| /* Copyright 2021 The TensorFlow Authors. All Rights Reserved. |
| |
| Licensed under the Apache License, Version 2.0 (the "License"); |
| you may not use this file except in compliance with the License. |
| You may obtain a copy of the License at |
| |
| http://www.apache.org/licenses/LICENSE-2.0 |
| |
| Unless required by applicable law or agreed to in writing, software |
| distributed under the License is distributed on an "AS IS" BASIS, |
| WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
| See the License for the specific language governing permissions and |
| limitations under the License. |
| ==============================================================================*/ |
| |
| #include "signal/src/overlap_add.h" |
| |
| #include <stdint.h> |
| |
| #include "tensorflow/lite/kernels/internal/tensor_ctypes.h" |
| #include "tensorflow/lite/kernels/kernel_util.h" |
| #include "tensorflow/lite/micro/flatbuffer_utils.h" |
| #include "tensorflow/lite/micro/kernels/kernel_util.h" |
| #include "tensorflow/lite/portable_type_to_tflitetype.h" |
| |
| namespace tflite { |
| namespace { |
| |
| constexpr int kInputTensor = 0; |
| constexpr int kOutputTensor = 0; |
| |
| // Indices into the init flexbuffer's vector. |
| // The parameter's name is in the comment that follows. |
| // Elements in the vectors are ordered alphabetically by parameter name. |
| // 'T' is added implicitly by the TensorFlow framework when the type is resolved |
| // during graph construction. |
| // constexpr int kTypeIndex = 0; // 'T' (unused) |
| constexpr int kFrameStepIndex = 1; // 'frame_step' |
| |
| template <typename T> |
| struct TFLMSignalOverlapAddParams { |
| int32_t frame_size; |
| int32_t frame_step; |
| int32_t outer_dims; |
| int32_t n_frames; |
| TfLiteType type; |
| T** state_buffers; |
| }; |
| |
| template <typename T> |
| void OverlapAddResetState(TFLMSignalOverlapAddParams<T>* params) { |
| for (int i = 0; i < params->outer_dims; i++) { |
| memset(params->state_buffers[i], 0, sizeof(T) * params->frame_size); |
| } |
| } |
| |
| template <typename T> |
| void* OverlapAddInit(TfLiteContext* context, const char* buffer, |
| size_t length) { |
| const uint8_t* buffer_t = reinterpret_cast<const uint8_t*>(buffer); |
| |
| auto* params = static_cast<TFLMSignalOverlapAddParams<T>*>( |
| context->AllocatePersistentBuffer(context, |
| sizeof(TFLMSignalOverlapAddParams<T>))); |
| |
| if (params == nullptr) { |
| return nullptr; |
| } |
| |
| tflite::FlexbufferWrapper fbw(buffer_t, length); |
| params->type = typeToTfLiteType<T>(); |
| params->frame_step = fbw.ElementAsInt32(kFrameStepIndex); |
| return params; |
| } |
| |
| template <typename T, TfLiteType TfLiteTypeEnum> |
| TfLiteStatus OverlapAddPrepare(TfLiteContext* context, TfLiteNode* node) { |
| TF_LITE_ENSURE_EQ(context, NumInputs(node), 1); |
| TF_LITE_ENSURE_EQ(context, NumOutputs(node), 1); |
| |
| MicroContext* micro_context = GetMicroContext(context); |
| |
| TfLiteTensor* input = |
| micro_context->AllocateTempInputTensor(node, kInputTensor); |
| TF_LITE_ENSURE(context, input != nullptr); |
| TfLiteTensor* output = |
| micro_context->AllocateTempOutputTensor(node, kOutputTensor); |
| TF_LITE_ENSURE(context, output != nullptr); |
| |
| TF_LITE_ENSURE_EQ(context, NumDimensions(input), NumDimensions(output) + 1); |
| |
| TF_LITE_ENSURE_TYPES_EQ(context, input->type, TfLiteTypeEnum); |
| TF_LITE_ENSURE_TYPES_EQ(context, output->type, TfLiteTypeEnum); |
| |
| auto* params = |
| reinterpret_cast<TFLMSignalOverlapAddParams<T>*>(node->user_data); |
| RuntimeShape input_shape = GetTensorShape(input); |
| RuntimeShape output_shape = GetTensorShape(output); |
| TF_LITE_ENSURE(context, input_shape.DimensionsCount() >= 2); |
| TF_LITE_ENSURE_EQ(context, input_shape.DimensionsCount(), |
| output_shape.DimensionsCount() + 1); |
| |
| params->frame_size = input_shape.Dims(input_shape.DimensionsCount() - 1); |
| params->n_frames = input_shape.Dims(input_shape.DimensionsCount() - 2); |
| params->outer_dims = |
| input_shape.FlatSize() / (params->frame_size * params->n_frames); |
| params->state_buffers = static_cast<T**>(context->AllocatePersistentBuffer( |
| context, params->outer_dims * sizeof(T*))); |
| TF_LITE_ENSURE(context, params != nullptr); |
| |
| for (int i = 0; i < params->outer_dims; i++) { |
| params->state_buffers[i] = |
| static_cast<T*>(context->AllocatePersistentBuffer( |
| context, params->frame_size * sizeof(T))); |
| } |
| OverlapAddResetState(params); |
| |
| micro_context->DeallocateTempTfLiteTensor(input); |
| micro_context->DeallocateTempTfLiteTensor(output); |
| return kTfLiteOk; |
| } |
| |
| template <typename T> |
| TfLiteStatus OverlapAddEval(TfLiteContext* context, TfLiteNode* node) { |
| auto* params = |
| reinterpret_cast<TFLMSignalOverlapAddParams<T>*>(node->user_data); |
| const TfLiteEvalTensor* input = |
| tflite::micro::GetEvalInput(context, node, kInputTensor); |
| TfLiteEvalTensor* output = |
| tflite::micro::GetEvalOutput(context, node, kOutputTensor); |
| |
| const T* input_data = tflite::micro::GetTensorData<T>(input); |
| T* output_data = tflite::micro::GetTensorData<T>(output); |
| for (int i = 0; i < params->outer_dims; i++) { |
| T* buffer = params->state_buffers[i]; |
| for (int frame = 0; frame < params->n_frames; frame++) { |
| int input_index = (i * params->n_frames + frame) * params->frame_size; |
| int output_index = (i * params->n_frames + frame) * params->frame_step; |
| tflm_signal::OverlapAdd(&input_data[input_index], buffer, |
| params->frame_size, &output_data[output_index], |
| params->frame_step); |
| } |
| } |
| return kTfLiteOk; |
| } |
| |
| template <typename T> |
| void OverlapAddReset(TfLiteContext* context, void* buffer) { |
| OverlapAddResetState(static_cast<TFLMSignalOverlapAddParams<T>*>(buffer)); |
| } |
| |
| void* OverlapAddInitAll(TfLiteContext* context, const char* buffer, |
| size_t length) { |
| const uint8_t* buffer_t = reinterpret_cast<const uint8_t*>(buffer); |
| const flexbuffers::Map& m = flexbuffers::GetRoot(buffer_t, length).AsMap(); |
| auto tensor_type = static_cast<tflite::TensorType>(m["T"].AsInt32()); |
| |
| switch (tensor_type) { |
| case TensorType_INT16: { |
| return OverlapAddInit<int16_t>(context, buffer, length); |
| } |
| case TensorType_FLOAT32: { |
| return OverlapAddInit<float>(context, buffer, length); |
| } |
| default: |
| return nullptr; |
| } |
| } |
| |
| TfLiteStatus OverlapAddPrepareAll(TfLiteContext* context, TfLiteNode* node) { |
| auto* params = |
| reinterpret_cast<TFLMSignalOverlapAddParams<void>*>(node->user_data); |
| |
| switch (params->type) { |
| case kTfLiteInt16: { |
| return OverlapAddPrepare<int16_t, kTfLiteInt16>(context, node); |
| } |
| case kTfLiteFloat32: { |
| return OverlapAddPrepare<float, kTfLiteFloat32>(context, node); |
| } |
| default: |
| return kTfLiteError; |
| } |
| } |
| |
| TfLiteStatus OverlapAddEvalAll(TfLiteContext* context, TfLiteNode* node) { |
| auto* params = |
| reinterpret_cast<TFLMSignalOverlapAddParams<void>*>(node->user_data); |
| |
| switch (params->type) { |
| case kTfLiteInt16: { |
| return OverlapAddEval<int16_t>(context, node); |
| } |
| case kTfLiteFloat32: { |
| return OverlapAddEval<float>(context, node); |
| } |
| default: |
| return kTfLiteError; |
| } |
| } |
| |
| void OverlapAddResetAll(TfLiteContext* context, void* buffer) { |
| auto* params = reinterpret_cast<TFLMSignalOverlapAddParams<void>*>(buffer); |
| |
| switch (params->type) { |
| case kTfLiteInt16: { |
| OverlapAddReset<int16_t>(context, buffer); |
| break; |
| } |
| case kTfLiteFloat32: { |
| OverlapAddReset<float>(context, buffer); |
| break; |
| } |
| default: |
| break; |
| } |
| } |
| |
| } // namespace |
| |
| namespace tflm_signal { |
| TFLMRegistration* Register_OVERLAP_ADD() { |
| static TFLMRegistration r = |
| tflite::micro::RegisterOp(OverlapAddInitAll, OverlapAddPrepareAll, |
| OverlapAddEvalAll, nullptr, OverlapAddResetAll); |
| return &r; |
| } |
| |
| TFLMRegistration* Register_OVERLAP_ADD_FLOAT() { |
| static TFLMRegistration r = tflite::micro::RegisterOp( |
| OverlapAddInit<float>, OverlapAddPrepare<float, kTfLiteFloat32>, |
| OverlapAddEval<float>, nullptr, OverlapAddReset<float>); |
| return &r; |
| } |
| |
| TFLMRegistration* Register_OVERLAP_ADD_INT16() { |
| static TFLMRegistration r = tflite::micro::RegisterOp( |
| OverlapAddInit<int16_t>, OverlapAddPrepare<int16_t, kTfLiteInt16>, |
| OverlapAddEval<int16_t>, nullptr, OverlapAddReset<int16_t>); |
| return &r; |
| } |
| } // namespace tflm_signal |
| |
| } // namespace tflite |