| /* Copyright 2022 The TensorFlow Authors. All Rights Reserved. |
| |
| Licensed under the Apache License, Version 2.0 (the "License"); |
| you may not use this file except in compliance with the License. |
| You may obtain a copy of the License at |
| |
| http://www.apache.org/licenses/LICENSE-2.0 |
| |
| Unless required by applicable law or agreed to in writing, software |
| distributed under the License is distributed on an "AS IS" BASIS, |
| WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
| See the License for the specific language governing permissions and |
| limitations under the License. |
| ==============================================================================*/ |
| |
| #include "tensorflow/lite/kernels/internal/reference/maximum_minimum.h" |
| |
| #include "tensorflow/lite/c/builtin_op_data.h" |
| #include "tensorflow/lite/c/common.h" |
| #include "tensorflow/lite/kernels/internal/common.h" |
| #include "tensorflow/lite/kernels/internal/quantization_util.h" |
| #include "tensorflow/lite/kernels/internal/tensor_ctypes.h" |
| #include "tensorflow/lite/kernels/kernel_util.h" |
| #include "tensorflow/lite/kernels/op_macros.h" |
| #include "tensorflow/lite/micro/kernels/kernel_util.h" |
| #include "tensorflow/lite/micro/micro_log.h" |
| |
| namespace tflite { |
| |
| namespace { |
| |
| // This file has a reference implementation of TFMaximum/TFMinimum. |
| enum KernelType { |
| kReference, |
| }; |
| |
| constexpr int kInputTensor1 = 0; |
| constexpr int kInputTensor2 = 1; |
| constexpr int kOutputTensor = 0; |
| |
| struct OpContext { |
| OpContext(TfLiteContext* context, TfLiteNode* node) { |
| input1 = tflite::micro::GetEvalInput(context, node, kInputTensor1); |
| input2 = tflite::micro::GetEvalInput(context, node, kInputTensor2); |
| output = tflite::micro::GetEvalOutput(context, node, kOutputTensor); |
| } |
| const TfLiteEvalTensor* input1; |
| const TfLiteEvalTensor* input2; |
| TfLiteEvalTensor* output; |
| }; |
| |
| struct MaximumOp { |
| template <typename data_type> |
| static data_type op(data_type el1, data_type el2) { |
| return el1 > el2 ? el1 : el2; |
| } |
| }; |
| |
| struct MinimumOp { |
| template <typename data_type> |
| static data_type op(data_type el1, data_type el2) { |
| return el1 < el2 ? el1 : el2; |
| } |
| }; |
| |
| template <typename data_type, typename op_type> |
| void TFLiteOperation(TfLiteContext* context, TfLiteNode* node, |
| const OpContext& op_context) { |
| reference_ops::MaximumMinimumBroadcastSlow( |
| tflite::micro::GetTensorShape(op_context.input1), |
| tflite::micro::GetTensorData<data_type>(op_context.input1), |
| tflite::micro::GetTensorShape(op_context.input2), |
| tflite::micro::GetTensorData<data_type>(op_context.input2), |
| tflite::micro::GetTensorShape(op_context.output), |
| tflite::micro::GetTensorData<data_type>(op_context.output), |
| op_type::template op<data_type>); |
| } |
| |
| template <KernelType kernel_type, typename OpType> |
| TfLiteStatus Eval(TfLiteContext* context, TfLiteNode* node) { |
| OpContext op_context(context, node); |
| |
| if (kernel_type == kReference) { |
| switch (op_context.output->type) { |
| case kTfLiteFloat32: |
| TFLiteOperation<float, OpType>(context, node, op_context); |
| break; |
| case kTfLiteInt8: |
| TFLiteOperation<int8_t, OpType>(context, node, op_context); |
| break; |
| case kTfLiteInt32: |
| TFLiteOperation<int32_t, OpType>(context, node, op_context); |
| break; |
| case kTfLiteInt64: |
| TFLiteOperation<int64_t, OpType>(context, node, op_context); |
| break; |
| default: |
| MicroPrintf("Type %s (%d) is not supported by Maximum/Minimum.", |
| TfLiteTypeGetName(op_context.output->type), |
| op_context.output->type); |
| return kTfLiteError; |
| } |
| } else { |
| MicroPrintf("Kernel type not supported by Maximum/Minimum."); |
| return kTfLiteError; |
| } |
| return kTfLiteOk; |
| } |
| |
| } // namespace |
| |
| TFLMRegistration Register_MAXIMUM() { |
| return tflite::micro::RegisterOp(nullptr, nullptr, |
| Eval<kReference, MaximumOp>); |
| } |
| |
| TFLMRegistration Register_MINIMUM() { |
| return tflite::micro::RegisterOp(nullptr, nullptr, |
| Eval<kReference, MinimumOp>); |
| } |
| |
| } // namespace tflite |