| /* Copyright 2023 The TensorFlow Authors. All Rights Reserved. |
| |
| Licensed under the Apache License, Version 2.0 (the "License"); |
| you may not use this file except in compliance with the License. |
| You may obtain a copy of the License at |
| |
| http://www.apache.org/licenses/LICENSE-2.0 |
| |
| Unless required by applicable law or agreed to in writing, software |
| distributed under the License is distributed on an "AS IS" BASIS, |
| WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
| See the License for the specific language governing permissions and |
| limitations under the License. |
| ==============================================================================*/ |
| |
| #include "signal/src/rfft.h" |
| |
| #include <math.h> |
| #include <stddef.h> |
| #include <stdint.h> |
| |
| #include "signal/micro/kernels/rfft.h" |
| #include "tensorflow/lite/kernels/internal/tensor_ctypes.h" |
| #include "tensorflow/lite/kernels/kernel_util.h" |
| #include "tensorflow/lite/micro/flatbuffer_utils.h" |
| #include "tensorflow/lite/micro/kernels/kernel_util.h" |
| #include "tensorflow/lite/portable_type_to_tflitetype.h" |
| |
| namespace tflite { |
| namespace { |
| |
| constexpr int kInputTensor = 0; |
| constexpr int kOutputTensor = 0; |
| |
| // Indices into the init flexbuffer's vector. |
| // The parameter's name is in the comment that follows. |
| // Elements in the vectors are ordered alphabetically by parameter name. |
| // 'T' is added implicitly by the TensorFlow framework when the type is resolved |
| // during graph construction. |
| // constexpr int kTypeIndex = 0; // 'T' (unused) |
| constexpr int kFftLengthIndex = 1; // 'fft_length' |
| |
| template <typename T> |
| struct TfLiteAudioFrontendRfftParams { |
| int32_t fft_length; |
| int32_t input_size; |
| int32_t input_length; |
| int32_t output_length; |
| TfLiteType fft_type; |
| T* work_area; |
| int scratch_buffer_index; |
| int8_t* state; |
| }; |
| |
| template <typename T, size_t (*get_needed_memory_func)(int32_t), |
| void* (*init_func)(int32_t, void*, size_t)> |
| void* RfftInit(TfLiteContext* context, const char* buffer, size_t length) { |
| TFLITE_DCHECK(context->AllocatePersistentBuffer != nullptr); |
| |
| const uint8_t* buffer_t = reinterpret_cast<const uint8_t*>(buffer); |
| auto* params = static_cast<TfLiteAudioFrontendRfftParams<T>*>( |
| context->AllocatePersistentBuffer( |
| context, sizeof(TfLiteAudioFrontendRfftParams<T>))); |
| |
| tflite::FlexbufferWrapper fbw(buffer_t, length); |
| params->fft_length = fbw.ElementAsInt32(kFftLengthIndex); |
| params->fft_type = typeToTfLiteType<T>(); |
| |
| size_t state_size = (*get_needed_memory_func)(params->fft_length); |
| params->state = static_cast<int8_t*>( |
| context->AllocatePersistentBuffer(context, state_size * sizeof(int8_t))); |
| (*init_func)(params->fft_length, params->state, state_size); |
| return params; |
| } |
| |
| template <typename T, TfLiteType TfLiteTypeEnum> |
| TfLiteStatus RfftPrepare(TfLiteContext* context, TfLiteNode* node) { |
| TF_LITE_ENSURE_EQ(context, NumInputs(node), 1); |
| TF_LITE_ENSURE_EQ(context, NumOutputs(node), 1); |
| |
| MicroContext* micro_context = GetMicroContext(context); |
| TfLiteTensor* input = |
| micro_context->AllocateTempInputTensor(node, kInputTensor); |
| TF_LITE_ENSURE(context, input != nullptr); |
| TfLiteTensor* output = |
| micro_context->AllocateTempOutputTensor(node, kOutputTensor); |
| TF_LITE_ENSURE(context, output != nullptr); |
| |
| TF_LITE_ENSURE_EQ(context, NumDimensions(input), NumDimensions(output)); |
| |
| TF_LITE_ENSURE_TYPES_EQ(context, input->type, TfLiteTypeEnum); |
| TF_LITE_ENSURE_TYPES_EQ(context, output->type, TfLiteTypeEnum); |
| |
| auto* params = |
| reinterpret_cast<TfLiteAudioFrontendRfftParams<T>*>(node->user_data); |
| RuntimeShape input_shape = GetTensorShape(input); |
| RuntimeShape output_shape = GetTensorShape(output); |
| params->input_length = input_shape.Dims(input_shape.DimensionsCount() - 1); |
| params->input_size = input_shape.FlatSize(); |
| // Divide by 2 because output is complex. |
| params->output_length = |
| output_shape.Dims(output_shape.DimensionsCount() - 1) / 2; |
| |
| context->RequestScratchBufferInArena(context, params->fft_length * sizeof(T), |
| ¶ms->scratch_buffer_index); |
| micro_context->DeallocateTempTfLiteTensor(input); |
| micro_context->DeallocateTempTfLiteTensor(output); |
| return kTfLiteOk; |
| } |
| |
| template <typename T, void (*apply_func)(void*, const T* input, Complex<T>*)> |
| TfLiteStatus RfftEval(TfLiteContext* context, TfLiteNode* node) { |
| auto* params = |
| reinterpret_cast<TfLiteAudioFrontendRfftParams<T>*>(node->user_data); |
| |
| const TfLiteEvalTensor* input = |
| tflite::micro::GetEvalInput(context, node, kInputTensor); |
| |
| const T* input_data = tflite::micro::GetTensorData<T>(input); |
| |
| TfLiteEvalTensor* output = |
| tflite::micro::GetEvalOutput(context, node, kOutputTensor); |
| Complex<T>* output_data = tflite::micro::GetTensorData<Complex<T>>(output); |
| |
| T* work_area = static_cast<T*>( |
| context->GetScratchBuffer(context, params->scratch_buffer_index)); |
| |
| for (int input_idx = 0, output_idx = 0; input_idx < params->input_size; |
| input_idx += params->input_length, output_idx += params->output_length) { |
| memcpy(work_area, &input_data[input_idx], sizeof(T) * params->input_length); |
| // Zero pad input to FFT length |
| memset(&work_area[params->input_length], 0, |
| sizeof(T) * (params->fft_length - params->input_length)); |
| |
| (*apply_func)(params->state, work_area, &output_data[output_idx]); |
| } |
| return kTfLiteOk; |
| } |
| |
| void* RfftInitAll(TfLiteContext* context, const char* buffer, size_t length) { |
| const uint8_t* buffer_t = reinterpret_cast<const uint8_t*>(buffer); |
| const flexbuffers::Map& m = flexbuffers::GetRoot(buffer_t, length).AsMap(); |
| auto tensor_type = static_cast<tflite::TensorType>(m["T"].AsInt32()); |
| |
| switch (tensor_type) { |
| case TensorType_INT16: { |
| return RfftInit<int16_t, ::tflm_signal::RfftInt16GetNeededMemory, |
| ::tflm_signal::RfftInt16Init>(context, buffer, length); |
| } |
| case TensorType_INT32: { |
| return RfftInit<int32_t, ::tflm_signal::RfftInt32GetNeededMemory, |
| ::tflm_signal::RfftInt32Init>(context, buffer, length); |
| } |
| case TensorType_FLOAT32: { |
| return RfftInit<float, ::tflm_signal::RfftFloatGetNeededMemory, |
| ::tflm_signal::RfftFloatInit>(context, buffer, length); |
| } |
| default: |
| return nullptr; |
| } |
| } |
| |
| TfLiteStatus RfftPrepareAll(TfLiteContext* context, TfLiteNode* node) { |
| auto* params = |
| reinterpret_cast<TfLiteAudioFrontendRfftParams<void>*>(node->user_data); |
| |
| switch (params->fft_type) { |
| case kTfLiteInt16: { |
| return RfftPrepare<int16_t, kTfLiteInt16>(context, node); |
| } |
| case kTfLiteInt32: { |
| return RfftPrepare<int32_t, kTfLiteInt32>(context, node); |
| } |
| case kTfLiteFloat32: { |
| return RfftPrepare<float, kTfLiteFloat32>(context, node); |
| } |
| default: |
| return kTfLiteError; |
| } |
| } |
| |
| TfLiteStatus RfftEvalAll(TfLiteContext* context, TfLiteNode* node) { |
| auto* params = |
| reinterpret_cast<TfLiteAudioFrontendRfftParams<void>*>(node->user_data); |
| |
| switch (params->fft_type) { |
| case kTfLiteInt16: { |
| return RfftEval<int16_t, ::tflm_signal::RfftInt16Apply>(context, node); |
| } |
| case kTfLiteInt32: { |
| return RfftEval<int32_t, ::tflm_signal::RfftInt32Apply>(context, node); |
| } |
| case kTfLiteFloat32: { |
| return RfftEval<float, ::tflm_signal::RfftFloatApply>(context, node); |
| } |
| default: |
| return kTfLiteError; |
| } |
| } |
| } // namespace |
| |
| // TODO(b/286250473): remove namespace once de-duped libraries |
| namespace tflm_signal { |
| |
| TFLMRegistration* Register_RFFT() { |
| static TFLMRegistration r = |
| tflite::micro::RegisterOp(RfftInitAll, RfftPrepareAll, RfftEvalAll); |
| return &r; |
| } |
| |
| TFLMRegistration* Register_RFFT_FLOAT() { |
| static TFLMRegistration r = tflite::micro::RegisterOp( |
| RfftInit<float, ::tflm_signal::RfftFloatGetNeededMemory, |
| ::tflm_signal::RfftFloatInit>, |
| RfftPrepare<float, kTfLiteFloat32>, |
| RfftEval<float, ::tflm_signal::RfftFloatApply>); |
| return &r; |
| } |
| |
| TFLMRegistration* Register_RFFT_INT16() { |
| static TFLMRegistration r = tflite::micro::RegisterOp( |
| RfftInit<int16_t, ::tflm_signal::RfftInt16GetNeededMemory, |
| ::tflm_signal::RfftInt16Init>, |
| RfftPrepare<int16_t, kTfLiteInt16>, |
| RfftEval<int16_t, ::tflm_signal::RfftInt16Apply>); |
| return &r; |
| } |
| |
| TFLMRegistration* Register_RFFT_INT32() { |
| static TFLMRegistration r = tflite::micro::RegisterOp( |
| RfftInit<int32_t, ::tflm_signal::RfftInt32GetNeededMemory, |
| ::tflm_signal::RfftInt32Init>, |
| RfftPrepare<int32_t, kTfLiteInt32>, |
| RfftEval<int32_t, ::tflm_signal::RfftInt32Apply>); |
| return &r; |
| } |
| |
| } // namespace tflm_signal |
| } // namespace tflite |