blob: f3a471df03548ebf7e81446b3ef99850abbd661a [file] [log] [blame]
# Copyright 2023 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""Use framer op in python."""
import tensorflow as tf
from tflite_micro.python.tflite_micro.signal.utils import util
gen_framer_op = util.load_custom_op('framer_op.so')
def _framer_wrapper(framer_fn, default_name):
"""Wrapper around gen_framer_op.framer*."""
def _framer(input_tensor,
frame_size,
frame_step,
prefill=False,
name=default_name):
if frame_step > frame_size:
raise ValueError("frame_step must not be greater than frame_size.")
with tf.name_scope(name) as name:
input_tensor = tf.convert_to_tensor(input_tensor, dtype=tf.int16)
dim_list = input_tensor.shape.as_list()
if dim_list[-1] % frame_step != 0:
raise ValueError(
"Innermost input dimenion size must be a multiple of %d elements" %
frame_step)
return framer_fn(input_tensor,
frame_size=frame_size,
frame_step=frame_step,
prefill=prefill,
name=name)
return _framer
# TODO(b/286250473): change back name after name clash resolved
framer = _framer_wrapper(gen_framer_op.signal_framer, "signal_framer")
tf.no_gradient("signal_framer")