| /* Copyright 2021 The TensorFlow Authors. All Rights Reserved. |
| |
| Licensed under the Apache License, Version 2.0 (the "License"); |
| you may not use this file except in compliance with the License. |
| You may obtain a copy of the License at |
| |
| http://www.apache.org/licenses/LICENSE-2.0 |
| |
| Unless required by applicable law or agreed to in writing, software |
| distributed under the License is distributed on an "AS IS" BASIS, |
| WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
| See the License for the specific language governing permissions and |
| limitations under the License. |
| ==============================================================================*/ |
| |
| #include "signal/micro/kernels/energy_flexbuffers_generated_data.h" |
| #include "tensorflow/lite/micro/kernels/kernel_runner.h" |
| #include "tensorflow/lite/micro/test_helpers.h" |
| #include "tensorflow/lite/micro/testing/micro_test.h" |
| |
| namespace tflite { |
| namespace testing { |
| namespace { |
| |
| TfLiteStatus TestEnergy(int* input_dims_data, const int16_t* input_data, |
| int* output_dims_data, const uint32_t* golden, |
| const unsigned char* flexbuffers_data, |
| const unsigned int flexbuffers_data_size, |
| uint32_t* output_data) { |
| TfLiteIntArray* input_dims = IntArrayFromInts(input_dims_data); |
| TfLiteIntArray* output_dims = IntArrayFromInts(output_dims_data); |
| const int output_len = ElementCount(*output_dims); |
| constexpr int kInputsSize = 1; |
| constexpr int kOutputsSize = 1; |
| constexpr int kTensorsSize = kInputsSize + kOutputsSize; |
| TfLiteTensor tensors[kTensorsSize] = { |
| CreateTensor(input_data, input_dims), |
| CreateTensor(output_data, output_dims), |
| }; |
| |
| int inputs_array_data[] = {1, 0}; |
| TfLiteIntArray* inputs_array = IntArrayFromInts(inputs_array_data); |
| int outputs_array_data[] = {1, 1}; |
| TfLiteIntArray* outputs_array = IntArrayFromInts(outputs_array_data); |
| |
| const TFLMRegistration* registration = tflm_signal::Register_ENERGY(); |
| micro::KernelRunner runner(*registration, tensors, kTensorsSize, inputs_array, |
| outputs_array, |
| /*builtin_data=*/nullptr); |
| |
| // TfLite uses a char* for the raw bytes whereas flexbuffers use an unsigned |
| // char*. This small discrepancy results in compiler warnings unless we |
| // reinterpret_cast right before passing in the flexbuffer bytes to the |
| // KernelRunner. |
| TfLiteStatus status = runner.InitAndPrepare( |
| reinterpret_cast<const char*>(flexbuffers_data), flexbuffers_data_size); |
| if (status != kTfLiteOk) { |
| return status; |
| } |
| |
| status = runner.Invoke(); |
| if (status != kTfLiteOk) { |
| return status; |
| } |
| |
| for (int i = 0; i < output_len; ++i) { |
| TF_LITE_MICRO_EXPECT_EQ(golden[i], output_data[i]); |
| } |
| return kTfLiteOk; |
| } |
| |
| } // namespace |
| } // namespace testing |
| } // namespace tflite |
| |
| TF_LITE_MICRO_TESTS_BEGIN |
| |
| TF_LITE_MICRO_TEST(EnergyTestMiddle) { |
| int input_shape[] = {1, 16}; |
| int output_shape[] = {1, 8}; |
| const int16_t input[] = {1, 2, 3, 4, 5, 6, 7, 8, |
| 9, 10, 11, 12, 13, 14, 15, 16}; |
| const uint32_t golden[] = {0, 0, 61, 113, 0, 0, 0, 0}; |
| uint32_t output[8]; |
| memset(output, 0, sizeof(output)); |
| TF_LITE_MICRO_EXPECT_EQ( |
| kTfLiteOk, tflite::testing::TestEnergy( |
| input_shape, input, output_shape, golden, |
| g_gen_data_start_index_2_end_index_4, |
| g_gen_data_size_start_index_2_end_index_4, output)); |
| } |
| |
| TF_LITE_MICRO_TEST(EnergyTestStart) { |
| int input_shape[] = {1, 16}; |
| int output_shape[] = {1, 8}; |
| const int16_t input[] = {1, 2, 3, 4, 5, 6, 7, 8, |
| 9, 10, 11, 12, 13, 14, 15, 16}; |
| const uint32_t golden[] = {5, 25, 61, 113, 0, 0, 0, 0}; |
| uint32_t output[8]; |
| memset(output, 0, sizeof(output)); |
| TF_LITE_MICRO_EXPECT_EQ( |
| kTfLiteOk, tflite::testing::TestEnergy( |
| input_shape, input, output_shape, golden, |
| g_gen_data_start_index_0_end_index_4, |
| g_gen_data_size_start_index_0_end_index_4, output)); |
| } |
| |
| TF_LITE_MICRO_TEST(EnergyTestEnd) { |
| int input_shape[] = {1, 16}; |
| int output_shape[] = {1, 8}; |
| const int16_t input[] = {1, 2, 3, 4, 5, 6, 7, 8, |
| 9, 10, 11, 12, 13, 14, 15, 16}; |
| const uint32_t golden[] = {0, 0, 0, 0, 181, 265, 365, 481}; |
| uint32_t output[8]; |
| memset(output, 0, sizeof(output)); |
| TF_LITE_MICRO_EXPECT_EQ( |
| kTfLiteOk, tflite::testing::TestEnergy( |
| input_shape, input, output_shape, golden, |
| g_gen_data_start_index_4_end_index_8, |
| g_gen_data_size_start_index_4_end_index_8, output)); |
| } |
| |
| TF_LITE_MICRO_TESTS_END |