| # Lint as: python3 |
| # Copyright 2019 The IREE Authors |
| # |
| # Licensed under the Apache License v2.0 with LLVM Exceptions. |
| # See https://llvm.org/LICENSE.txt for license information. |
| # SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
| """Batch norm tests.""" |
| |
| from absl import app |
| from iree.tf.support import tf_test_utils |
| from iree.tf.support import tf_utils |
| import numpy as np |
| import tensorflow.compat.v2 as tf |
| |
| |
| class BatchNormModule(tf.Module): |
| |
| @tf.function(input_signature=[ |
| tf.TensorSpec([4, 16], tf.float32), |
| tf.TensorSpec([16], tf.float32), |
| tf.TensorSpec([16], tf.float32), |
| tf.TensorSpec([16], tf.float32), |
| tf.TensorSpec([16], tf.float32), |
| ]) |
| def batch_norm_inference(self, x, mean, variance, offset, scale): |
| return tf.nn.batch_normalization(x, |
| mean=mean, |
| variance=variance, |
| offset=offset, |
| scale=scale, |
| variance_epsilon=1e-4) |
| |
| |
| class BatchNormTest(tf_test_utils.TracedModuleTestCase): |
| |
| def __init__(self, *args, **kwargs): |
| super().__init__(*args, **kwargs) |
| self._modules = tf_test_utils.compile_tf_module(BatchNormModule) |
| |
| def test_batch_norm_inference(self): |
| |
| def batch_norm_inference(module): |
| # Note: scaling by a small value to increase numerical stability. |
| x = tf_utils.uniform((4, 16)) * 1e-3 |
| mean = tf_utils.uniform((16,)) * 1e-3 |
| variance = tf_utils.uniform((16,), low=0.0) * 1e-3 |
| offset = tf_utils.uniform((16,)) * 1e-3 |
| scale = tf_utils.uniform((16,)) * 1e-3 |
| module.batch_norm_inference(x, mean, variance, offset, scale) |
| |
| self.compare_backends(batch_norm_inference, self._modules) |
| |
| |
| def main(argv): |
| del argv # Unused |
| if hasattr(tf, 'enable_v2_behavior'): |
| tf.enable_v2_behavior() |
| tf.test.main() |
| |
| |
| if __name__ == '__main__': |
| app.run(main) |