| /* Copyright 2019 The TensorFlow Authors. All Rights Reserved. |
| |
| Licensed under the Apache License, Version 2.0 (the "License"); |
| you may not use this file except in compliance with the License. |
| You may obtain a copy of the License at |
| |
| http://www.apache.org/licenses/LICENSE-2.0 |
| |
| Unless required by applicable law or agreed to in writing, software |
| distributed under the License is distributed on an "AS IS" BASIS, |
| WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
| See the License for the specific language governing permissions and |
| limitations under the License. |
| ==============================================================================*/ |
| |
| #include "tensorflow/lite/kernels/internal/reference/hard_swish.h" |
| |
| #include "tensorflow/lite/c/builtin_op_data.h" |
| #include "tensorflow/lite/c/common.h" |
| #include "tensorflow/lite/kernels/internal/common.h" |
| #include "tensorflow/lite/kernels/internal/quantization_util.h" |
| #include "tensorflow/lite/kernels/internal/tensor_ctypes.h" |
| #include "tensorflow/lite/kernels/internal/types.h" |
| #include "tensorflow/lite/kernels/kernel_util.h" |
| #include "tensorflow/lite/kernels/op_macros.h" |
| #include "tensorflow/lite/micro/kernels/kernel_util.h" |
| #include "tensorflow/lite/micro/micro_utils.h" |
| |
| namespace tflite { |
| namespace ops { |
| namespace micro { |
| namespace hard_swish { |
| |
| constexpr int kInputTensor = 0; |
| constexpr int kOutputTensor = 0; |
| |
| void* HardSwishInit(TfLiteContext* context, const char* buffer, size_t length) { |
| TFLITE_DCHECK(context->AllocatePersistentBuffer != nullptr); |
| return context->AllocatePersistentBuffer(context, sizeof(HardSwishParams)); |
| } |
| |
| TfLiteStatus HardSwishPrepare(TfLiteContext* context, TfLiteNode* node) { |
| TFLITE_DCHECK(node->user_data != nullptr); |
| TF_LITE_ENSURE_EQ(context, NumInputs(node), 1); |
| TF_LITE_ENSURE_EQ(context, NumOutputs(node), 1); |
| |
| const TfLiteTensor* input = GetInput(context, node, kInputTensor); |
| TF_LITE_ENSURE(context, input != nullptr); |
| TfLiteTensor* output = GetOutput(context, node, kOutputTensor); |
| TF_LITE_ENSURE(context, output != nullptr); |
| |
| if (input->type == kTfLiteUInt8 || input->type == kTfLiteInt8) { |
| HardSwishParams* params = static_cast<HardSwishParams*>(node->user_data); |
| |
| params->input_zero_point = input->params.zero_point; |
| params->output_zero_point = output->params.zero_point; |
| |
| const float input_scale = input->params.scale; |
| const float hires_input_scale = (1.0f / 128.0f) * input_scale; |
| const float reluish_scale = 3.0f / 32768.0f; |
| const float output_scale = output->params.scale; |
| |
| const double output_multiplier = |
| static_cast<double>(hires_input_scale / output_scale); |
| int32_t output_multiplier_fixedpoint_int32; |
| QuantizeMultiplier(output_multiplier, &output_multiplier_fixedpoint_int32, |
| ¶ms->output_multiplier_exponent); |
| DownScaleInt32ToInt16Multiplier( |
| output_multiplier_fixedpoint_int32, |
| ¶ms->output_multiplier_fixedpoint_int16); |
| |
| TF_LITE_ENSURE(context, params->output_multiplier_exponent <= 0); |
| |
| const double reluish_multiplier = |
| static_cast<double>(hires_input_scale / reluish_scale); |
| int32_t reluish_multiplier_fixedpoint_int32; |
| QuantizeMultiplier(reluish_multiplier, &reluish_multiplier_fixedpoint_int32, |
| ¶ms->reluish_multiplier_exponent); |
| DownScaleInt32ToInt16Multiplier( |
| reluish_multiplier_fixedpoint_int32, |
| ¶ms->reluish_multiplier_fixedpoint_int16); |
| } |
| |
| return kTfLiteOk; |
| } |
| |
| TfLiteStatus HardSwishEval(TfLiteContext* context, TfLiteNode* node) { |
| const TfLiteEvalTensor* input = |
| tflite::micro::GetEvalInput(context, node, kInputTensor); |
| TfLiteEvalTensor* output = |
| tflite::micro::GetEvalOutput(context, node, kOutputTensor); |
| HardSwishParams* params = static_cast<HardSwishParams*>(node->user_data); |
| |
| switch (input->type) { |
| case kTfLiteFloat32: { |
| tflite::reference_ops::HardSwish<float>( |
| tflite::micro::GetTensorShape(input), |
| tflite::micro::GetTensorData<float>(input), |
| tflite::micro::GetTensorShape(output), |
| tflite::micro::GetTensorData<float>(output)); |
| } break; |
| case kTfLiteUInt8: { |
| tflite::reference_ops::HardSwish<uint8_t>( |
| *params, tflite::micro::GetTensorShape(input), |
| tflite::micro::GetTensorData<uint8_t>(input), |
| tflite::micro::GetTensorShape(output), |
| tflite::micro::GetTensorData<uint8_t>(output)); |
| } break; |
| case kTfLiteInt8: { |
| tflite::reference_ops::HardSwish<int8_t>( |
| *params, tflite::micro::GetTensorShape(input), |
| tflite::micro::GetTensorData<int8_t>(input), |
| tflite::micro::GetTensorShape(output), |
| tflite::micro::GetTensorData<int8_t>(output)); |
| } break; |
| default: { |
| TF_LITE_KERNEL_LOG( |
| context, |
| "Only float32/int8_t/uint8_t are supported currently, got %s", |
| TfLiteTypeGetName(input->type)); |
| return kTfLiteError; |
| } |
| } |
| return kTfLiteOk; |
| } |
| |
| } // namespace hard_swish |
| |
| TfLiteRegistration Register_HARD_SWISH() { |
| return {/*init=*/hard_swish::HardSwishInit, |
| /*free=*/nullptr, |
| /*prepare=*/hard_swish::HardSwishPrepare, |
| /*invoke=*/hard_swish::HardSwishEval, |
| /*profiling_string=*/nullptr, |
| /*builtin_code=*/0, |
| /*custom_name=*/nullptr, |
| /*version=*/0}; |
| } |
| |
| } // namespace micro |
| } // namespace ops |
| } // namespace tflite |