| /* Copyright 2021 The TensorFlow Authors. All Rights Reserved. |
| |
| Licensed under the Apache License, Version 2.0 (the "License"); |
| you may not use this file except in compliance with the License. |
| You may obtain a copy of the License at |
| |
| http://www.apache.org/licenses/LICENSE-2.0 |
| |
| Unless required by applicable law or agreed to in writing, software |
| distributed under the License is distributed on an "AS IS" BASIS, |
| WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
| See the License for the specific language governing permissions and |
| limitations under the License. |
| ==============================================================================*/ |
| |
| /* Copyright 2020 The Qualcomm Innovation Center, Inc. All Rights Reserved. |
| |
| Redistribution and use in source and binary forms, with or without |
| modification, are permitted (subject to the limitations in the disclaimer |
| below) provided that the following conditions are met: |
| |
| * Redistributions of source code must retain the above copyright notice, |
| this list of conditions and the following disclaimer. |
| * Redistributions in binary form must reproduce the above copyright notice, |
| this list of conditions and the following disclaimer in the documentation |
| and/or other materials provided with the distribution. |
| * Neither the name of Qualcomm Innovation Center, Inc. nor the names of its |
| contributors may be used to endorse or promote products derived from this |
| software without specific prior written permission. |
| |
| NO EXPRESS OR IMPLIED LICENSES TO ANY PARTY'S PATENT RIGHTS ARE GRANTED BY |
| THIS LICENSE. THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND |
| CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT |
| NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A |
| PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER |
| OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, |
| EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, |
| PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; |
| OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, |
| WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR |
| OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF |
| ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. |
| ==============================================================================*/ |
| |
| #include "hexagon_tflm_translation_fully_connected.h" |
| #include "tensorflow/lite/c/builtin_op_data.h" |
| #include "tensorflow/lite/c/common.h" |
| #include "tensorflow/lite/kernels/internal/common.h" |
| #include "tensorflow/lite/kernels/internal/quantization_util.h" |
| #include "tensorflow/lite/kernels/internal/reference/fully_connected.h" |
| #include "tensorflow/lite/kernels/internal/reference/integer_ops/fully_connected.h" |
| #include "tensorflow/lite/kernels/internal/tensor_ctypes.h" |
| #include "tensorflow/lite/kernels/kernel_util.h" |
| #include "tensorflow/lite/micro/kernels/fully_connected.h" |
| #include "tensorflow/lite/micro/kernels/kernel_util.h" |
| #include "third_party/hexagon/hexagon_fully_connected.h" |
| #include "third_party/hexagon/hexagon_tflm_translation_fully_connected.h" |
| |
| namespace tflite { |
| namespace { |
| |
| TfLiteStatus EvalQuantizedInt8(TfLiteContext* context, TfLiteNode* node, |
| const HexagonOpDataFullyConnected& data, |
| const TfLiteEvalTensor* input, |
| const TfLiteEvalTensor* filter, |
| const TfLiteEvalTensor* bias, |
| TfLiteEvalTensor* output) { |
| tflite::FullyConnectedParams op_params; |
| op_params.input_offset = -data.reference_op_data.input_zero_point; |
| op_params.weights_offset = -data.reference_op_data.filter_zero_point; |
| op_params.output_offset = data.reference_op_data.output_zero_point; |
| op_params.output_multiplier = data.reference_op_data.output_multiplier; |
| // TODO(b/138810107): Figure out whether output shift should be inverted |
| op_params.output_shift = data.reference_op_data.output_shift; |
| op_params.quantized_activation_min = |
| data.reference_op_data.output_activation_min; |
| op_params.quantized_activation_max = |
| data.reference_op_data.output_activation_max; |
| |
| const int32_t* bias_data = |
| nullptr != bias ? tflite::micro::GetTensorData<int32_t>(bias) : nullptr; |
| |
| reference_integer_ops::FullyConnected( |
| op_params, tflite::micro::GetTensorShape(input), |
| tflite::micro::GetTensorData<int8_t>(input), |
| tflite::micro::GetTensorShape(filter), |
| tflite::micro::GetTensorData<int8_t>(filter), |
| tflite::micro::GetTensorShape(bias), bias_data, |
| tflite::micro::GetTensorShape(output), |
| tflite::micro::GetTensorData<int8_t>(output)); |
| |
| return kTfLiteOk; |
| } |
| |
| } // namespace |
| |
| void* HexagonFullyConnectedInit(TfLiteContext* context, const char* buffer, |
| size_t length) { |
| TFLITE_DCHECK(context->AllocatePersistentBuffer != nullptr); |
| void* data = nullptr; |
| data = context->AllocatePersistentBuffer(context, |
| sizeof(HexagonOpDataFullyConnected)); |
| |
| if (data == nullptr) { |
| return nullptr; |
| } |
| HexagonOpDataFullyConnected* opdata = |
| static_cast<HexagonOpDataFullyConnected*>(data); |
| opdata->hexagon_data = |
| tflite::hexagon_fully_connected::HexagonInit(context, buffer, length); |
| |
| return data; |
| } |
| |
| TfLiteStatus HexagonFullyConnectedPrepare(TfLiteContext* context, |
| TfLiteNode* node) { |
| TFLITE_DCHECK(node->user_data != nullptr); |
| TFLITE_DCHECK(node->builtin_data != nullptr); |
| |
| HexagonOpDataFullyConnected* data = |
| static_cast<HexagonOpDataFullyConnected*>(node->user_data); |
| const auto params = |
| static_cast<const TfLiteFullyConnectedParams*>(node->builtin_data); |
| |
| MicroContext* micro_context = GetMicroContext(context); |
| |
| TfLiteTensor* input = |
| micro_context->AllocateTempInputTensor(node, kFullyConnectedInputTensor); |
| TF_LITE_ENSURE(context, input != nullptr); |
| TfLiteTensor* filter = micro_context->AllocateTempInputTensor( |
| node, kFullyConnectedWeightsTensor); |
| TF_LITE_ENSURE(context, filter != nullptr); |
| TfLiteTensor* bias = |
| micro_context->AllocateTempInputTensor(node, kFullyConnectedBiasTensor); |
| TfLiteTensor* output = micro_context->AllocateTempOutputTensor( |
| node, kFullyConnectedOutputTensor); |
| TF_LITE_ENSURE(context, output != nullptr); |
| |
| TF_LITE_ENSURE_OK( |
| context, CalculateOpDataFullyConnected(context, params->activation, |
| input->type, input, filter, bias, |
| output, &data->reference_op_data)); |
| |
| TF_LITE_ENSURE_TYPES_EQ(context, input->type, output->type); |
| TF_LITE_ENSURE_MSG(context, input->type == filter->type, |
| "Hybrid models are not supported on TFLite Micro."); |
| |
| micro_context->DeallocateTempTfLiteTensor(input); |
| micro_context->DeallocateTempTfLiteTensor(filter); |
| if (bias != nullptr) { |
| micro_context->DeallocateTempTfLiteTensor(bias); |
| } |
| micro_context->DeallocateTempTfLiteTensor(output); |
| |
| TF_LITE_ENSURE_TYPES_EQ(context, input->type, output->type); |
| TF_LITE_ENSURE_MSG(context, input->type == filter->type, |
| "Hybrid models are not supported on TFLite Micro."); |
| |
| tflite::hexagon_fully_connected::HexagonOptimizationEvaluation(context, node); |
| |
| if (tflite::hexagon_fully_connected::HexagonOptimizable(context, node)) { |
| return tflite::hexagon_fully_connected::HexagonPrepare(context, node); |
| } |
| return kTfLiteOk; |
| } |
| |
| TfLiteStatus HexagonFullyConnectedEvalInt8(TfLiteContext* context, |
| TfLiteNode* node) { |
| TFLITE_DCHECK(node->builtin_data != nullptr); |
| |
| const TfLiteEvalTensor* input = |
| tflite::micro::GetEvalInput(context, node, kFullyConnectedInputTensor); |
| const TfLiteEvalTensor* filter = |
| tflite::micro::GetEvalInput(context, node, kFullyConnectedWeightsTensor); |
| const TfLiteEvalTensor* bias = |
| tflite::micro::GetEvalInput(context, node, kFullyConnectedBiasTensor); |
| TfLiteEvalTensor* output = |
| tflite::micro::GetEvalOutput(context, node, kFullyConnectedOutputTensor); |
| |
| TFLITE_DCHECK(node->user_data != nullptr); |
| const HexagonOpDataFullyConnected& data = |
| *(static_cast<const HexagonOpDataFullyConnected*>(node->user_data)); |
| |
| // This kernel only implements the int8 version of the fully_connected kernel. |
| TFLITE_DCHECK(input->type == kTfLiteInt8); |
| TFLITE_DCHECK(filter->type == kTfLiteInt8); |
| if (bias != nullptr) { |
| TFLITE_DCHECK(bias->type == kTfLiteInt32); |
| } |
| TFLITE_DCHECK(output->type == kTfLiteInt8); |
| |
| if (tflite::hexagon_fully_connected::HexagonOptimizable(context, node)) { |
| return tflite::hexagon_fully_connected::HexagonEvalQuantizedInt8( |
| context, node, node->user_data, input, filter, bias, output); |
| } else { |
| return EvalQuantizedInt8(context, node, data, input, filter, bias, output); |
| } |
| return kTfLiteOk; |
| } |
| |
| TFLMRegistration Register_FULLY_CONNECTED_INT8() { |
| return tflite::micro::RegisterOp(HexagonFullyConnectedInit, |
| HexagonFullyConnectedPrepare, |
| HexagonFullyConnectedEvalInt8); |
| } |
| |
| } // namespace tflite |