| /* Copyright 2021 The TensorFlow Authors. All Rights Reserved. |
| |
| Licensed under the Apache License, Version 2.0 (the "License"); |
| you may not use this file except in compliance with the License. |
| You may obtain a copy of the License at |
| |
| http://www.apache.org/licenses/LICENSE-2.0 |
| |
| Unless required by applicable law or agreed to in writing, software |
| distributed under the License is distributed on an "AS IS" BASIS, |
| WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
| See the License for the specific language governing permissions and |
| limitations under the License. |
| ==============================================================================*/ |
| |
| #include "signal/src/energy.h" |
| |
| #include <math.h> |
| #include <stddef.h> |
| #include <stdint.h> |
| |
| #include "tensorflow/lite/kernels/internal/tensor_ctypes.h" |
| #include "tensorflow/lite/kernels/kernel_util.h" |
| #include "tensorflow/lite/micro/flatbuffer_utils.h" |
| #include "tensorflow/lite/micro/kernels/kernel_util.h" |
| #include "tensorflow/lite/micro/micro_context.h" |
| |
| namespace tflite { |
| namespace { |
| |
| constexpr int kInputTensor = 0; |
| constexpr int kOutputTensor = 0; |
| |
| // Indices into the init flexbuffer's vector. |
| // The parameter's name is in the comment that follows. |
| // Elements in the vectors are ordered alphabetically by parameter name. |
| constexpr int kEndIndexIndex = 0; // 'end_index' |
| constexpr int kStartIndexIndex = 1; // 'start_index' |
| |
| struct TFLMSignalEnergyParams { |
| int32_t end_index; |
| int32_t start_index; |
| }; |
| |
| void* Init(TfLiteContext* context, const char* buffer, size_t length) { |
| TFLITE_DCHECK(context->AllocatePersistentBuffer != nullptr); |
| |
| auto* data = |
| static_cast<TFLMSignalEnergyParams*>(context->AllocatePersistentBuffer( |
| context, sizeof(TFLMSignalEnergyParams))); |
| |
| if (data == nullptr) { |
| return nullptr; |
| } |
| |
| tflite::FlexbufferWrapper fbw(reinterpret_cast<const uint8_t*>(buffer), |
| length); |
| data->end_index = fbw.ElementAsInt32(kEndIndexIndex); |
| data->start_index = fbw.ElementAsInt32(kStartIndexIndex); |
| return data; |
| } |
| |
| TfLiteStatus Prepare(TfLiteContext* context, TfLiteNode* node) { |
| TF_LITE_ENSURE_EQ(context, NumInputs(node), 1); |
| TF_LITE_ENSURE_EQ(context, NumOutputs(node), 1); |
| |
| MicroContext* micro_context = GetMicroContext(context); |
| TfLiteTensor* input = |
| micro_context->AllocateTempInputTensor(node, kInputTensor); |
| TF_LITE_ENSURE(context, input != nullptr); |
| TfLiteTensor* output = |
| micro_context->AllocateTempOutputTensor(node, kOutputTensor); |
| TF_LITE_ENSURE(context, output != nullptr); |
| |
| TF_LITE_ENSURE_EQ(context, NumDimensions(input), 1); |
| TF_LITE_ENSURE_EQ(context, NumDimensions(output), 1); |
| |
| TF_LITE_ENSURE_TYPES_EQ(context, input->type, kTfLiteInt16); |
| TF_LITE_ENSURE_TYPES_EQ(context, output->type, kTfLiteUInt32); |
| |
| micro_context->DeallocateTempTfLiteTensor(input); |
| micro_context->DeallocateTempTfLiteTensor(output); |
| return kTfLiteOk; |
| } |
| |
| TfLiteStatus Eval(TfLiteContext* context, TfLiteNode* node) { |
| auto* params = reinterpret_cast<TFLMSignalEnergyParams*>(node->user_data); |
| |
| const TfLiteEvalTensor* input = |
| tflite::micro::GetEvalInput(context, node, kInputTensor); |
| TfLiteEvalTensor* output = |
| tflite::micro::GetEvalOutput(context, node, kOutputTensor); |
| |
| const Complex<int16_t>* input_data = |
| tflite::micro::GetTensorData<Complex<int16_t>>(input); |
| uint32_t* output_data = tflite::micro::GetTensorData<uint32_t>(output); |
| |
| tflm_signal::SpectrumToEnergy(input_data, params->start_index, |
| params->end_index, output_data); |
| return kTfLiteOk; |
| } |
| |
| } // namespace |
| |
| namespace tflm_signal { |
| TFLMRegistration* Register_ENERGY() { |
| static TFLMRegistration r = tflite::micro::RegisterOp(Init, Prepare, Eval); |
| return &r; |
| } |
| } // namespace tflm_signal |
| |
| } // namespace tflite |