| /* Copyright 2022 The TensorFlow Authors. All Rights Reserved. |
| |
| Licensed under the Apache License, Version 2.0 (the "License"); |
| you may not use this file except in compliance with the License. |
| You may obtain a copy of the License at |
| |
| http://www.apache.org/licenses/LICENSE-2.0 |
| |
| Unless required by applicable law or agreed to in writing, software |
| distributed under the License is distributed on an "AS IS" BASIS, |
| WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
| See the License for the specific language governing permissions and |
| limitations under the License. |
| ==============================================================================*/ |
| |
| #include "tensorflow/lite/micro/kernels/fully_connected.h" |
| |
| #include "tensorflow/lite/c/builtin_op_data.h" |
| #include "tensorflow/lite/c/common.h" |
| #include "tensorflow/lite/kernels/internal/portable_tensor_utils.h" |
| #include "tensorflow/lite/kernels/internal/reference/fully_connected.h" |
| #include "tensorflow/lite/kernels/internal/reference/integer_ops/fully_connected.h" |
| #include "tensorflow/lite/micro/kernels/kernel_util.h" |
| #include "tensorflow/lite/micro/micro_log.h" |
| |
| namespace tflite { |
| namespace { |
| |
| void* Init(TfLiteContext* context, const char* buffer, size_t length) { |
| TFLITE_DCHECK(context->AllocatePersistentBuffer != nullptr); |
| return context->AllocatePersistentBuffer(context, |
| sizeof(OpDataFullyConnected)); |
| } |
| |
| TfLiteStatus Prepare(TfLiteContext* context, TfLiteNode* node) { |
| MicroContext* micro_context = GetMicroContext(context); |
| |
| TFLITE_DCHECK(node->user_data != nullptr); |
| TFLITE_DCHECK(node->builtin_data != nullptr); |
| |
| auto* data = static_cast<OpDataFullyConnected*>(node->user_data); |
| const auto params = |
| static_cast<const TfLiteFullyConnectedParams*>(node->builtin_data); |
| |
| TfLiteTensor* input = |
| micro_context->AllocateTempInputTensor(node, kFullyConnectedInputTensor); |
| TF_LITE_ENSURE(context, input != nullptr); |
| TfLiteTensor* filter = micro_context->AllocateTempInputTensor( |
| node, kFullyConnectedWeightsTensor); |
| TF_LITE_ENSURE(context, filter != nullptr); |
| TfLiteTensor* bias = |
| micro_context->AllocateTempInputTensor(node, kFullyConnectedBiasTensor); |
| TfLiteTensor* output = micro_context->AllocateTempOutputTensor( |
| node, kFullyConnectedOutputTensor); |
| TF_LITE_ENSURE(context, output != nullptr); |
| TF_LITE_ENSURE_TYPES_EQ(context, input->type, output->type); |
| |
| if ((input->type == kTfLiteFloat32 && filter->type != kTfLiteFloat32) || |
| (input->type == kTfLiteInt8 && |
| (filter->type != kTfLiteInt8 && filter->type != kTfLiteInt4)) || |
| (input->type == kTfLiteInt16 && filter->type != kTfLiteInt8)) { |
| MicroPrintf("Input type: %s with filter type : %s not supported.", |
| TfLiteTypeGetName(input->type), |
| TfLiteTypeGetName(filter->type)); |
| return kTfLiteError; |
| } |
| |
| if (filter->type == kTfLiteInt4) { |
| int filter_size = |
| RuntimeShape(filter->dims->size, |
| reinterpret_cast<const int32_t*>(filter->dims->data)) |
| .FlatSize(); |
| context->RequestScratchBufferInArena(context, filter_size, |
| &data->filter_buffer_index); |
| } |
| |
| TF_LITE_ENSURE_OK(context, CalculateOpDataFullyConnected( |
| context, params->activation, input->type, |
| input, filter, bias, output, data)); |
| |
| micro_context->DeallocateTempTfLiteTensor(input); |
| micro_context->DeallocateTempTfLiteTensor(filter); |
| if (bias != nullptr) { |
| micro_context->DeallocateTempTfLiteTensor(bias); |
| } |
| micro_context->DeallocateTempTfLiteTensor(output); |
| return kTfLiteOk; |
| } |
| |
| TfLiteStatus Eval(TfLiteContext* context, TfLiteNode* node) { |
| TFLITE_DCHECK(node->builtin_data != nullptr); |
| const auto* params = |
| static_cast<const TfLiteFullyConnectedParams*>(node->builtin_data); |
| |
| const TfLiteEvalTensor* input = |
| tflite::micro::GetEvalInput(context, node, kFullyConnectedInputTensor); |
| const TfLiteEvalTensor* filter = |
| tflite::micro::GetEvalInput(context, node, kFullyConnectedWeightsTensor); |
| const TfLiteEvalTensor* bias = |
| tflite::micro::GetEvalInput(context, node, kFullyConnectedBiasTensor); |
| TfLiteEvalTensor* output = |
| tflite::micro::GetEvalOutput(context, node, kFullyConnectedOutputTensor); |
| |
| TFLITE_DCHECK(node->user_data != nullptr); |
| |
| const auto& data = |
| *(static_cast<const OpDataFullyConnected*>(node->user_data)); |
| |
| // Checks in Prepare ensure input, output and filter types are all the same. |
| switch (input->type) { |
| case kTfLiteFloat32: { |
| tflite::reference_ops::FullyConnected( |
| FullyConnectedParamsFloat(params->activation), |
| tflite::micro::GetTensorShape(input), |
| tflite::micro::GetTensorData<float>(input), |
| tflite::micro::GetTensorShape(filter), |
| tflite::micro::GetTensorData<float>(filter), |
| tflite::micro::GetTensorShape(bias), |
| tflite::micro::GetOptionalTensorData<float>(bias), |
| tflite::micro::GetTensorShape(output), |
| tflite::micro::GetTensorData<float>(output)); |
| break; |
| } |
| |
| case kTfLiteInt8: { |
| switch (filter->type) { |
| case kTfLiteInt4: { |
| int8_t* unpacked_filter_data = static_cast<int8_t*>( |
| context->GetScratchBuffer(context, data.filter_buffer_index)); |
| tflite::tensor_utils::UnpackDenseInt4IntoInt8( |
| tflite::micro::GetTensorData<int8_t>(filter), |
| tflite::micro::GetTensorShape(filter).FlatSize(), |
| unpacked_filter_data); |
| tflite::reference_integer_ops::FullyConnected( |
| FullyConnectedParamsQuantized(data), |
| tflite::micro::GetTensorShape(input), |
| tflite::micro::GetTensorData<int8_t>(input), |
| tflite::micro::GetTensorShape(filter), unpacked_filter_data, |
| tflite::micro::GetTensorShape(bias), |
| tflite::micro::GetOptionalTensorData<int32_t>(bias), |
| tflite::micro::GetTensorShape(output), |
| tflite::micro::GetTensorData<int8_t>(output)); |
| break; |
| } |
| case kTfLiteInt8: { |
| tflite::reference_integer_ops::FullyConnected( |
| FullyConnectedParamsQuantized(data), |
| tflite::micro::GetTensorShape(input), |
| tflite::micro::GetTensorData<int8_t>(input), |
| tflite::micro::GetTensorShape(filter), |
| tflite::micro::GetTensorData<int8_t>(filter), |
| tflite::micro::GetTensorShape(bias), |
| tflite::micro::GetOptionalTensorData<int32_t>(bias), |
| tflite::micro::GetTensorShape(output), |
| tflite::micro::GetTensorData<int8_t>(output)); |
| break; |
| } |
| default: { |
| MicroPrintf("Filter type %s (%d) not supported.", |
| TfLiteTypeGetName(filter->type), input->type); |
| return kTfLiteError; |
| } |
| } |
| break; |
| } |
| |
| case kTfLiteInt16: { |
| switch (filter->type) { |
| case kTfLiteInt8: { |
| tflite::reference_integer_ops::FullyConnected( |
| FullyConnectedParamsQuantized(data), |
| tflite::micro::GetTensorShape(input), |
| tflite::micro::GetTensorData<int16_t>(input), |
| tflite::micro::GetTensorShape(filter), |
| tflite::micro::GetTensorData<int8_t>(filter), |
| tflite::micro::GetTensorShape(bias), |
| tflite::micro::GetOptionalTensorData<int64_t>(bias), |
| tflite::micro::GetTensorShape(output), |
| tflite::micro::GetTensorData<int16_t>(output)); |
| break; |
| } |
| default: { |
| MicroPrintf("Filter type %s (%d) not supported.", |
| TfLiteTypeGetName(filter->type), input->type); |
| return kTfLiteError; |
| } |
| } |
| break; |
| } |
| |
| default: { |
| MicroPrintf("Input type %s (%d) not supported.", |
| TfLiteTypeGetName(input->type), input->type); |
| return kTfLiteError; |
| } |
| } |
| return kTfLiteOk; |
| } |
| |
| } // namespace |
| |
| TFLMRegistration Register_FULLY_CONNECTED() { |
| return tflite::micro::RegisterOp(Init, Prepare, Eval); |
| } |
| |
| } // namespace tflite |