| /* Copyright 2019 The TensorFlow Authors. All Rights Reserved. |
| |
| Licensed under the Apache License, Version 2.0 (the "License"); |
| you may not use this file except in compliance with the License. |
| You may obtain a copy of the License at |
| |
| http://www.apache.org/licenses/LICENSE-2.0 |
| |
| Unless required by applicable law or agreed to in writing, software |
| distributed under the License is distributed on an "AS IS" BASIS, |
| WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
| See the License for the specific language governing permissions and |
| limitations under the License. |
| ==============================================================================*/ |
| |
| #include <stdint.h> |
| |
| #include "signal/src/circular_buffer.h" |
| #include "tensorflow/lite/kernels/internal/tensor_ctypes.h" |
| #include "tensorflow/lite/kernels/kernel_util.h" |
| #include "tensorflow/lite/micro/flatbuffer_utils.h" |
| #include "tensorflow/lite/micro/kernels/kernel_util.h" |
| #include "tensorflow/lite/micro/memory_helpers.h" |
| #include "tensorflow/lite/micro/micro_utils.h" |
| |
| namespace tflite { |
| namespace { |
| |
| constexpr int kInputTensor = 0; |
| constexpr int kOutputTensor = 0; |
| constexpr int kOutputValidTensor = 1; |
| |
| // Indices into the init flexbuffer's vector. |
| // The parameter's name is in the comment that follows. |
| // Elements in the vectors are ordered alphabetically by parameter name. |
| constexpr int kFrameSizeIndex = 0; // 'frame_size' |
| constexpr int kFrameStepIndex = 1; // 'frame_step' |
| constexpr int kPrefillIndex = 2; // 'prefill' |
| |
| struct TFLMSignalFramerParams { |
| int32_t frame_size; |
| int32_t frame_step; |
| int32_t outer_dims; |
| int32_t n_frames; |
| bool prefill; |
| |
| int8_t** state_buffers; |
| tflite::tflm_signal::CircularBuffer** circular_buffers; |
| }; |
| |
| void FramerResetState(TFLMSignalFramerParams* params) { |
| for (int i = 0; i < params->outer_dims; ++i) { |
| tflite::tflm_signal::CircularBufferReset(params->circular_buffers[i]); |
| if (params->prefill) { |
| tflite::tflm_signal::CircularBufferWriteZeros( |
| params->circular_buffers[i], params->frame_size - params->frame_step); |
| } |
| } |
| } |
| |
| void* FramerInit(TfLiteContext* context, const char* buffer, size_t length) { |
| const uint8_t* buffer_t = reinterpret_cast<const uint8_t*>(buffer); |
| |
| auto* params = |
| static_cast<TFLMSignalFramerParams*>(context->AllocatePersistentBuffer( |
| context, sizeof(TFLMSignalFramerParams))); |
| |
| if (params == nullptr) { |
| return nullptr; |
| } |
| |
| tflite::FlexbufferWrapper fbw(buffer_t, length); |
| params->frame_size = fbw.ElementAsInt32(kFrameSizeIndex); |
| params->frame_step = fbw.ElementAsInt32(kFrameStepIndex); |
| params->prefill = fbw.ElementAsBool(kPrefillIndex); |
| return params; |
| } |
| |
| TfLiteStatus FramerPrepare(TfLiteContext* context, TfLiteNode* node) { |
| TF_LITE_ENSURE_EQ(context, NumInputs(node), 1); |
| TF_LITE_ENSURE_EQ(context, NumOutputs(node), 2); |
| |
| MicroContext* micro_context = GetMicroContext(context); |
| |
| TfLiteTensor* input = |
| micro_context->AllocateTempInputTensor(node, kInputTensor); |
| TF_LITE_ENSURE(context, input != nullptr); |
| TfLiteTensor* output = |
| micro_context->AllocateTempOutputTensor(node, kOutputTensor); |
| TF_LITE_ENSURE(context, output != nullptr); |
| TfLiteTensor* output_valid = |
| micro_context->AllocateTempOutputTensor(node, kOutputValidTensor); |
| TF_LITE_ENSURE(context, output_valid != nullptr); |
| |
| TF_LITE_ENSURE_EQ(context, NumDimensions(input) + 1, NumDimensions(output)); |
| TF_LITE_ENSURE_EQ(context, NumDimensions(output_valid), 0); |
| |
| TF_LITE_ENSURE_TYPES_EQ(context, input->type, kTfLiteInt16); |
| TF_LITE_ENSURE_TYPES_EQ(context, output->type, kTfLiteInt16); |
| TF_LITE_ENSURE_TYPES_EQ(context, output_valid->type, kTfLiteBool); |
| |
| auto* params = reinterpret_cast<TFLMSignalFramerParams*>(node->user_data); |
| |
| RuntimeShape input_shape = GetTensorShape(input); |
| int innermost_dim = input_shape.Dims(input_shape.DimensionsCount() - 1); |
| TF_LITE_ENSURE(context, innermost_dim >= params->frame_step); |
| TF_LITE_ENSURE_EQ(context, innermost_dim % params->frame_step, 0); |
| params->outer_dims = input_shape.FlatSize() / innermost_dim; |
| params->n_frames = innermost_dim / params->frame_step; |
| |
| params->state_buffers = |
| static_cast<int8_t**>(context->AllocatePersistentBuffer( |
| context, params->outer_dims * sizeof(int8_t*))); |
| params->circular_buffers = static_cast<tflite::tflm_signal::CircularBuffer**>( |
| context->AllocatePersistentBuffer( |
| context, |
| params->outer_dims * sizeof(tflite::tflm_signal::CircularBuffer*))); |
| for (int i = 0; i < params->outer_dims; i++) { |
| // Calculate the capacity of the circular buffer. Round up the frame size to |
| // a multiple of frame step. Saves memory relative to the simpler frame_size |
| // + frame_step. For example: step_size = 160, frame_size = 400 capacity = |
| // 480 vs. step_size + frame_size = 560 |
| size_t capacity = (params->frame_size + params->frame_step - 1) / |
| params->frame_step * params->frame_step; |
| |
| size_t state_size = |
| tflite::tflm_signal::CircularBufferGetNeededMemory(capacity); |
| params->state_buffers[i] = |
| static_cast<int8_t*>(context->AllocatePersistentBuffer( |
| context, state_size * sizeof(int8_t))); |
| params->circular_buffers[i] = tflite::tflm_signal::CircularBufferInit( |
| capacity, params->state_buffers[i], state_size); |
| } |
| |
| FramerResetState(params); |
| |
| micro_context->DeallocateTempTfLiteTensor(input); |
| micro_context->DeallocateTempTfLiteTensor(output); |
| micro_context->DeallocateTempTfLiteTensor(output_valid); |
| |
| return kTfLiteOk; |
| } |
| |
| TfLiteStatus FramerEval(TfLiteContext* context, TfLiteNode* node) { |
| auto* params = reinterpret_cast<TFLMSignalFramerParams*>(node->user_data); |
| |
| const TfLiteEvalTensor* input = |
| tflite::micro::GetEvalInput(context, node, kInputTensor); |
| TfLiteEvalTensor* output = |
| tflite::micro::GetEvalOutput(context, node, kOutputTensor); |
| TfLiteEvalTensor* output_valid = |
| tflite::micro::GetEvalOutput(context, node, kOutputValidTensor); |
| |
| const int16_t* input_data = tflite::micro::GetTensorData<int16_t>(input); |
| int16_t* output_data = tflite::micro::GetTensorData<int16_t>(output); |
| bool* output_valid_data = tflite::micro::GetTensorData<bool>(output_valid); |
| *output_valid_data = true; |
| |
| for (int i = 0; i < params->outer_dims; i++) { |
| for (int frame = 0; frame < params->n_frames; frame++) { |
| int input_idx = (i * params->n_frames + frame) * params->frame_step; |
| int output_idx = (i * params->n_frames + frame) * params->frame_size; |
| tflite::tflm_signal::CircularBufferWrite(params->circular_buffers[i], |
| &input_data[input_idx], |
| params->frame_step); |
| |
| if (tflite::tflm_signal::CircularBufferAvailable( |
| params->circular_buffers[i]) >= |
| static_cast<size_t>(params->frame_size)) { |
| tflite::tflm_signal::CircularBufferGet(params->circular_buffers[i], |
| params->frame_size, |
| &output_data[output_idx]); |
| tflite::tflm_signal::CircularBufferDiscard(params->circular_buffers[i], |
| params->frame_step); |
| } else { |
| *output_valid_data = false; |
| } |
| } |
| } |
| |
| return kTfLiteOk; |
| } |
| |
| void FramerReset(TfLiteContext* context, void* buffer) { |
| FramerResetState(static_cast<TFLMSignalFramerParams*>(buffer)); |
| } |
| |
| } // namespace |
| |
| namespace tflm_signal { |
| // TODO(b/286250473): remove namespace once de-duped libraries above |
| TFLMRegistration* Register_FRAMER() { |
| static TFLMRegistration r = tflite::micro::RegisterOp( |
| FramerInit, FramerPrepare, FramerEval, nullptr, FramerReset); |
| return &r; |
| } |
| } // namespace tflm_signal |
| |
| } // namespace tflite |