| /* Copyright 2019 The TensorFlow Authors. All Rights Reserved. |
| |
| Licensed under the Apache License, Version 2.0 (the "License"); |
| you may not use this file except in compliance with the License. |
| You may obtain a copy of the License at |
| |
| http://www.apache.org/licenses/LICENSE-2.0 |
| |
| Unless required by applicable law or agreed to in writing, software |
| distributed under the License is distributed on an "AS IS" BASIS, |
| WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
| See the License for the specific language governing permissions and |
| limitations under the License. |
| ==============================================================================*/ |
| |
| #include "tensorflow/lite/kernels/internal/reference/add.h" |
| |
| #include "tensorflow/lite/c/builtin_op_data.h" |
| #include "tensorflow/lite/c/common.h" |
| #include "tensorflow/lite/kernels/internal/quantization_util.h" |
| #include "tensorflow/lite/kernels/internal/reference/integer_ops/add.h" |
| #include "tensorflow/lite/kernels/internal/reference/process_broadcast_shapes.h" |
| #include "tensorflow/lite/kernels/internal/tensor_ctypes.h" |
| #include "tensorflow/lite/kernels/kernel_util.h" |
| #include "tensorflow/lite/kernels/op_macros.h" |
| #include "tensorflow/lite/micro/kernels/kernel_util.h" |
| #include "tensorflow/lite/micro/memory_helpers.h" |
| |
| namespace tflite { |
| namespace ops { |
| namespace micro { |
| namespace add { |
| |
| constexpr int kInputTensor1 = 0; |
| constexpr int kInputTensor2 = 1; |
| constexpr int kOutputTensor = 0; |
| |
| struct OpData { |
| bool requires_broadcast; |
| |
| // These fields are used in both the general 8-bit -> 8bit quantized path, |
| // and the special 16-bit -> 16bit quantized path |
| int input1_shift; |
| int input2_shift; |
| int32_t output_activation_min; |
| int32_t output_activation_max; |
| |
| // These fields are used only in the general 8-bit -> 8bit quantized path |
| int32_t input1_multiplier; |
| int32_t input2_multiplier; |
| int32_t output_multiplier; |
| int output_shift; |
| int left_shift; |
| int32_t input1_offset; |
| int32_t input2_offset; |
| int32_t output_offset; |
| |
| // Used only for float evals: |
| float output_activation_min_f32; |
| float output_activation_max_f32; |
| }; |
| |
| TfLiteStatus CalculateOpData(TfLiteContext* context, TfLiteAddParams* params, |
| const TfLiteTensor* input1, |
| const TfLiteTensor* input2, TfLiteTensor* output, |
| OpData* data) { |
| data->requires_broadcast = !HaveSameShapes(input1, input2); |
| |
| if (output->type == kTfLiteUInt8 || output->type == kTfLiteInt8) { |
| // 8bit -> 8bit general quantized path, with general rescalings |
| data->input1_offset = -input1->params.zero_point; |
| data->input2_offset = -input2->params.zero_point; |
| data->output_offset = output->params.zero_point; |
| data->left_shift = 20; |
| const double twice_max_input_scale = |
| 2 * static_cast<double>( |
| std::max(input1->params.scale, input2->params.scale)); |
| const double real_input1_multiplier = |
| static_cast<double>(input1->params.scale) / twice_max_input_scale; |
| const double real_input2_multiplier = |
| static_cast<double>(input2->params.scale) / twice_max_input_scale; |
| const double real_output_multiplier = |
| twice_max_input_scale / |
| ((1 << data->left_shift) * static_cast<double>(output->params.scale)); |
| |
| QuantizeMultiplierSmallerThanOneExp( |
| real_input1_multiplier, &data->input1_multiplier, &data->input1_shift); |
| |
| QuantizeMultiplierSmallerThanOneExp( |
| real_input2_multiplier, &data->input2_multiplier, &data->input2_shift); |
| |
| QuantizeMultiplierSmallerThanOneExp( |
| real_output_multiplier, &data->output_multiplier, &data->output_shift); |
| |
| TF_LITE_ENSURE_STATUS(CalculateActivationRangeQuantized( |
| context, params->activation, output, &data->output_activation_min, |
| &data->output_activation_max)); |
| } else if (output->type == kTfLiteFloat32) { |
| CalculateActivationRange(params->activation, |
| &data->output_activation_min_f32, |
| &data->output_activation_max_f32); |
| } |
| |
| return kTfLiteOk; |
| } |
| |
| void EvalAdd(TfLiteContext* context, TfLiteNode* node, TfLiteAddParams* params, |
| const OpData* data, const TfLiteEvalTensor* input1, |
| const TfLiteEvalTensor* input2, TfLiteEvalTensor* output) { |
| tflite::ArithmeticParams op_params; |
| SetActivationParams(data->output_activation_min_f32, |
| data->output_activation_max_f32, &op_params); |
| if (data->requires_broadcast) { |
| reference_ops::BroadcastAdd4DSlow( |
| op_params, tflite::micro::GetTensorShape(input1), |
| tflite::micro::GetTensorData<float>(input1), |
| tflite::micro::GetTensorShape(input2), |
| tflite::micro::GetTensorData<float>(input2), |
| tflite::micro::GetTensorShape(output), |
| tflite::micro::GetTensorData<float>(output)); |
| } else { |
| reference_ops::Add(op_params, tflite::micro::GetTensorShape(input1), |
| tflite::micro::GetTensorData<float>(input1), |
| tflite::micro::GetTensorShape(input2), |
| tflite::micro::GetTensorData<float>(input2), |
| tflite::micro::GetTensorShape(output), |
| tflite::micro::GetTensorData<float>(output)); |
| } |
| } |
| |
| TfLiteStatus EvalAddQuantized(TfLiteContext* context, TfLiteNode* node, |
| TfLiteAddParams* params, const OpData* data, |
| const TfLiteEvalTensor* input1, |
| const TfLiteEvalTensor* input2, |
| TfLiteEvalTensor* output) { |
| if (output->type == kTfLiteUInt8 || output->type == kTfLiteInt8) { |
| tflite::ArithmeticParams op_params; |
| op_params.left_shift = data->left_shift; |
| op_params.input1_offset = data->input1_offset; |
| op_params.input1_multiplier = data->input1_multiplier; |
| op_params.input1_shift = data->input1_shift; |
| op_params.input2_offset = data->input2_offset; |
| op_params.input2_multiplier = data->input2_multiplier; |
| op_params.input2_shift = data->input2_shift; |
| op_params.output_offset = data->output_offset; |
| op_params.output_multiplier = data->output_multiplier; |
| op_params.output_shift = data->output_shift; |
| SetActivationParams(data->output_activation_min, |
| data->output_activation_max, &op_params); |
| bool need_broadcast = reference_ops::ProcessBroadcastShapes( |
| tflite::micro::GetTensorShape(input1), |
| tflite::micro::GetTensorShape(input2), &op_params); |
| if (output->type == kTfLiteInt8) { |
| if (need_broadcast) { |
| reference_integer_ops::BroadcastAdd4DSlow( |
| op_params, tflite::micro::GetTensorShape(input1), |
| tflite::micro::GetTensorData<int8_t>(input1), |
| tflite::micro::GetTensorShape(input2), |
| tflite::micro::GetTensorData<int8_t>(input2), |
| tflite::micro::GetTensorShape(output), |
| tflite::micro::GetTensorData<int8_t>(output)); |
| } else { |
| reference_integer_ops::Add( |
| op_params, tflite::micro::GetTensorShape(input1), |
| tflite::micro::GetTensorData<int8_t>(input1), |
| tflite::micro::GetTensorShape(input2), |
| tflite::micro::GetTensorData<int8_t>(input2), |
| tflite::micro::GetTensorShape(output), |
| tflite::micro::GetTensorData<int8_t>(output)); |
| } |
| } else { |
| if (need_broadcast) { |
| reference_ops::BroadcastAdd4DSlow( |
| op_params, tflite::micro::GetTensorShape(input1), |
| tflite::micro::GetTensorData<uint8_t>(input1), |
| tflite::micro::GetTensorShape(input2), |
| tflite::micro::GetTensorData<uint8_t>(input2), |
| tflite::micro::GetTensorShape(output), |
| tflite::micro::GetTensorData<uint8_t>(output)); |
| } else { |
| reference_ops::Add(op_params, tflite::micro::GetTensorShape(input1), |
| tflite::micro::GetTensorData<uint8_t>(input1), |
| tflite::micro::GetTensorShape(input2), |
| tflite::micro::GetTensorData<uint8_t>(input2), |
| tflite::micro::GetTensorShape(output), |
| tflite::micro::GetTensorData<uint8_t>(output)); |
| } |
| } |
| } |
| |
| return kTfLiteOk; |
| } |
| |
| void* Init(TfLiteContext* context, const char* buffer, size_t length) { |
| TFLITE_DCHECK(context->AllocatePersistentBuffer != nullptr); |
| return context->AllocatePersistentBuffer(context, sizeof(OpData)); |
| } |
| |
| TfLiteStatus Prepare(TfLiteContext* context, TfLiteNode* node) { |
| TFLITE_DCHECK(node->user_data != nullptr); |
| TFLITE_DCHECK(node->builtin_data != nullptr); |
| |
| const TfLiteTensor* input1 = GetInput(context, node, kInputTensor1); |
| TF_LITE_ENSURE(context, input1 != nullptr); |
| const TfLiteTensor* input2 = GetInput(context, node, kInputTensor2); |
| TF_LITE_ENSURE(context, input2 != nullptr); |
| TfLiteTensor* output = GetOutput(context, node, kOutputTensor); |
| TF_LITE_ENSURE(context, output != nullptr); |
| |
| OpData* data = static_cast<OpData*>(node->user_data); |
| auto* params = reinterpret_cast<TfLiteAddParams*>(node->builtin_data); |
| |
| TF_LITE_ENSURE_STATUS( |
| CalculateOpData(context, params, input1, input2, output, data)); |
| |
| return kTfLiteOk; |
| } |
| |
| TfLiteStatus Eval(TfLiteContext* context, TfLiteNode* node) { |
| auto* params = reinterpret_cast<TfLiteAddParams*>(node->builtin_data); |
| |
| TFLITE_DCHECK(node->user_data != nullptr); |
| const OpData* data = static_cast<const OpData*>(node->user_data); |
| |
| const TfLiteEvalTensor* input1 = |
| tflite::micro::GetEvalInput(context, node, kInputTensor1); |
| const TfLiteEvalTensor* input2 = |
| tflite::micro::GetEvalInput(context, node, kInputTensor2); |
| TfLiteEvalTensor* output = |
| tflite::micro::GetEvalOutput(context, node, kOutputTensor); |
| |
| if (output->type == kTfLiteFloat32) { |
| EvalAdd(context, node, params, data, input1, input2, output); |
| } else if (output->type == kTfLiteUInt8 || output->type == kTfLiteInt8) { |
| TF_LITE_ENSURE_OK(context, EvalAddQuantized(context, node, params, data, |
| input1, input2, output)); |
| } else { |
| TF_LITE_KERNEL_LOG(context, "Type %s (%d) not supported.", |
| TfLiteTypeGetName(output->type), output->type); |
| return kTfLiteError; |
| } |
| |
| return kTfLiteOk; |
| } |
| |
| } // namespace add |
| |
| TfLiteRegistration Register_ADD() { |
| return {/*init=*/add::Init, |
| /*free=*/nullptr, |
| /*prepare=*/add::Prepare, |
| /*invoke=*/add::Eval, |
| /*profiling_string=*/nullptr, |
| /*builtin_code=*/0, |
| /*custom_name=*/nullptr, |
| /*version=*/0}; |
| } |
| |
| } // namespace micro |
| } // namespace ops |
| } // namespace tflite |