blob: d19515171dd5ef11100b87cb6fca7b1ef67b7bbc [file] [log] [blame]
# Lint as: python3
# Copyright 2020 Google LLC
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# https://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Test matrix ops."""
import numpy as np
from pyiree.tf.support import tf_test_utils
import tensorflow.compat.v2 as tf
class MatrixOpsModule(tf.Module):
@tf.function(input_signature=[
tf.TensorSpec([1, 2, 3], tf.float32),
tf.TensorSpec([3, 4], tf.float32)
])
def batch_matmul(self, x, y):
return tf.matmul(x, y)
# TODO(b/147890602)
@tf_test_utils.compile_modules(
backends=["tf"], mat=(MatrixOpsModule, ["batch_matmul"]))
class MatrixOpsTest(tf_test_utils.SavedModelTestCase):
def test_batch_matmul(self):
a = np.array([[[1, 2, 3], [4, 5, 6]]], dtype=np.float32)
b = np.array([[1, 2, 3, 4], [5, 6, 7, 8], [9, 10, 11, 12]],
dtype=np.float32)
ab = self.modules.mat.all.batch_matmul(a, b)
output = np.array([[[38, 44, 50, 56], [83, 98, 113, 128]]],
dtype=np.float32)
assert np.allclose(ab, output)
if __name__ == "__main__":
if hasattr(tf, "enable_v2_behavior"):
tf.enable_v2_behavior()
tf.test.main()