| /* Copyright 2022 The TensorFlow Authors. All Rights Reserved. |
| |
| Licensed under the Apache License, Version 2.0 (the "License"); |
| you may not use this file except in compliance with the License. |
| You may obtain a copy of the License at |
| |
| http://www.apache.org/licenses/LICENSE-2.0 |
| |
| Unless required by applicable law or agreed to in writing, software |
| distributed under the License is distributed on an "AS IS" BASIS, |
| WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
| See the License for the specific language governing permissions and |
| limitations under the License. |
| ==============================================================================*/ |
| |
| #include "signal/src/window.h" |
| |
| #include <stdint.h> |
| |
| #include "tensorflow/lite/kernels/internal/tensor_ctypes.h" |
| #include "tensorflow/lite/kernels/kernel_util.h" |
| #include "tensorflow/lite/micro/flatbuffer_utils.h" |
| #include "tensorflow/lite/micro/kernels/kernel_util.h" |
| #include "tensorflow/lite/micro/memory_helpers.h" |
| #include "tensorflow/lite/micro/micro_utils.h" |
| |
| namespace tflite { |
| namespace { |
| |
| constexpr int kInputTensor = 0; |
| constexpr int kWeightsTensor = 1; |
| constexpr int kOutputTensor = 0; |
| |
| // Indices into the init flexbuffer's vector. |
| // The parameter's name is in the comment that follows. |
| // Elements in the vectors are ordered alphabetically by parameter name. |
| constexpr int kShiftIndex = 0; // 'shift' |
| |
| struct TFLMSignalWindowParams { |
| int32_t shift; |
| int32_t input_size; |
| }; |
| |
| void* Init(TfLiteContext* context, const char* buffer, size_t length) { |
| const uint8_t* buffer_t = reinterpret_cast<const uint8_t*>(buffer); |
| |
| auto* params = |
| static_cast<TFLMSignalWindowParams*>(context->AllocatePersistentBuffer( |
| context, sizeof(TFLMSignalWindowParams))); |
| |
| tflite::FlexbufferWrapper fbw(buffer_t, length); |
| params->shift = fbw.ElementAsInt32(kShiftIndex); |
| return params; |
| } |
| |
| TfLiteStatus Prepare(TfLiteContext* context, TfLiteNode* node) { |
| TF_LITE_ENSURE_EQ(context, NumInputs(node), 2); |
| TF_LITE_ENSURE_EQ(context, NumOutputs(node), 1); |
| |
| MicroContext* micro_context = GetMicroContext(context); |
| |
| TfLiteTensor* input = |
| micro_context->AllocateTempInputTensor(node, kInputTensor); |
| TF_LITE_ENSURE(context, input != nullptr); |
| TfLiteTensor* weights = |
| micro_context->AllocateTempInputTensor(node, kWeightsTensor); |
| TF_LITE_ENSURE(context, weights != nullptr); |
| TfLiteTensor* output = |
| micro_context->AllocateTempOutputTensor(node, kOutputTensor); |
| TF_LITE_ENSURE(context, output != nullptr); |
| |
| TF_LITE_ENSURE(context, NumDimensions(input) >= 1); |
| TF_LITE_ENSURE_EQ(context, NumDimensions(weights), 1); |
| TF_LITE_ENSURE_EQ(context, NumDimensions(input), NumDimensions(output)); |
| |
| TF_LITE_ENSURE_TYPES_EQ(context, input->type, kTfLiteInt16); |
| TF_LITE_ENSURE_TYPES_EQ(context, weights->type, kTfLiteInt16); |
| TF_LITE_ENSURE_TYPES_EQ(context, output->type, kTfLiteInt16); |
| |
| auto* params = reinterpret_cast<TFLMSignalWindowParams*>(node->user_data); |
| RuntimeShape input_shape = GetTensorShape(input); |
| params->input_size = input_shape.FlatSize(); |
| |
| micro_context->DeallocateTempTfLiteTensor(input); |
| micro_context->DeallocateTempTfLiteTensor(weights); |
| micro_context->DeallocateTempTfLiteTensor(output); |
| return kTfLiteOk; |
| } |
| |
| TfLiteStatus Eval(TfLiteContext* context, TfLiteNode* node) { |
| auto* params = reinterpret_cast<TFLMSignalWindowParams*>(node->user_data); |
| |
| const TfLiteEvalTensor* input = |
| tflite::micro::GetEvalInput(context, node, kInputTensor); |
| const TfLiteEvalTensor* weights = |
| tflite::micro::GetEvalInput(context, node, kWeightsTensor); |
| TfLiteEvalTensor* output = |
| tflite::micro::GetEvalOutput(context, node, kOutputTensor); |
| |
| const int16_t* input_data = tflite::micro::GetTensorData<int16_t>(input); |
| const int16_t* weight_data = tflite::micro::GetTensorData<int16_t>(weights); |
| int16_t* output_data = tflite::micro::GetTensorData<int16_t>(output); |
| int weight_size = weights->dims->data[0]; |
| |
| for (int i = 0; i < params->input_size; i += weight_size) { |
| ::tflm_signal::ApplyWindow(&input_data[i], weight_data, weight_size, |
| params->shift, &output_data[i]); |
| } |
| return kTfLiteOk; |
| } |
| } // namespace |
| |
| // TODO(b/286250473): remove namespace once de-duped libraries |
| namespace tflm_signal { |
| |
| TFLMRegistration* Register_WINDOW() { |
| static TFLMRegistration r = tflite::micro::RegisterOp(Init, Prepare, Eval); |
| return &r; |
| } |
| |
| } // namespace tflm_signal |
| } // namespace tflite |