| /* Copyright 2021 The TensorFlow Authors. All Rights Reserved. |
| |
| Licensed under the Apache License, Version 2.0 (the "License"); |
| you may not use this file except in compliance with the License. |
| You may obtain a copy of the License at |
| |
| http://www.apache.org/licenses/LICENSE-2.0 |
| |
| Unless required by applicable law or agreed to in writing, software |
| distributed under the License is distributed on an "AS IS" BASIS, |
| WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
| See the License for the specific language governing permissions and |
| limitations under the License. |
| ==============================================================================*/ |
| |
| /* Copyright 2020 The Qualcomm Innovation Center, Inc. All Rights Reserved. |
| |
| Redistribution and use in source and binary forms, with or without |
| modification, are permitted (subject to the limitations in the disclaimer |
| below) provided that the following conditions are met: |
| |
| * Redistributions of source code must retain the above copyright notice, |
| this list of conditions and the following disclaimer. |
| * Redistributions in binary form must reproduce the above copyright notice, |
| this list of conditions and the following disclaimer in the documentation |
| and/or other materials provided with the distribution. |
| * Neither the name of Qualcomm Innovation Center, Inc. nor the names of its |
| contributors may be used to endorse or promote products derived from this |
| software without specific prior written permission. |
| |
| NO EXPRESS OR IMPLIED LICENSES TO ANY PARTY'S PATENT RIGHTS ARE GRANTED BY |
| THIS LICENSE. THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND |
| CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT |
| NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A |
| PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER |
| OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, |
| EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, |
| PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; |
| OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, |
| WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR |
| OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF |
| ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. |
| ==============================================================================*/ |
| |
| #include <math.h> |
| |
| #include "tensorflow/lite/c/builtin_op_data.h" |
| #include "tensorflow/lite/c/common.h" |
| #include "tensorflow/lite/kernels/internal/common.h" |
| #include "tensorflow/lite/kernels/internal/quantization_util.h" |
| #include "tensorflow/lite/kernels/internal/tensor_ctypes.h" |
| #include "tensorflow/lite/kernels/kernel_util.h" |
| #include "tensorflow/lite/kernels/op_macros.h" |
| #include "tensorflow/lite/micro/kernels/activation_utils.h" |
| #include "tensorflow/lite/micro/kernels/kernel_util.h" |
| #include "tensorflow/lite/micro/micro_utils.h" |
| #include "third_party/hexagon/hexagon_svdf.h" |
| #include "third_party/hexagon/hexagon_tflm_translation_svdf.h" |
| |
| namespace tflite { |
| |
| TfLiteStatus HexagonSvdfEvalInt8(TfLiteContext* context, TfLiteNode* node) { |
| auto* params = reinterpret_cast<TfLiteSVDFParams*>(node->builtin_data); |
| TFLITE_DCHECK(node->user_data != nullptr); |
| const HexagonOpDataSvdf& data = |
| *(static_cast<const HexagonOpDataSvdf*>(node->user_data)); |
| |
| const TfLiteEvalTensor* input = |
| tflite::micro::GetEvalInput(context, node, kSvdfInputTensor); |
| const TfLiteEvalTensor* weights_feature = |
| tflite::micro::GetEvalInput(context, node, kSvdfWeightsFeatureTensor); |
| const TfLiteEvalTensor* weights_time = |
| tflite::micro::GetEvalInput(context, node, kSvdfWeightsTimeTensor); |
| const TfLiteEvalTensor* bias = |
| (NumInputs(node) == 5) |
| ? tflite::micro::GetEvalInput(context, node, kSvdfBiasTensor) |
| : nullptr; |
| TfLiteEvalTensor* activation_state = tflite::micro::GetMutableEvalInput( |
| context, node, kSvdfInputActivationStateTensor); |
| TfLiteEvalTensor* output = |
| tflite::micro::GetEvalOutput(context, node, kSvdfOutputTensor); |
| |
| if (tflite::hexagon_svdf::HexagonOptimizable(context, node)) { |
| tflite::hexagon_svdf::HexagonEvalIntegerSVDF( |
| context, node, input, weights_feature, weights_time, bias, params, |
| activation_state, output, node->user_data); |
| } else { |
| EvalInt16SvdfReference(context, node, input, weights_feature, weights_time, |
| bias, params, activation_state, output, |
| data.reference_op_data); |
| } |
| return kTfLiteOk; |
| } |
| |
| void* HexagonSvdfInit(TfLiteContext* context, const char* buffer, |
| size_t length) { |
| TFLITE_DCHECK(context->AllocatePersistentBuffer != nullptr); |
| void* data = context->AllocatePersistentBuffer(context, sizeof(OpDataSvdf)); |
| |
| if (data == nullptr) { |
| return nullptr; |
| } |
| |
| HexagonOpDataSvdf* opdata = static_cast<HexagonOpDataSvdf*>(data); |
| opdata->hexagon_data = |
| tflite::hexagon_svdf::HexagonInit(context, buffer, length); |
| |
| return data; |
| } |
| |
| TfLiteStatus HexagonSvdfPrepare(TfLiteContext* context, TfLiteNode* node) { |
| TfLiteStatus prepare_status = PrepareSvdf(context, node); |
| if (prepare_status != kTfLiteOk) { |
| return prepare_status; |
| } |
| |
| tflite::hexagon_svdf::HexagonOptimizationEvaluation(context, node); |
| |
| if (tflite::hexagon_svdf::HexagonOptimizable(context, node)) { |
| TF_LITE_ENSURE_OK(context, |
| tflite::hexagon_svdf::HexagonPrepare(context, node)); |
| } |
| |
| return kTfLiteOk; |
| } |
| |
| TFLMRegistration Register_SVDF_INT8() { |
| return tflite::micro::RegisterOp(HexagonSvdfInit, HexagonSvdfPrepare, |
| HexagonSvdfEvalInt8); |
| } |
| |
| } // namespace tflite |