| // Copyright 2021 The IREE Authors |
| // |
| // Licensed under the Apache License v2.0 with LLVM Exceptions. |
| // See https://llvm.org/LICENSE.txt for license information. |
| // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
| |
| #include "./SetBlockIdsRangePass.h" |
| #include "iree/compiler/Codegen/Dialect/Codegen/IR/IREECodegenDialect.h" |
| #include "iree/compiler/Codegen/Dialect/GPU/TargetUtils/KnownTargets.h" |
| #include "iree/compiler/Codegen/LLVMGPU/Passes.h" |
| #include "iree/compiler/Codegen/Utils/GPUUtils.h" |
| #include "iree/compiler/Dialect/HAL/Target/TargetRegistry.h" |
| #include "iree/compiler/Dialect/HAL/Utils/LLVMLinkerUtils.h" |
| #include "iree/compiler/PluginAPI/Client.h" |
| #include "iree/compiler/Utils/FlatbufferUtils.h" |
| #include "iree/compiler/Utils/ModuleUtils.h" |
| #include "iree/compiler/Utils/StringUtils.h" |
| #include "iree/compiler/Utils/ToolUtils.h" |
| #include "iree/schemas/cuda_executable_def_builder.h" |
| #include "iree_cuda/libdevice_embedded.h" |
| #include "llvm/Analysis/TargetTransformInfo.h" |
| #include "llvm/Bitcode/BitcodeReader.h" |
| #include "llvm/Bitcode/BitcodeWriter.h" |
| #include "llvm/IR/Constants.h" |
| #include "llvm/IR/LegacyPassManager.h" |
| #include "llvm/IR/Module.h" |
| #include "llvm/IR/Verifier.h" |
| #include "llvm/Linker/Linker.h" |
| #include "llvm/MC/TargetRegistry.h" |
| #include "llvm/Passes/PassBuilder.h" |
| #include "llvm/Passes/StandardInstrumentations.h" |
| #include "llvm/Support/FileSystem.h" |
| #include "llvm/Support/FileUtilities.h" |
| #include "llvm/Support/MemoryBuffer.h" |
| #include "llvm/Support/Program.h" |
| #include "llvm/Support/TargetSelect.h" |
| #include "llvm/Support/WithColor.h" |
| #include "llvm/Support/raw_ostream.h" |
| #include "llvm/Target/TargetMachine.h" |
| #include "llvm/Transforms/IPO.h" |
| #include "llvm/Transforms/IPO/Internalize.h" |
| #include "mlir/Dialect/GPU/IR/GPUDialect.h" |
| #include "mlir/Dialect/LLVMIR/LLVMDialect.h" |
| #include "mlir/Dialect/NVGPU/IR/NVGPUDialect.h" |
| #include "mlir/Dialect/Transform/IR/TransformDialect.h" |
| #include "mlir/Pass/PassManager.h" |
| #include "mlir/Support/LogicalResult.h" |
| #include "mlir/Target/LLVMIR/Dialect/Builtin/BuiltinToLLVMIRTranslation.h" |
| #include "mlir/Target/LLVMIR/Dialect/LLVMIR/LLVMToLLVMIRTranslation.h" |
| #include "mlir/Target/LLVMIR/Dialect/NVVM/NVVMToLLVMIRTranslation.h" |
| #include "mlir/Target/LLVMIR/Export.h" |
| |
| namespace mlir::iree_compiler::IREE::HAL { |
| |
| namespace { |
| struct CUDAOptions { |
| bool dumpPtx = false; |
| std::string clTargetChip = "sm_60"; |
| std::string clTargetFeature = "+ptx76"; |
| bool clUsePtxas = false; |
| std::string clUsePtxasFrom; |
| std::string clUsePtxasParams; |
| |
| void bindOptions(OptionsBinder &binder) { |
| static llvm::cl::OptionCategory category("CUDA HAL Target"); |
| binder.opt<bool>("iree-hal-cuda-dump-ptx", dumpPtx, llvm::cl::cat(category), |
| llvm::cl::desc("Dump ptx to the debug stream.")); |
| |
| binder.opt<std::string>("iree-hal-cuda-llvm-target-arch", clTargetChip, |
| llvm::cl::cat(category), |
| llvm::cl::desc("LLVM target chip.")); |
| |
| binder.opt<std::string>("iree-hal-cuda-llvm-target-feature", |
| clTargetFeature, llvm::cl::cat(category), |
| llvm::cl::desc("Use to set PTX version.")); |
| |
| binder.opt<bool>( |
| "iree-hal-cuda-use-ptxas", clUsePtxas, llvm::cl::cat(category), |
| llvm::cl::desc("It uses the ptxas compiler that is on the environment, " |
| "compiles the " |
| "generated PTX code with it, puts the cubin binary " |
| "generated by ptxas " |
| "into the executable. " |
| "'--iree-hal-cuda-llvm-target-arch' is used as " |
| "the target GPU. If passing additional parameters to " |
| "ptxas is desired, " |
| "the parameters flag can be used " |
| "(e.g.'--iree-hal-cuda-use-ptxas-params=-v').")); |
| |
| binder.opt<std::string>( |
| "iree-hal-cuda-use-ptxas-from", clUsePtxasFrom, llvm::cl::cat(category), |
| llvm::cl::desc( |
| "It uses the provided ptxas compiler, compiles the generated PTX " |
| "code with it, puts the cubin binary generated by ptxas into the " |
| "executable. '--iree-hal-cuda-llvm-target-arch' is used as the " |
| "target GPU. If passing additional parameters to ptxas is desired, " |
| "the " |
| "parameters flag can be used " |
| "(e.g.'--iree-hal-cuda-use-ptxas-params=-v').")); |
| |
| binder.opt<std::string>( |
| "iree-hal-cuda-use-ptxas-params", clUsePtxasParams, |
| llvm::cl::cat(category), |
| llvm::cl::desc("Passes the given additional parameters to ptxas.")); |
| } |
| }; |
| } // namespace |
| |
| static constexpr char kPtxasCompilerName[] = "ptxas"; |
| |
| /// Attempts to find ptxas compiler |
| static FailureOr<std::string> findPtxasCompiler(const CUDAOptions &options, |
| std::string *message) { |
| std::string ptxasCompiler; |
| if (!options.clUsePtxasFrom.empty()) |
| ptxasCompiler = options.clUsePtxasFrom; |
| if (llvm::sys::fs::exists(ptxasCompiler)) |
| return ptxasCompiler; |
| |
| ptxasCompiler = findTool(kPtxasCompilerName); |
| if (llvm::sys::fs::exists(ptxasCompiler)) |
| return ptxasCompiler; |
| |
| *message = std::string( |
| "Could not find ptxas compiler. Try passing it explicitly with " |
| "--iree-hal-cuda-use-ptxas-from=<path> flag"); |
| return failure(); |
| } |
| |
| /// Compiles the given generated PTX code with the given ptxas compiler. |
| static FailureOr<std::string> compileWithPtxas(StringRef ptxasCompiler, |
| StringRef smCapability, |
| StringRef ptxasParams, |
| StringRef ptxSource, |
| std::string *message) { |
| // Step 1. Create temporary files: ptx source file, log file and cubin file |
| llvm::SmallString<64> ptxSourceFile, stdinFile, stdoutFile, stderrFile; |
| llvm::sys::fs::createTemporaryFile("iree-ptx", "", ptxSourceFile); |
| llvm::sys::fs::createTemporaryFile("ptxas-stdin", "", stdinFile); |
| llvm::sys::fs::createTemporaryFile("ptxas-stdout", "", stdoutFile); |
| llvm::sys::fs::createTemporaryFile("ptxas-stderr", "", stderrFile); |
| std::string cubinFile = std::string(ptxSourceFile) + ".cubin"; |
| llvm::FileRemover stdinRemover(stdinFile.c_str()); |
| llvm::FileRemover stdoutRemover(stdoutFile.c_str()); |
| llvm::FileRemover stderrRemover(stderrFile.c_str()); |
| llvm::FileRemover binRemover(cubinFile.c_str()); |
| llvm::FileRemover srcRemover(ptxSourceFile.c_str()); |
| |
| // Step 2. Write the generated PTX into a file, so we can pass it to ptxas |
| // compiler |
| std::error_code ec; |
| llvm::raw_fd_ostream fPtxSource(ptxSourceFile, ec); |
| fPtxSource << ptxSource; |
| fPtxSource.close(); |
| if (fPtxSource.has_error()) { |
| *message = std::string( |
| "Could not write the generated ptx into a temporary file\n"); |
| return failure(); |
| } |
| |
| // Step 3. Build the ptxas command line |
| std::vector<StringRef> ArgVector{ |
| StringRef(kPtxasCompilerName), StringRef("-arch"), smCapability, |
| StringRef(ptxSourceFile), StringRef("-o"), StringRef(cubinFile)}; |
| #ifdef _WIN32 |
| auto Tokenize = llvm::cl::TokenizeWindowsCommandLine; |
| #else |
| auto Tokenize = llvm::cl::TokenizeGNUCommandLine; |
| #endif // _WIN32 |
| llvm::BumpPtrAllocator scratchAllocator; |
| llvm::StringSaver stringSaver(scratchAllocator); |
| SmallVector<const char *> rawArgs; |
| Tokenize(ptxasParams, stringSaver, rawArgs, /*MarkEOLs=*/false); |
| for (auto rawArg : rawArgs) |
| ArgVector.push_back(StringRef(rawArg)); |
| |
| std::optional<StringRef> redirects[] = { |
| stdinFile.str(), |
| stdoutFile.str(), |
| stderrFile.str(), |
| }; |
| |
| // Step 4. Invoke ptxas |
| if (llvm::sys::ExecuteAndWait(unescapeCommandLineComponent(ptxasCompiler), |
| llvm::ArrayRef<llvm::StringRef>(ArgVector), |
| /*Env=*/std::nullopt, |
| /*Redirects=*/redirects, |
| /*SecondsToWait=*/0, /*MemoryLimit=*/0, |
| /*ErrMsg=*/message)) { |
| if (message->empty()) { |
| *message = std::string("Invoking ptxas is failed, see the file: ") + |
| stderrFile.str().str() + std::string("\n"); |
| } |
| stderrRemover.releaseFile(); |
| return failure(); |
| } |
| |
| // Step 5. The output of ptxas if verbose flag is set. This is useful |
| // because it shows local memory usage, register usage, and etc. |
| if (ptxasParams.find("-v") != StringRef::npos) { |
| llvm::ErrorOr<std::unique_ptr<llvm::MemoryBuffer>> maybeFlog = |
| llvm::MemoryBuffer::getFile(stderrFile); |
| if (maybeFlog) { |
| llvm::WithColor::note() << maybeFlog->get()->getBuffer().str(); |
| } |
| } |
| |
| // Step 6. Read the cubin file, and return. It will eventually be written |
| // into executable. |
| llvm::ErrorOr<std::unique_ptr<llvm::MemoryBuffer>> maybeFcubin = |
| llvm::MemoryBuffer::getFile(cubinFile); |
| if (!maybeFcubin) { |
| *message = std::string("Could not read cubin file \n"); |
| return failure(); |
| } |
| |
| return std::string(maybeFcubin->get()->getBuffer()); |
| } |
| |
| // Attempt compiling the PtxImage with ptxas compiler. If the compilation fails |
| // for some reason return and pack the generated PtxImage code in the |
| // executable, let the runtime compile. |
| static std::string produceGpuImage(const CUDAOptions &options, |
| StringRef targetArch, |
| std::string &ptxImage) { |
| if (!options.clUsePtxas) |
| return ptxImage; |
| |
| std::string message; |
| FailureOr<std::string> ptxasCompiler = findPtxasCompiler(options, &message); |
| |
| if (succeeded(ptxasCompiler)) { |
| FailureOr<std::string> maybeCubinImage = |
| compileWithPtxas(ptxasCompiler.value(), targetArch, |
| options.clUsePtxasParams, ptxImage, &message); |
| if (succeeded(maybeCubinImage)) |
| return maybeCubinImage.value(); |
| } |
| |
| llvm::WithColor::warning() |
| << "Compilation with `ptxas` failed, the generated ptx will be " |
| "packaged into the executable and compiled at runtime. \n Error : " |
| << message << " \n"; |
| |
| return ptxImage; |
| } |
| |
| static void dumpLLVMModuleToPath(StringRef path, StringRef baseName, |
| StringRef suffix, StringRef extPrefix, |
| llvm::Module &module) { |
| // Dump disassembly to path. |
| llvm::SmallVector<char> textData; |
| llvm::raw_svector_ostream textOstream(textData); |
| |
| module.print(textOstream, nullptr); |
| std::string textExtension = extPrefix.str() + ".ll"; |
| dumpDataToPath(path, baseName, suffix, textExtension, |
| StringRef(textData.data(), textData.size())); |
| |
| // Dump bitcode to path. |
| llvm::SmallVector<char> binaryData; |
| llvm::raw_svector_ostream binaryOstream(binaryData); |
| // Write the specified module to the specified output stream. |
| llvm::WriteBitcodeToFile(module, binaryOstream); |
| std::string binaryExtension = extPrefix.str() + ".bc"; |
| dumpDataToPath(path, baseName, suffix, binaryExtension, |
| StringRef(binaryData.data(), binaryData.size())); |
| } |
| |
| static std::string translateModuleToISA(llvm::Module &module, |
| llvm::TargetMachine &targetMachine) { |
| std::string targetISA; |
| { |
| llvm::raw_string_ostream stream(targetISA); |
| llvm::buffer_ostream pstream(stream); |
| llvm::legacy::PassManager codegenPasses; |
| targetMachine.addPassesToEmitFile(codegenPasses, pstream, nullptr, |
| llvm::CodeGenFileType::AssemblyFile); |
| codegenPasses.run(module); |
| } |
| return targetISA; |
| } |
| |
| /// Resolve __nv function by linking libdevice module. |
| /// |objectAttrs| may optionally specify additional bitcode files to link into |
| /// the generated code. |
| static LogicalResult linkObjects(Location loc, llvm::Module &module, |
| llvm::TargetMachine &targetMachine, |
| ArrayAttr objectAttrs) { |
| // Ensure consistent target information. |
| const llvm::Triple &targetTriple = targetMachine.getTargetTriple(); |
| module.setDataLayout(targetMachine.createDataLayout()); |
| module.setTargetTriple(targetTriple.str()); |
| |
| auto specializationCallback = [&](llvm::Module &userModule) { |
| // TODO(thomasraoux): inject __nvvm_reflect-style functions/globals for |
| // bitcode specialization based on the targetMachine and configuration. |
| // These could use any information we have on the IREE side as well as the |
| // TargetMachine instead of just what __nvvm_reflect supports (arch/etc). |
| }; |
| |
| // Link user modules and libdevice (if required). |
| // Note that linking order matters: |
| llvm::Linker linker(module); |
| if (failed(linkCmdlineBitcodeFiles(loc, linker, llvm::Linker::OverrideFromSrc, |
| targetMachine, module.getContext()))) { |
| return failure(); |
| } |
| |
| unsigned linkerFlags = |
| llvm::Linker::LinkOnlyNeeded | llvm::Linker::OverrideFromSrc; |
| if (failed(linkBitcodeObjects(loc, linker, linkerFlags, targetMachine, |
| objectAttrs, module.getContext(), |
| specializationCallback))) { |
| return mlir::emitError(loc) |
| << "failed linking in user objects for target triple '" |
| << targetTriple.str() << "'"; |
| } |
| |
| if (anyRequiredSymbols(module, "__nv_")) { |
| llvm::MemoryBufferRef bitcodeBufferRef( |
| llvm::StringRef(libdevice_embedded_create()->data, |
| libdevice_embedded_create()->size), |
| "libdevice.xx.bc"); |
| if (failed(linkBitcodeModule( |
| loc, linker, linkerFlags, targetMachine, "libdevice.xx.bc", |
| llvm::parseBitcodeFile(bitcodeBufferRef, module.getContext())))) { |
| return mlir::emitError(loc) << "failed linking in embedded libdevice " |
| "bitcode for target triple '" |
| << targetTriple.str() << "'"; |
| } |
| } |
| |
| return success(); |
| } |
| |
| /// Performs optimizations on |module| (including LTO-style whole-program ones). |
| static void optimizeModule(llvm::Module &module, |
| llvm::TargetMachine &targetMachine, |
| const std::array<int32_t, 3> &maxWorkgroupSize) { |
| llvm::LoopAnalysisManager lam; |
| llvm::FunctionAnalysisManager fam; |
| llvm::CGSCCAnalysisManager cgam; |
| llvm::ModuleAnalysisManager mam; |
| |
| fam.registerPass([&] { return targetMachine.getTargetIRAnalysis(); }); |
| |
| llvm::PipelineTuningOptions pto; |
| pto.SLPVectorization = false; |
| |
| llvm::PassInstrumentationCallbacks pic; |
| |
| llvm::StandardInstrumentations si(module.getContext(), false); |
| si.registerCallbacks(pic, &mam); |
| |
| llvm::PassBuilder pb(&targetMachine, pto, std::nullopt, &pic); |
| llvm::ModulePassManager mpm; |
| StringRef nnvmReflectPassName = "nvvm-reflect"; |
| if (pb.parsePassPipeline(mpm, nnvmReflectPassName)) { |
| llvm::errs() << "Could not parse -" << nnvmReflectPassName << "\n"; |
| } |
| pb.registerModuleAnalyses(mam); |
| pb.registerCGSCCAnalyses(cgam); |
| pb.registerFunctionAnalyses(fam); |
| pb.registerLoopAnalyses(lam); |
| pb.crossRegisterProxies(lam, fam, cgam, mam); |
| |
| llvm::OptimizationLevel ol = llvm::OptimizationLevel::O2; |
| |
| mpm.addPass(llvm::VerifierPass()); |
| llvm::FunctionPassManager fpm; |
| fpm.addPass(llvm::SetBlockIdsRangePass(maxWorkgroupSize)); |
| mpm.addPass(createModuleToFunctionPassAdaptor(std::move(fpm))); |
| mpm.addPass(pb.buildPerModuleDefaultPipeline(ol)); |
| mpm.addPass(llvm::VerifierPass()); |
| |
| mpm.run(module, mam); |
| } |
| |
| class CUDATargetDevice final : public TargetDevice { |
| public: |
| CUDATargetDevice(const CUDAOptions &options) : options(options) {} |
| |
| IREE::HAL::DeviceTargetAttr |
| getDefaultDeviceTarget(MLIRContext *context, |
| const TargetRegistry &targetRegistry) const override { |
| Builder b(context); |
| SmallVector<NamedAttribute> configItems; |
| |
| // TODO: device configuration attrs. |
| auto configAttr = b.getDictionaryAttr(configItems); |
| |
| // If we had multiple target environments we would generate one target attr |
| // per environment, with each setting its own environment attribute. |
| SmallVector<IREE::HAL::ExecutableTargetAttr> executableTargetAttrs; |
| targetRegistry.getTargetBackend("cuda")->getDefaultExecutableTargets( |
| context, "cuda", configAttr, executableTargetAttrs); |
| |
| return IREE::HAL::DeviceTargetAttr::get(context, b.getStringAttr("cuda"), |
| configAttr, executableTargetAttrs); |
| } |
| |
| private: |
| const CUDAOptions &options; |
| }; |
| |
| class CUDATargetBackend final : public TargetBackend { |
| public: |
| CUDATargetBackend(const CUDAOptions &options) : options(options) {} |
| |
| std::string getLegacyDefaultDeviceID() const override { return "cuda"; } |
| |
| void getDefaultExecutableTargets( |
| MLIRContext *context, StringRef deviceID, DictionaryAttr deviceConfigAttr, |
| SmallVectorImpl<IREE::HAL::ExecutableTargetAttr> &executableTargetAttrs) |
| const override { |
| executableTargetAttrs.push_back(getExecutableTarget(context)); |
| } |
| |
| IREE::HAL::ExecutableTargetAttr |
| getExecutableTarget(MLIRContext *context) const { |
| Builder b(context); |
| SmallVector<NamedAttribute> configItems; |
| auto addConfig = [&](StringRef name, Attribute value) { |
| configItems.emplace_back(b.getStringAttr(name), value); |
| }; |
| |
| if (auto target = GPU::getCUDATargetDetails(options.clTargetChip, context)) |
| addConfig("iree.gpu.target", target); |
| |
| return b.getAttr<IREE::HAL::ExecutableTargetAttr>( |
| b.getStringAttr("cuda"), b.getStringAttr("cuda-nvptx-fb"), |
| b.getDictionaryAttr(configItems)); |
| } |
| |
| void getDependentDialects(DialectRegistry ®istry) const override { |
| // TODO: Derive the use of TransformDialect from inner |
| // `LLVMGPULowerExecutableTargetPass`. |
| registry.insert<gpu::GPUDialect, nvgpu::NVGPUDialect, |
| IREE::Codegen::IREECodegenDialect, |
| transform::TransformDialect>(); |
| mlir::registerBuiltinDialectTranslation(registry); |
| mlir::registerLLVMDialectTranslation(registry); |
| mlir::registerNVVMDialectTranslation(registry); |
| } |
| |
| void |
| buildConfigurationPassPipeline(IREE::HAL::ExecutableTargetAttr targetAttr, |
| OpPassManager &passManager) override { |
| buildLLVMGPUCodegenConfigurationPassPipeline(passManager); |
| } |
| |
| void buildTranslationPassPipeline(IREE::HAL::ExecutableTargetAttr targetAttr, |
| OpPassManager &passManager) override { |
| buildLLVMGPUCodegenPassPipeline(passManager, false); |
| } |
| |
| LogicalResult serializeExecutable(const SerializationOptions &serOptions, |
| IREE::HAL::ExecutableVariantOp variantOp, |
| OpBuilder &executableBuilder) override { |
| auto targetAttr = variantOp.getTargetAttr(); |
| StringRef targetArch = options.clTargetChip; |
| if (auto attr = getGPUTargetAttr(targetAttr)) |
| targetArch = attr.getArch(); |
| |
| // Perform the translation in a separate context to avoid any |
| // multi-threading issues. |
| llvm::LLVMContext context; |
| |
| // We name our files after the executable name so that they are easy to |
| // track both during compilation (logs/artifacts/etc), as outputs (final |
| // intermediate code/binary files), and at runtime (loaded |
| // libraries/symbols/etc). |
| auto libraryName = |
| variantOp->getParentOfType<IREE::HAL::ExecutableOp>().getName().str(); |
| |
| // TODO(thomasraoux): property handle export ordinals; this code is assuming |
| // that ordinals are dense starting at 0 but that is not required. |
| |
| // Collect all the entry point parameters. |
| SmallVector<std::array<int32_t, 3>> workgroupSizes; |
| SmallVector<uint32_t> workgroupLocalMemories; |
| for (auto exportOp : variantOp.getExportOps()) { |
| std::array<int32_t, 3> workgroupSize; |
| if (std::optional<ArrayAttr> workgroupSizeAttr = |
| exportOp.getWorkgroupSize()) { |
| for (auto it : llvm::enumerate(workgroupSizeAttr.value())) { |
| workgroupSize[it.index()] = |
| llvm::cast<IntegerAttr>(it.value()).getInt(); |
| } |
| } else { |
| workgroupSize = {1, 1, 1}; |
| } |
| workgroupSizes.push_back(workgroupSize); |
| uint32_t workgroupLocalMemory = 0; |
| if (auto workgroupLocalMemoryAttr = exportOp.getWorkgroupLocalMemory()) { |
| workgroupLocalMemory = workgroupLocalMemoryAttr->getSExtValue(); |
| } |
| workgroupLocalMemories.push_back(workgroupLocalMemory); |
| } |
| |
| FlatbufferBuilder builder; |
| iree_hal_cuda_ExecutableDef_start_as_root(builder); |
| |
| SmallVector<std::string> entryPointNames; |
| std::string ptxImage; |
| SmallVector<iree_hal_cuda_FileLineLocDef_ref_t> sourceLocationRefs; |
| if (variantOp.isExternal()) { |
| if (!variantOp.getObjects().has_value()) { |
| return variantOp.emitOpError() |
| << "no objects defined for external variant"; |
| } else if (variantOp.getObjects()->getValue().size() != 1) { |
| // For now we assume there will be exactly one object file. |
| // In the future we will want to perform a linking step here and ideally |
| // support _also_ linking in the codegen results. |
| return variantOp.emitOpError() << "only one object reference is " |
| "supported for external variants"; |
| } |
| |
| // Take exported names verbatim. The user must have already sanitized |
| // these to match the names in their kernels. We don't support any kind of |
| // mangling and if the user was silly enough to rely on nvcc C++ mangling |
| // they'll have to figure that out. |
| for (auto exportOp : variantOp.getExportOps()) { |
| entryPointNames.emplace_back(exportOp.getSymName()); |
| } |
| |
| auto objectAttr = llvm::cast<IREE::HAL::ExecutableObjectAttr>( |
| variantOp.getObjects()->getValue().front()); |
| if (auto data = objectAttr.loadData()) { |
| ptxImage = data.value(); |
| } else { |
| return variantOp.emitOpError() |
| << "object file could not be loaded: " << objectAttr; |
| } |
| } else { |
| ModuleOp innerModuleOp = variantOp.getInnerModule(); |
| |
| auto llvmModule = |
| mlir::translateModuleToLLVMIR(innerModuleOp, context, libraryName); |
| if (!llvmModule) { |
| return variantOp.emitError() << "failed to translate the MLIR LLVM " |
| "dialect to the native llvm::Module"; |
| } |
| |
| for (auto [exportOp, workgroupSize] : |
| llvm::zip_equal(variantOp.getExportOps(), workgroupSizes)) { |
| auto *llvmFunc = llvmModule->getFunction(exportOp.getName()); |
| if (llvmFunc->isDeclaration()) |
| continue; |
| |
| // setName will make sure the function name is unique. |
| llvmFunc->setName(sanitizeSymbolName(exportOp.getName())); |
| entryPointNames.emplace_back(llvmFunc->getName()); |
| |
| auto *annotations = |
| llvmModule->getOrInsertNamedMetadata("nvvm.annotations"); |
| auto setMetadataValueI32 = [&](StringRef name, int value) { |
| llvm::Metadata *llvmMetadata[] = { |
| llvm::ValueAsMetadata::get(llvmFunc), |
| llvm::MDString::get(llvmModule->getContext(), name), |
| llvm::ValueAsMetadata::get(llvm::ConstantInt::get( |
| llvm::Type::getInt32Ty(llvmModule->getContext()), value))}; |
| annotations->addOperand( |
| llvm::MDNode::get(llvmModule->getContext(), llvmMetadata)); |
| }; |
| // Mark the entry point as a kernel. |
| setMetadataValueI32("kernel", 1); |
| // Set the maximum number of threads in the thread block (CTA). |
| setMetadataValueI32("maxntidx", workgroupSize[0]); |
| setMetadataValueI32("maxntidy", workgroupSize[1]); |
| setMetadataValueI32("maxntidz", workgroupSize[2]); |
| |
| // Optional source location information for debugging/profiling. |
| if (serOptions.debugLevel >= 1) { |
| if (auto loc = findFirstFileLoc(exportOp.getLoc())) { |
| auto filenameRef = builder.createString(loc->getFilename()); |
| sourceLocationRefs.push_back(iree_hal_cuda_FileLineLocDef_create( |
| builder, filenameRef, loc->getLine())); |
| } |
| } |
| } |
| |
| std::unique_ptr<llvm::TargetMachine> targetMachine; |
| { |
| llvm::Triple triple("nvptx64-nvidia-cuda"); |
| std::string features = options.clTargetFeature; |
| std::string error; |
| const llvm::Target *target = |
| llvm::TargetRegistry::lookupTarget("", triple, error); |
| if (target == nullptr) { |
| return variantOp.emitError() << "cannot initialize target triple"; |
| } |
| targetMachine.reset(target->createTargetMachine( |
| triple.str(), targetArch, features, {}, {})); |
| if (targetMachine == nullptr) { |
| return variantOp.emitError() << "cannot initialize target machine"; |
| } |
| } |
| |
| // Dump just the codegen bitcode before linking and optimization. |
| if (!serOptions.dumpIntermediatesPath.empty()) { |
| dumpLLVMModuleToPath(serOptions.dumpIntermediatesPath, |
| serOptions.dumpBaseName, variantOp.getName(), |
| ".codegen", *llvmModule); |
| } |
| |
| // Link user and device bitcode alongside the generated module. |
| if (failed(linkObjects(variantOp.getLoc(), *llvmModule, *targetMachine, |
| variantOp.getObjectsAttr()))) { |
| return failure(); |
| } |
| |
| // Dump all linked bitcode prior to optimization. |
| if (!serOptions.dumpIntermediatesPath.empty()) { |
| dumpLLVMModuleToPath(serOptions.dumpIntermediatesPath, |
| serOptions.dumpBaseName, variantOp.getName(), |
| ".linked", *llvmModule); |
| } |
| |
| std::array<int32_t, 3> maxWorkgroupSize = {1, 1, 1}; |
| for (int64_t i = 0, e = workgroupSizes.size(); i < e; i++) { |
| for (int64_t j = 0; j < maxWorkgroupSize.size(); j++) { |
| maxWorkgroupSize[j] = |
| std::max(maxWorkgroupSize[j], workgroupSizes[i][j]); |
| } |
| } |
| // Run LTO-style full optimization on the linked modules. |
| optimizeModule(*llvmModule, *targetMachine, maxWorkgroupSize); |
| |
| // Dump bitcode post-linking and optimization. |
| if (!serOptions.dumpIntermediatesPath.empty()) { |
| dumpLLVMModuleToPath(serOptions.dumpIntermediatesPath, |
| serOptions.dumpBaseName, variantOp.getName(), |
| ".optimized", *llvmModule); |
| } |
| |
| // Serialize CUDA kernel into the binary that we will embed in the |
| // final FlatBuffer. |
| ptxImage = translateModuleToISA(*llvmModule, *targetMachine); |
| } |
| |
| if (options.dumpPtx) { |
| llvm::dbgs() << ptxImage; |
| } |
| if (!serOptions.dumpBinariesPath.empty()) { |
| dumpDataToPath(serOptions.dumpBinariesPath, serOptions.dumpBaseName, |
| variantOp.getName(), ".ptx", ptxImage); |
| } |
| |
| std::string gpuImage = produceGpuImage(options, targetArch, ptxImage); |
| auto gpuImageRef = |
| flatbuffers_string_create(builder, gpuImage.c_str(), gpuImage.size()); |
| iree_hal_cuda_BlockSizeDef_vec_start(builder); |
| for (const auto &workgroupSize : workgroupSizes) { |
| iree_hal_cuda_BlockSizeDef_vec_push_create( |
| builder, workgroupSize[0], workgroupSize[1], workgroupSize[2]); |
| } |
| auto blockSizesRef = iree_hal_cuda_BlockSizeDef_vec_end(builder); |
| auto workgroupLocalMemoriesRef = |
| builder.createInt32Vec(workgroupLocalMemories); |
| auto entryPointsRef = builder.createStringVec(entryPointNames); |
| |
| iree_hal_cuda_ExecutableDef_entry_points_add(builder, entryPointsRef); |
| iree_hal_cuda_ExecutableDef_block_sizes_add(builder, blockSizesRef); |
| iree_hal_cuda_ExecutableDef_shared_memory_size_add( |
| builder, workgroupLocalMemoriesRef); |
| iree_hal_cuda_ExecutableDef_ptx_image_add(builder, gpuImageRef); |
| if (!sourceLocationRefs.empty()) { |
| auto sourceLocationsRef = |
| builder.createOffsetVecDestructive(sourceLocationRefs); |
| iree_hal_cuda_ExecutableDef_source_locations_add(builder, |
| sourceLocationsRef); |
| } |
| iree_hal_cuda_ExecutableDef_end_as_root(builder); |
| |
| // Add the binary data to the target executable. |
| auto binaryOp = executableBuilder.create<IREE::HAL::ExecutableBinaryOp>( |
| variantOp.getLoc(), variantOp.getSymName(), |
| variantOp.getTarget().getFormat(), |
| builder.getBufferAttr(executableBuilder.getContext())); |
| binaryOp.setMimeTypeAttr( |
| executableBuilder.getStringAttr("application/x-flatbuffers")); |
| |
| return success(); |
| } |
| |
| private: |
| const CUDAOptions &options; |
| }; |
| |
| namespace { |
| struct CUDASession |
| : public PluginSession<CUDASession, CUDAOptions, |
| PluginActivationPolicy::DefaultActivated> { |
| void populateHALTargetDevices(IREE::HAL::TargetDeviceList &targets) { |
| // #hal.device.target<"cuda", ... |
| targets.add("cuda", |
| [&]() { return std::make_shared<CUDATargetDevice>(options); }); |
| } |
| void populateHALTargetBackends(IREE::HAL::TargetBackendList &targets) { |
| // #hal.executable.target<"cuda", ... |
| targets.add("cuda", [&]() { |
| LLVMInitializeNVPTXTarget(); |
| LLVMInitializeNVPTXTargetMC(); |
| LLVMInitializeNVPTXTargetInfo(); |
| LLVMInitializeNVPTXAsmPrinter(); |
| return std::make_shared<CUDATargetBackend>(options); |
| }); |
| } |
| }; |
| |
| } // namespace |
| |
| } // namespace mlir::iree_compiler::IREE::HAL |
| |
| extern "C" bool iree_register_compiler_plugin_hal_target_cuda( |
| mlir::iree_compiler::PluginRegistrar *registrar) { |
| registrar->registerPlugin<mlir::iree_compiler::IREE::HAL::CUDASession>( |
| "hal_target_cuda"); |
| return true; |
| } |
| |
| IREE_DEFINE_COMPILER_OPTION_FLAGS(mlir::iree_compiler::IREE::HAL::CUDAOptions); |