_state_rx_overflow_wd = reg_wdata[3];
assign intr_enable_we = addr_hit[1] & reg_we & !reg_error;
assign intr_enable_tx_watermark_wd = reg_wdata[0];
assign intr_enable_rx_watermark_wd = reg_wdata[1];
assign intr_enable_tx_empty_wd = reg_wdata[2];
assign intr_enable_rx_overflow_wd = reg_wdata[3];
assign intr_test_we = addr_hit[2] & reg_we & !reg_error;
assign intr_test_tx_watermark_wd = reg_wdata[0];
assign intr_test_rx_watermark_wd = reg_wdata[1];
assign intr_test_tx_empty_wd = reg_wdata[2];
assign intr_test_rx_overflow_wd = reg_wdata[3];
assign ctrl_we = addr_hit[3] & reg_we & !reg_error;
assign ctrl_tx_wd = reg_wdata[0];
assign ctrl_rx_wd = reg_wdata[1];
assign ctrl_slpbk_wd = reg_wdata[2];
assign ctrl_nco_rx_wd = reg_wdata[24:18];
assign ctrl_nco_tx_wd = reg_wdata[31:25];
assign status_re = addr_hit[4] & reg_re & !reg_error;
assign rdata_re = addr_hit[5] & reg_re & !reg_error;
assign wdata_we = addr_hit[6] & reg_we & !reg_error;
assign wdata_wd = reg_wdata[31:0];
assign fifo_ctrl_we = addr_hit[7] & reg_we & !reg_error;
assign fifo_ctrl_rxrst_wd = reg_wdata[0];
assign fifo_ctrl_txrst_wd = reg_wdata[1];
assign fifo_ctrl_rxilvl_wd = reg_wdata[4:2];
assign fifo_ctrl_txilvl_wd = reg_wdata[6:5];
assign fifo_status_re = addr_hit[8] & reg_re & !reg_error;
// Assign write-enables to checker logic vector.
always_comb begin
reg_we_check = '0;
reg_we_check[0] = intr_state_we;
reg_we_check[1] = intr_enable_we;
reg_we_check[2] = intr_test_we;
reg_we_check[3] = ctrl_we;
reg_we_check[4] = 1'b0;
reg_we_check[5] = 1'b0;
reg_we_check[6] = wdata_we;
reg_we_check[7] = fifo_ctrl_we;
reg_we_check[8] = 1'b0;
end
// Read data return
always_comb begin
reg_rdata_next = '0;
unique case (1'b1)
addr_hit[0]: begin
reg_rdata_next[0] = intr_state_tx_watermark_qs;
reg_rdata_next[1] = intr_state_rx_watermark_qs;
reg_rdata_next[2] = intr_state_tx_empty_qs;
reg_rdata_next[3] = intr_state_rx_overflow_qs;
end
addr_hit[1]: begin
reg_rdata_next[0] = intr_enable_tx_watermark_qs;
reg_rdata_next[1] = intr_enable_rx_watermark_qs;
reg_rdata_next[2] = intr_enable_tx_empty_qs;
reg_rdata_next[3] = intr_enable_rx_overflow_qs;
end
addr_hit[2]: begin
reg_rdata_next[0] = '0;
reg_rdata_next[1] = '0;
reg_rdata_next[2] = '0;
reg_rdata_next[3] = '0;
end
addr_hit[3]: begin
reg_rdata_next[0] = ctrl_tx_qs;
reg_rdata_next[1] = ctrl_rx_qs;
reg_rdata_next[2] = ctrl_slpbk_qs;
reg_rdata_next[24:18] = ctrl_nco_rx_qs;
reg_rdata_next[31:25] = ctrl_nco_tx_qs;
end
addr_hit[4]: begin
reg_rdata_next[0] = status_txfull_qs;
reg_rdata_next[1] = status_rxfull_qs;
reg_rdata_next[2] = status_txempty_qs;
reg_rdata_next[3] = status_rxempty_qs;
end
addr_hit[5]: begin
reg_rdata_next[31:0] = rdata_qs;
end
addr_hit[6]: begin
reg_rdata_next[31:0] = '0;
end
addr_hit[7]: begin
reg_rdata_next[0] = '0;
reg_rdata_next[1] = '0;
reg_rdata_next[4:2] = fifo_ctrl_rxilvl_qs;
reg_rdata_next[6:5] = fifo_ctrl_txilvl_qs;
end
addr_hit[8]: begin
reg_rdata_next[5:0] = fifo_status_txlvl_qs;
reg_rdata_next[21:16] = fifo_status_rxlvl_qs;
end
default: begin
reg_rdata_next = '1;
end
endcase
end
// shadow busy
logic shadow_busy;
assign shadow_busy = 1'b0;
// register busy
assign reg_busy = shadow_busy;
// Unused signal tieoff
// wdata / byte enable are not always fully used
// add a blanket unused statement to handle lint waivers
logic unused_wdata;
logic unused_be;
assign unused_wdata = ^reg_wdata;
assign unused_be = ^reg_be;
// Assertions for Register Interface
`ASSERT_PULSE(wePulse, reg_we, clk_i, !rst_ni)
`ASSERT_PULSE(rePulse, reg_re, clk_i, !rst_ni)
`ASSERT(reAfterRv, $rose(reg_re || reg_we) |=> tl_o_pre.d_valid, clk_i, !rst_ni)
`ASSERT(en2addrHit, (reg_we || reg_re) |-> $onehot0(addr_hit), clk_i, !rst_ni)
// this is formulated as an assumption such that the FPV testbenches do disprove this
// property by mistake
//`ASSUME(reqParity, tl_reg_h2d.a_valid |-> tl_reg_h2d.a_user.chk_en == tlul_pkg::CheckDis)
endmodule