|  | # Lint as: python3 | 
|  | # Copyright 2019 Google LLC | 
|  | # | 
|  | # Licensed under the Apache License, Version 2.0 (the "License"); | 
|  | # you may not use this file except in compliance with the License. | 
|  | # You may obtain a copy of the License at | 
|  | # | 
|  | #      https://www.apache.org/licenses/LICENSE-2.0 | 
|  | # | 
|  | # Unless required by applicable law or agreed to in writing, software | 
|  | # distributed under the License is distributed on an "AS IS" BASIS, | 
|  | # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | 
|  | # See the License for the specific language governing permissions and | 
|  | # limitations under the License. | 
|  |  | 
|  | from absl import app | 
|  | import numpy as np | 
|  | from pyiree.tf.support import tf_test_utils | 
|  | from pyiree.tf.support import tf_utils | 
|  | import tensorflow.compat.v2 as tf | 
|  |  | 
|  |  | 
|  | class DepthConv2dModule(tf.Module): | 
|  |  | 
|  | # TODO(ataei): Add dilation and strided tests. | 
|  | @tf.function(input_signature=[ | 
|  | tf.TensorSpec([2, 4, 5, 2], tf.float32), | 
|  | tf.TensorSpec([2, 2, 2, 3], tf.float32), | 
|  | ]) | 
|  | def conv2d_2452x2423_valid(self, img, kernel): | 
|  | return tf.nn.depthwise_conv2d(img, | 
|  | kernel, [1, 1, 1, 1], | 
|  | "VALID", | 
|  | name="result") | 
|  |  | 
|  | @tf.function(input_signature=[ | 
|  | tf.TensorSpec([2, 4, 5, 2], tf.float32), | 
|  | tf.TensorSpec([2, 4, 2, 3], tf.float32), | 
|  | ]) | 
|  | def conv2d_2452x2423_same(self, img, kernel): | 
|  | return tf.nn.depthwise_conv2d(img, | 
|  | kernel, [1, 1, 1, 1], | 
|  | "SAME", | 
|  | name="result") | 
|  |  | 
|  | @tf.function(input_signature=[ | 
|  | tf.TensorSpec([2, 4, 5, 2], tf.float32), | 
|  | tf.TensorSpec([2, 4, 2, 3], tf.float32), | 
|  | ]) | 
|  | def conv2d_2452x2423_valid_stride_2(self, img, kernel): | 
|  | return tf.nn.depthwise_conv2d(img, | 
|  | kernel, [1, 2, 2, 1], | 
|  | "VALID", | 
|  | name="result") | 
|  |  | 
|  | @tf.function(input_signature=[ | 
|  | tf.TensorSpec([2, 4, 5, 2], tf.float32), | 
|  | tf.TensorSpec([2, 4, 2, 3], tf.float32), | 
|  | ]) | 
|  | def conv2d_2452x2423_same_stride_2(self, img, kernel): | 
|  | return tf.nn.depthwise_conv2d(img, | 
|  | kernel, [1, 2, 2, 1], | 
|  | "SAME", | 
|  | name="result") | 
|  |  | 
|  | @tf.function(input_signature=[ | 
|  | tf.TensorSpec([2, 4, 5, 4], tf.float32), | 
|  | tf.TensorSpec([2, 4, 4, 1], tf.float32), | 
|  | ]) | 
|  | def conv2d_2453x2441_same_stride_1(self, img, kernel): | 
|  | return tf.nn.depthwise_conv2d(img, | 
|  | kernel, [1, 1, 1, 1], | 
|  | "SAME", | 
|  | name="result") | 
|  |  | 
|  |  | 
|  | class ConvTest(tf_test_utils.TracedModuleTestCase): | 
|  |  | 
|  | def __init__(self, *args, **kwargs): | 
|  | super().__init__(*args, **kwargs) | 
|  | self._modules = tf_test_utils.compile_tf_module(DepthConv2dModule) | 
|  |  | 
|  | # yapf: disable | 
|  | def test_batched_feature_unpadded(self): | 
|  | def batched_feature_unpadded(module): | 
|  | i = tf_utils.ndarange([2, 4, 5, 2]) | 
|  | k = tf_utils.ndarange([2, 2, 2, 3]) | 
|  | module.conv2d_2452x2423_valid(i, k) | 
|  | self.compare_backends(batched_feature_unpadded, self._modules) | 
|  |  | 
|  | def test_batched_feature_unpadded_same(self): | 
|  | def batched_feature_unpadded_same(module): | 
|  | i = tf_utils.ndarange([2, 4, 5, 2]) | 
|  | k = tf_utils.ndarange([2, 4, 2, 3]) | 
|  | module.conv2d_2452x2423_same(i, k) | 
|  | self.compare_backends(batched_feature_unpadded_same, self._modules) | 
|  |  | 
|  | def test_batched_feature_unpadded_same_stride_2(self): | 
|  | def batched_feature_unpadded_same_stride_2(module): | 
|  | i = tf_utils.ndarange([2, 4, 5, 2]) | 
|  | k = tf_utils.ndarange([2, 4, 2, 3]) | 
|  | module.conv2d_2452x2423_valid_stride_2(i, k) | 
|  | self.compare_backends(batched_feature_unpadded_same_stride_2, | 
|  | self._modules) | 
|  |  | 
|  | def test_batched_feature_padded_same_stride_2(self): | 
|  | def batched_feature_padded_same_stride_2(module): | 
|  | i = tf_utils.ndarange([2, 4, 5, 2]) | 
|  | k = tf_utils.ndarange([2, 4, 2, 3]) | 
|  | module.conv2d_2452x2423_same_stride_2(i, k) | 
|  | self.compare_backends(batched_feature_padded_same_stride_2, self._modules) | 
|  |  | 
|  | def test_batched_feature_padded_same_stride_1_output_1(self): | 
|  | def batched_feature_padded_same_stride_1_output_1(module): | 
|  | i = tf_utils.ndarange([2, 4, 5, 4]) | 
|  | k = tf_utils.ndarange([2, 4, 4, 1]) | 
|  | module.conv2d_2453x2441_same_stride_1(i, k) | 
|  | self.compare_backends(batched_feature_padded_same_stride_1_output_1, | 
|  | self._modules) | 
|  | # yapf: enable | 
|  |  | 
|  |  | 
|  | def main(argv): | 
|  | del argv  # Unused | 
|  | if hasattr(tf, 'enable_v2_behavior'): | 
|  | tf.enable_v2_behavior() | 
|  | tf.test.main() | 
|  |  | 
|  |  | 
|  | if __name__ == '__main__': | 
|  | app.run(main) |