blob: 446b8789ccecdd2cf9a50bed7884f1c6b852df1b [file] [log] [blame]
# Copyright 2022 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""Use FFT ops in python."""
import math
import tensorflow as tf
from tflite_micro.python.tflite_micro.signal.utils import util
gen_fft_ops = util.load_custom_op('fft_ops.so')
_MIN_FFT_LENGTH = 64
_MAX_FFT_LENGTH = 2048
def get_pow2_fft_length(input_length):
"""Returns the smallest suuported power of 2 FFT length larger than or equal
to the input_length.
Only returns FFT lengths that are powers of 2 within the range
[_MIN_FFT_LENGTH, _MAX_FFT_LENGTH].
Args:
input_length: Length of input time domain signal.
Returns:
A pair: the smallest length and its log2 (number of bits)
Raises:
ValueError: The FFT length needed is not supported
"""
fft_bits = math.ceil(math.log2(input_length))
fft_length = pow(2, fft_bits)
if not _MIN_FFT_LENGTH <= fft_length <= _MAX_FFT_LENGTH:
raise ValueError("Invalid fft_length. Must be between %d and %d." %
(_MIN_FFT_LENGTH, _MAX_FFT_LENGTH))
return fft_length, fft_bits
def _fft_wrapper(fft_fn, default_name):
"""Wrapper around gen_fft_ops.*rfft*."""
def _fft(input_tensor, fft_length, name=default_name):
if not ((_MIN_FFT_LENGTH <= fft_length <= _MAX_FFT_LENGTH) and
(fft_length % 2 == 0)):
raise ValueError(
"Invalid fft_length. Must be an even number between %d and %d." %
(_MIN_FFT_LENGTH, _MAX_FFT_LENGTH))
with tf.name_scope(name) as name:
input_tensor = tf.convert_to_tensor(input_tensor)
return fft_fn(input_tensor, fft_length=fft_length, name=name)
return _fft
def _fft_auto_scale_wrapper(fft_auto_scale_fn, default_name):
"""Wrapper around gen_fft_ops.fft_auto_scale*."""
def _fft_auto_scale(input_tensor, name=default_name):
with tf.name_scope(name) as name:
input_tensor = tf.convert_to_tensor(input_tensor, dtype=tf.int16)
dim_list = input_tensor.shape.as_list()
if len(dim_list) != 1:
raise ValueError("Input tensor must have a rank of 1")
return fft_auto_scale_fn(input_tensor, name=name)
return _fft_auto_scale
rfft = _fft_wrapper(gen_fft_ops.signal_rfft, "signal_rfft")
irfft = _fft_wrapper(gen_fft_ops.signal_irfft, "signal_irfft")
fft_auto_scale = _fft_auto_scale_wrapper(gen_fft_ops.signal_fft_auto_scale,
"signal_fft_auto_scale")
tf.no_gradient("signal_rfft")
tf.no_gradient("signal_irfft")
tf.no_gradient("signal_fft_auto_scale")