blob: 103ee025fc8614dee1094760a0c33319079ccf63 [file] [log] [blame]
# Lint as: python3
# Copyright 2020 The IREE Authors
#
# Licensed under the Apache License v2.0 with LLVM Exceptions.
# See https://llvm.org/LICENSE.txt for license information.
# SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
"""Test concat op."""
from absl import app
from iree.tf.support import tf_test_utils
from iree.tf.support import tf_utils
import numpy as np
import tensorflow.compat.v2 as tf
class ConcatOpsModule(tf.Module):
@tf.function(input_signature=[
tf.TensorSpec([1, 5, 0], tf.float32),
tf.TensorSpec([1, 5, 1], tf.float32),
])
def concat_zero_dim(self, a, b):
return tf.concat([a, b], axis=2)
@tf.function(input_signature=[
tf.TensorSpec([1, 5, 1], tf.float32),
tf.TensorSpec([1, 5, 1], tf.float32),
])
def concat0axis(self, a, b):
return tf.concat([a, b], axis=0)
@tf.function(input_signature=[
tf.TensorSpec([1, 5, 1], tf.float32),
tf.TensorSpec([1, 5, 1], tf.float32),
])
def concat1axis(self, a, b):
return tf.concat([a, b], axis=1)
@tf.function(input_signature=[
tf.TensorSpec([1, 5, 1], tf.float32),
tf.TensorSpec([1, 5, 1], tf.float32),
])
def concat2axis(self, a, b):
return tf.concat([a, b], axis=2)
class ConcatOpsTest(tf_test_utils.TracedModuleTestCase):
def __init__(self, *args, **kwargs):
super().__init__(*args, **kwargs)
self._modules = tf_test_utils.compile_tf_module(ConcatOpsModule)
def test_concat_zero_dim(self):
def concat_zero_dim(module):
a = tf_utils.uniform([1, 5, 0])
b = tf_utils.uniform([1, 5, 1])
module.concat_zero_dim(a, b)
self.compare_backends(concat_zero_dim, self._modules)
def test_concat0axis(self):
def concat0axis(module):
a = tf_utils.uniform([1, 5, 1])
b = tf_utils.uniform([1, 5, 1])
module.concat0axis(a, b)
self.compare_backends(concat0axis, self._modules)
def test_concat1axis(self):
def concat1axis(module):
a = tf_utils.uniform([1, 5, 1])
b = tf_utils.uniform([1, 5, 1])
module.concat1axis(a, b)
self.compare_backends(concat1axis, self._modules)
def test_concat2axis(self):
def concat2axis(module):
a = tf_utils.uniform([1, 5, 1])
b = tf_utils.uniform([1, 5, 1])
module.concat2axis(a, b)
self.compare_backends(concat2axis, self._modules)
def main(argv):
del argv # Unused
if hasattr(tf, 'enable_v2_behavior'):
tf.enable_v2_behavior()
tf.test.main()
if __name__ == '__main__':
app.run(main)