blob: 0b99c090b87a77c10444d597bd337d07b30b670d [file] [log] [blame]
// MobileBert encoder model with placeholder weights, for testing.
module {
util.global private @"__iree_flow_bert/embeddings/FakeLayerNorm/beta" = dense<1.0> : tensor<512xf32>
util.global private @"__iree_flow_bert/embeddings/FakeLayerNorm/gamma" = dense<0.4> : tensor<512xf32>
util.global private @"__iree_flow_bert/embeddings/embedding_transformation/bias" = dense<0.1> : tensor<512xf32>
util.global private @"__iree_flow_bert/embeddings/embedding_transformation/kernel" {noinline} = dense<0.0001> : tensor<384x512xf32>
util.global private @"__iree_flow_bert/embeddings/position_embeddings" {noinline} = dense<0.0> : tensor<512x512xf32>
util.global private @"__iree_flow_bert/embeddings/token_type_embeddings" {noinline} = dense<0.0> : tensor<2x512xf32>
util.global private @"__iree_flow_bert/embeddings/word_embeddings" {noinline} = dense<0.0> : tensor<30522x128xf32>
util.global private @"__iree_flow_bert/encoder/layer_0/attention/output/FakeLayerNorm/beta" = dense<1.0> : tensor<128xf32>
util.global private @"__iree_flow_bert/encoder/layer_0/attention/output/FakeLayerNorm/gamma" = dense<0.4> : tensor<128xf32>
util.global private @"__iree_flow_bert/encoder/layer_0/attention/output/dense/bias" = dense<0.1> : tensor<128xf32>
util.global private @"__iree_flow_bert/encoder/layer_0/attention/output/dense/kernel" {noinline} = dense<0.0001> : tensor<128x128xf32>
util.global private @"__iree_flow_bert/encoder/layer_0/attention/self/key/bias" = dense<0.1> : tensor<128xf32>
util.global private @"__iree_flow_bert/encoder/layer_0/attention/self/key/kernel" {noinline} = dense<0.0001> : tensor<128x128xf32>
util.global private @"__iree_flow_bert/encoder/layer_0/attention/self/query/bias" = dense<0.1> : tensor<128xf32>
util.global private @"__iree_flow_bert/encoder/layer_0/attention/self/query/kernel" {noinline} = dense<0.0001> : tensor<128x128xf32>
util.global private @"__iree_flow_bert/encoder/layer_0/attention/self/value/bias" = dense<0.1> : tensor<128xf32>
util.global private @"__iree_flow_bert/encoder/layer_0/attention/self/value/kernel" {noinline} = dense<0.0001> : tensor<512x128xf32>
util.global private @"__iree_flow_bert/encoder/layer_0/bottleneck/attention/FakeLayerNorm/beta" = dense<1.0> : tensor<128xf32>
util.global private @"__iree_flow_bert/encoder/layer_0/bottleneck/attention/FakeLayerNorm/gamma" = dense<0.4> : tensor<128xf32>
util.global private @"__iree_flow_bert/encoder/layer_0/bottleneck/attention/dense/bias" = dense<0.1> : tensor<128xf32>
util.global private @"__iree_flow_bert/encoder/layer_0/bottleneck/attention/dense/kernel" {noinline} = dense<0.0001> : tensor<512x128xf32>
util.global private @"__iree_flow_bert/encoder/layer_0/bottleneck/input/FakeLayerNorm/beta" = dense<1.0> : tensor<128xf32>
util.global private @"__iree_flow_bert/encoder/layer_0/bottleneck/input/FakeLayerNorm/gamma" = dense<0.4> : tensor<128xf32>
util.global private @"__iree_flow_bert/encoder/layer_0/bottleneck/input/dense/bias" = dense<0.1> : tensor<128xf32>
util.global private @"__iree_flow_bert/encoder/layer_0/bottleneck/input/dense/kernel" {noinline} = dense<0.0001> : tensor<512x128xf32>
util.global private @"__iree_flow_bert/encoder/layer_0/ffn_layer_0/intermediate/dense/bias" = dense<0.1> : tensor<512xf32>
util.global private @"__iree_flow_bert/encoder/layer_0/ffn_layer_0/intermediate/dense/kernel" {noinline} = dense<0.0001> : tensor<128x512xf32>
util.global private @"__iree_flow_bert/encoder/layer_0/ffn_layer_0/output/FakeLayerNorm/beta" = dense<1.0> : tensor<128xf32>
util.global private @"__iree_flow_bert/encoder/layer_0/ffn_layer_0/output/FakeLayerNorm/gamma" = dense<0.4> : tensor<128xf32>
util.global private @"__iree_flow_bert/encoder/layer_0/ffn_layer_0/output/dense/bias" = dense<0.1> : tensor<128xf32>
util.global private @"__iree_flow_bert/encoder/layer_0/ffn_layer_0/output/dense/kernel" {noinline} = dense<0.0001> : tensor<512x128xf32>
util.global private @"__iree_flow_bert/encoder/layer_0/ffn_layer_1/intermediate/dense/bias" = dense<0.1> : tensor<512xf32>
util.global private @"__iree_flow_bert/encoder/layer_0/ffn_layer_1/intermediate/dense/kernel" {noinline} = dense<0.0001> : tensor<128x512xf32>
util.global private @"__iree_flow_bert/encoder/layer_0/ffn_layer_1/output/FakeLayerNorm/beta" = dense<1.0> : tensor<128xf32>
util.global private @"__iree_flow_bert/encoder/layer_0/ffn_layer_1/output/FakeLayerNorm/gamma" = dense<0.4> : tensor<128xf32>
util.global private @"__iree_flow_bert/encoder/layer_0/ffn_layer_1/output/dense/bias" = dense<0.1> : tensor<128xf32>
util.global private @"__iree_flow_bert/encoder/layer_0/ffn_layer_1/output/dense/kernel" {noinline} = dense<0.0001> : tensor<512x128xf32>
util.global private @"__iree_flow_bert/encoder/layer_0/ffn_layer_2/intermediate/dense/bias" = dense<0.1> : tensor<512xf32>
util.global private @"__iree_flow_bert/encoder/layer_0/ffn_layer_2/intermediate/dense/kernel" {noinline} = dense<0.0001> : tensor<128x512xf32>
util.global private @"__iree_flow_bert/encoder/layer_0/ffn_layer_2/output/FakeLayerNorm/beta" = dense<1.0> : tensor<128xf32>
util.global private @"__iree_flow_bert/encoder/layer_0/ffn_layer_2/output/FakeLayerNorm/gamma" = dense<0.4> : tensor<128xf32>
util.global private @"__iree_flow_bert/encoder/layer_0/ffn_layer_2/output/dense/bias" = dense<0.1> : tensor<128xf32>
util.global private @"__iree_flow_bert/encoder/layer_0/ffn_layer_2/output/dense/kernel" {noinline} = dense<0.0001> : tensor<512x128xf32>
util.global private @"__iree_flow_bert/encoder/layer_0/intermediate/dense/bias" = dense<0.1> : tensor<512xf32>
util.global private @"__iree_flow_bert/encoder/layer_0/intermediate/dense/kernel" {noinline} = dense<0.0001> : tensor<128x512xf32>
util.global private @"__iree_flow_bert/encoder/layer_0/output/FakeLayerNorm/beta" = dense<1.0> : tensor<128xf32>
util.global private @"__iree_flow_bert/encoder/layer_0/output/FakeLayerNorm/gamma" = dense<0.4> : tensor<128xf32>
util.global private @"__iree_flow_bert/encoder/layer_0/output/bottleneck/FakeLayerNorm/beta" = dense<1.0> : tensor<512xf32>
util.global private @"__iree_flow_bert/encoder/layer_0/output/bottleneck/FakeLayerNorm/gamma" = dense<0.4> : tensor<512xf32>
util.global private @"__iree_flow_bert/encoder/layer_0/output/bottleneck/dense/bias" = dense<0.1> : tensor<512xf32>
util.global private @"__iree_flow_bert/encoder/layer_0/output/bottleneck/dense/kernel" {noinline} = dense<0.0001> : tensor<128x512xf32>
util.global private @"__iree_flow_bert/encoder/layer_0/output/dense/bias" = dense<0.1> : tensor<128xf32>
util.global private @"__iree_flow_bert/encoder/layer_0/output/dense/kernel" {noinline} = dense<0.0001> : tensor<512x128xf32>
util.global private @"__iree_flow_bert/encoder/layer_1/attention/output/FakeLayerNorm/beta" = dense<1.0> : tensor<128xf32>
util.global private @"__iree_flow_bert/encoder/layer_1/attention/output/FakeLayerNorm/gamma" = dense<0.4> : tensor<128xf32>
util.global private @"__iree_flow_bert/encoder/layer_1/attention/output/dense/bias" = dense<0.1> : tensor<128xf32>
util.global private @"__iree_flow_bert/encoder/layer_1/attention/output/dense/kernel" {noinline} = dense<0.0001> : tensor<128x128xf32>
util.global private @"__iree_flow_bert/encoder/layer_1/attention/self/key/bias" = dense<0.1> : tensor<128xf32>
util.global private @"__iree_flow_bert/encoder/layer_1/attention/self/key/kernel" {noinline} = dense<0.0001> : tensor<128x128xf32>
util.global private @"__iree_flow_bert/encoder/layer_1/attention/self/query/bias" = dense<0.1> : tensor<128xf32>
util.global private @"__iree_flow_bert/encoder/layer_1/attention/self/query/kernel" {noinline} = dense<0.0001> : tensor<128x128xf32>
util.global private @"__iree_flow_bert/encoder/layer_1/attention/self/value/bias" = dense<0.1> : tensor<128xf32>
util.global private @"__iree_flow_bert/encoder/layer_1/attention/self/value/kernel" {noinline} = dense<0.0001> : tensor<512x128xf32>
util.global private @"__iree_flow_bert/encoder/layer_1/bottleneck/attention/FakeLayerNorm/beta" = dense<1.0> : tensor<128xf32>
util.global private @"__iree_flow_bert/encoder/layer_1/bottleneck/attention/FakeLayerNorm/gamma" = dense<0.4> : tensor<128xf32>
util.global private @"__iree_flow_bert/encoder/layer_1/bottleneck/attention/dense/bias" = dense<0.1> : tensor<128xf32>
util.global private @"__iree_flow_bert/encoder/layer_1/bottleneck/attention/dense/kernel" {noinline} = dense<0.0001> : tensor<512x128xf32>
util.global private @"__iree_flow_bert/encoder/layer_1/bottleneck/input/FakeLayerNorm/beta" = dense<1.0> : tensor<128xf32>
util.global private @"__iree_flow_bert/encoder/layer_1/bottleneck/input/FakeLayerNorm/gamma" = dense<0.4> : tensor<128xf32>
util.global private @"__iree_flow_bert/encoder/layer_1/bottleneck/input/dense/bias" = dense<0.1> : tensor<128xf32>
util.global private @"__iree_flow_bert/encoder/layer_1/bottleneck/input/dense/kernel" {noinline} = dense<0.0001> : tensor<512x128xf32>
util.global private @"__iree_flow_bert/encoder/layer_1/ffn_layer_0/intermediate/dense/bias" = dense<0.1> : tensor<512xf32>
util.global private @"__iree_flow_bert/encoder/layer_1/ffn_layer_0/intermediate/dense/kernel" {noinline} = dense<0.0001> : tensor<128x512xf32>
util.global private @"__iree_flow_bert/encoder/layer_1/ffn_layer_0/output/FakeLayerNorm/beta" = dense<1.0> : tensor<128xf32>
util.global private @"__iree_flow_bert/encoder/layer_1/ffn_layer_0/output/FakeLayerNorm/gamma" = dense<0.4> : tensor<128xf32>
util.global private @"__iree_flow_bert/encoder/layer_1/ffn_layer_0/output/dense/bias" = dense<0.1> : tensor<128xf32>
util.global private @"__iree_flow_bert/encoder/layer_1/ffn_layer_0/output/dense/kernel" {noinline} = dense<0.0001> : tensor<512x128xf32>
util.global private @"__iree_flow_bert/encoder/layer_1/ffn_layer_1/intermediate/dense/bias" = dense<0.1> : tensor<512xf32>
util.global private @"__iree_flow_bert/encoder/layer_1/ffn_layer_1/intermediate/dense/kernel" {noinline} = dense<0.0001> : tensor<128x512xf32>
util.global private @"__iree_flow_bert/encoder/layer_1/ffn_layer_1/output/FakeLayerNorm/beta" = dense<1.0> : tensor<128xf32>
util.global private @"__iree_flow_bert/encoder/layer_1/ffn_layer_1/output/FakeLayerNorm/gamma" = dense<0.4> : tensor<128xf32>
util.global private @"__iree_flow_bert/encoder/layer_1/ffn_layer_1/output/dense/bias" = dense<0.1> : tensor<128xf32>
util.global private @"__iree_flow_bert/encoder/layer_1/ffn_layer_1/output/dense/kernel" {noinline} = dense<0.0001> : tensor<512x128xf32>
util.global private @"__iree_flow_bert/encoder/layer_1/ffn_layer_2/intermediate/dense/bias" = dense<0.1> : tensor<512xf32>
util.global private @"__iree_flow_bert/encoder/layer_1/ffn_layer_2/intermediate/dense/kernel" {noinline} = dense<0.0001> : tensor<128x512xf32>
util.global private @"__iree_flow_bert/encoder/layer_1/ffn_layer_2/output/FakeLayerNorm/beta" = dense<1.0> : tensor<128xf32>
util.global private @"__iree_flow_bert/encoder/layer_1/ffn_layer_2/output/FakeLayerNorm/gamma" = dense<0.4> : tensor<128xf32>
util.global private @"__iree_flow_bert/encoder/layer_1/ffn_layer_2/output/dense/bias" = dense<0.1> : tensor<128xf32>
util.global private @"__iree_flow_bert/encoder/layer_1/ffn_layer_2/output/dense/kernel" {noinline} = dense<0.0001> : tensor<512x128xf32>
util.global private @"__iree_flow_bert/encoder/layer_1/intermediate/dense/bias" = dense<0.1> : tensor<512xf32>
util.global private @"__iree_flow_bert/encoder/layer_1/intermediate/dense/kernel" {noinline} = dense<0.0001> : tensor<128x512xf32>
util.global private @"__iree_flow_bert/encoder/layer_1/output/FakeLayerNorm/beta" = dense<1.0> : tensor<128xf32>
util.global private @"__iree_flow_bert/encoder/layer_1/output/FakeLayerNorm/gamma" = dense<0.4> : tensor<128xf32>
util.global private @"__iree_flow_bert/encoder/layer_1/output/bottleneck/FakeLayerNorm/beta" = dense<1.0> : tensor<512xf32>
util.global private @"__iree_flow_bert/encoder/layer_1/output/bottleneck/FakeLayerNorm/gamma" = dense<0.4> : tensor<512xf32>
util.global private @"__iree_flow_bert/encoder/layer_1/output/bottleneck/dense/bias" = dense<0.1> : tensor<512xf32>
util.global private @"__iree_flow_bert/encoder/layer_1/output/bottleneck/dense/kernel" {noinline} = dense<0.0001> : tensor<128x512xf32>
util.global private @"__iree_flow_bert/encoder/layer_1/output/dense/bias" = dense<0.1> : tensor<128xf32>
util.global private @"__iree_flow_bert/encoder/layer_1/output/dense/kernel" {noinline} = dense<0.0001> : tensor<512x128xf32>
util.global private @"__iree_flow_bert/encoder/layer_10/attention/output/FakeLayerNorm/beta" = dense<1.0> : tensor<128xf32>
util.global private @"__iree_flow_bert/encoder/layer_10/attention/output/FakeLayerNorm/gamma" = dense<0.4> : tensor<128xf32>
util.global private @"__iree_flow_bert/encoder/layer_10/attention/output/dense/bias" = dense<0.1> : tensor<128xf32>
util.global private @"__iree_flow_bert/encoder/layer_10/attention/output/dense/kernel" {noinline} = dense<0.0001> : tensor<128x128xf32>
util.global private @"__iree_flow_bert/encoder/layer_10/attention/self/key/bias" = dense<0.1> : tensor<128xf32>
util.global private @"__iree_flow_bert/encoder/layer_10/attention/self/key/kernel" {noinline} = dense<0.0001> : tensor<128x128xf32>
util.global private @"__iree_flow_bert/encoder/layer_10/attention/self/query/bias" = dense<0.1> : tensor<128xf32>
util.global private @"__iree_flow_bert/encoder/layer_10/attention/self/query/kernel" {noinline} = dense<0.0001> : tensor<128x128xf32>
util.global private @"__iree_flow_bert/encoder/layer_10/attention/self/value/bias" = dense<0.1> : tensor<128xf32>
util.global private @"__iree_flow_bert/encoder/layer_10/attention/self/value/kernel" {noinline} = dense<0.0001> : tensor<512x128xf32>
util.global private @"__iree_flow_bert/encoder/layer_10/bottleneck/attention/FakeLayerNorm/beta" = dense<1.0> : tensor<128xf32>
util.global private @"__iree_flow_bert/encoder/layer_10/bottleneck/attention/FakeLayerNorm/gamma" = dense<0.4> : tensor<128xf32>
util.global private @"__iree_flow_bert/encoder/layer_10/bottleneck/attention/dense/bias" = dense<0.1> : tensor<128xf32>
util.global private @"__iree_flow_bert/encoder/layer_10/bottleneck/attention/dense/kernel" {noinline} = dense<0.0001> : tensor<512x128xf32>
util.global private @"__iree_flow_bert/encoder/layer_10/bottleneck/input/FakeLayerNorm/beta" = dense<1.0> : tensor<128xf32>
util.global private @"__iree_flow_bert/encoder/layer_10/bottleneck/input/FakeLayerNorm/gamma" = dense<0.4> : tensor<128xf32>
util.global private @"__iree_flow_bert/encoder/layer_10/bottleneck/input/dense/bias" = dense<0.1> : tensor<128xf32>
util.global private @"__iree_flow_bert/encoder/layer_10/bottleneck/input/dense/kernel" {noinline} = dense<0.0001> : tensor<512x128xf32>
util.global private @"__iree_flow_bert/encoder/layer_10/ffn_layer_0/intermediate/dense/bias" = dense<0.1> : tensor<512xf32>
util.global private @"__iree_flow_bert/encoder/layer_10/ffn_layer_0/intermediate/dense/kernel" {noinline} = dense<0.0001> : tensor<128x512xf32>
util.global private @"__iree_flow_bert/encoder/layer_10/ffn_layer_0/output/FakeLayerNorm/beta" = dense<1.0> : tensor<128xf32>
util.global private @"__iree_flow_bert/encoder/layer_10/ffn_layer_0/output/FakeLayerNorm/gamma" = dense<0.4> : tensor<128xf32>
util.global private @"__iree_flow_bert/encoder/layer_10/ffn_layer_0/output/dense/bias" = dense<0.1> : tensor<128xf32>
util.global private @"__iree_flow_bert/encoder/layer_10/ffn_layer_0/output/dense/kernel" {noinline} = dense<0.0001> : tensor<512x128xf32>
util.global private @"__iree_flow_bert/encoder/layer_10/ffn_layer_1/intermediate/dense/bias" = dense<0.1> : tensor<512xf32>
util.global private @"__iree_flow_bert/encoder/layer_10/ffn_layer_1/intermediate/dense/kernel" {noinline} = dense<0.0001> : tensor<128x512xf32>
util.global private @"__iree_flow_bert/encoder/layer_10/ffn_layer_1/output/FakeLayerNorm/beta" = dense<1.0> : tensor<128xf32>
util.global private @"__iree_flow_bert/encoder/layer_10/ffn_layer_1/output/FakeLayerNorm/gamma" = dense<0.4> : tensor<128xf32>
util.global private @"__iree_flow_bert/encoder/layer_10/ffn_layer_1/output/dense/bias" = dense<0.1> : tensor<128xf32>
util.global private @"__iree_flow_bert/encoder/layer_10/ffn_layer_1/output/dense/kernel" {noinline} = dense<0.0001> : tensor<512x128xf32>
util.global private @"__iree_flow_bert/encoder/layer_10/ffn_layer_2/intermediate/dense/bias" = dense<0.1> : tensor<512xf32>
util.global private @"__iree_flow_bert/encoder/layer_10/ffn_layer_2/intermediate/dense/kernel" {noinline} = dense<0.0001> : tensor<128x512xf32>
util.global private @"__iree_flow_bert/encoder/layer_10/ffn_layer_2/output/FakeLayerNorm/beta" = dense<1.0> : tensor<128xf32>
util.global private @"__iree_flow_bert/encoder/layer_10/ffn_layer_2/output/FakeLayerNorm/gamma" = dense<0.4> : tensor<128xf32>
util.global private @"__iree_flow_bert/encoder/layer_10/ffn_layer_2/output/dense/bias" = dense<0.1> : tensor<128xf32>
util.global private @"__iree_flow_bert/encoder/layer_10/ffn_layer_2/output/dense/kernel" {noinline} = dense<0.0001> : tensor<512x128xf32>
util.global private @"__iree_flow_bert/encoder/layer_10/intermediate/dense/bias" = dense<0.1> : tensor<512xf32>
util.global private @"__iree_flow_bert/encoder/layer_10/intermediate/dense/kernel" {noinline} = dense<0.0001> : tensor<128x512xf32>
util.global private @"__iree_flow_bert/encoder/layer_10/output/FakeLayerNorm/beta" = dense<1.0> : tensor<128xf32>
util.global private @"__iree_flow_bert/encoder/layer_10/output/FakeLayerNorm/gamma" = dense<0.4> : tensor<128xf32>
util.global private @"__iree_flow_bert/encoder/layer_10/output/bottleneck/FakeLayerNorm/beta" = dense<1.0> : tensor<512xf32>
util.global private @"__iree_flow_bert/encoder/layer_10/output/bottleneck/FakeLayerNorm/gamma" = dense<0.4> : tensor<512xf32>
util.global private @"__iree_flow_bert/encoder/layer_10/output/bottleneck/dense/bias" = dense<0.1> : tensor<512xf32>
util.global private @"__iree_flow_bert/encoder/layer_10/output/bottleneck/dense/kernel" {noinline} = dense<0.0001> : tensor<128x512xf32>
util.global private @"__iree_flow_bert/encoder/layer_10/output/dense/bias" = dense<0.1> : tensor<128xf32>
util.global private @"__iree_flow_bert/encoder/layer_10/output/dense/kernel" {noinline} = dense<0.0001> : tensor<512x128xf32>
util.global private @"__iree_flow_bert/encoder/layer_11/attention/output/FakeLayerNorm/beta" = dense<1.0> : tensor<128xf32>
util.global private @"__iree_flow_bert/encoder/layer_11/attention/output/FakeLayerNorm/gamma" = dense<0.4> : tensor<128xf32>
util.global private @"__iree_flow_bert/encoder/layer_11/attention/output/dense/bias" = dense<0.1> : tensor<128xf32>
util.global private @"__iree_flow_bert/encoder/layer_11/attention/output/dense/kernel" {noinline} = dense<0.0001> : tensor<128x128xf32>
util.global private @"__iree_flow_bert/encoder/layer_11/attention/self/key/bias" = dense<0.1> : tensor<128xf32>
util.global private @"__iree_flow_bert/encoder/layer_11/attention/self/key/kernel" {noinline} = dense<0.0001> : tensor<128x128xf32>
util.global private @"__iree_flow_bert/encoder/layer_11/attention/self/query/bias" = dense<0.1> : tensor<128xf32>
util.global private @"__iree_flow_bert/encoder/layer_11/attention/self/query/kernel" {noinline} = dense<0.0001> : tensor<128x128xf32>
util.global private @"__iree_flow_bert/encoder/layer_11/attention/self/value/bias" = dense<0.1> : tensor<128xf32>
util.global private @"__iree_flow_bert/encoder/layer_11/attention/self/value/kernel" {noinline} = dense<0.0001> : tensor<512x128xf32>
util.global private @"__iree_flow_bert/encoder/layer_11/bottleneck/attention/FakeLayerNorm/beta" = dense<1.0> : tensor<128xf32>
util.global private @"__iree_flow_bert/encoder/layer_11/bottleneck/attention/FakeLayerNorm/gamma" = dense<0.4> : tensor<128xf32>
util.global private @"__iree_flow_bert/encoder/layer_11/bottleneck/attention/dense/bias" = dense<0.1> : tensor<128xf32>
util.global private @"__iree_flow_bert/encoder/layer_11/bottleneck/attention/dense/kernel" {noinline} = dense<0.0001> : tensor<512x128xf32>
util.global private @"__iree_flow_bert/encoder/layer_11/bottleneck/input/FakeLayerNorm/beta" = dense<1.0> : tensor<128xf32>
util.global private @"__iree_flow_bert/encoder/layer_11/bottleneck/input/FakeLayerNorm/gamma" = dense<0.4> : tensor<128xf32>
util.global private @"__iree_flow_bert/encoder/layer_11/bottleneck/input/dense/bias" = dense<0.1> : tensor<128xf32>
util.global private @"__iree_flow_bert/encoder/layer_11/bottleneck/input/dense/kernel" {noinline} = dense<0.0001> : tensor<512x128xf32>
util.global private @"__iree_flow_bert/encoder/layer_11/ffn_layer_0/intermediate/dense/bias" = dense<0.1> : tensor<512xf32>
util.global private @"__iree_flow_bert/encoder/layer_11/ffn_layer_0/intermediate/dense/kernel" {noinline} = dense<0.0001> : tensor<128x512xf32>
util.global private @"__iree_flow_bert/encoder/layer_11/ffn_layer_0/output/FakeLayerNorm/beta" = dense<1.0> : tensor<128xf32>
util.global private @"__iree_flow_bert/encoder/layer_11/ffn_layer_0/output/FakeLayerNorm/gamma" = dense<0.4> : tensor<128xf32>
util.global private @"__iree_flow_bert/encoder/layer_11/ffn_layer_0/output/dense/bias" = dense<0.1> : tensor<128xf32>
util.global private @"__iree_flow_bert/encoder/layer_11/ffn_layer_0/output/dense/kernel" {noinline} = dense<0.0001> : tensor<512x128xf32>
util.global private @"__iree_flow_bert/encoder/layer_11/ffn_layer_1/intermediate/dense/bias" = dense<0.1> : tensor<512xf32>
util.global private @"__iree_flow_bert/encoder/layer_11/ffn_layer_1/intermediate/dense/kernel" {noinline} = dense<0.0001> : tensor<128x512xf32>
util.global private @"__iree_flow_bert/encoder/layer_11/ffn_layer_1/output/FakeLayerNorm/beta" = dense<1.0> : tensor<128xf32>
util.global private @"__iree_flow_bert/encoder/layer_11/ffn_layer_1/output/FakeLayerNorm/gamma" = dense<0.4> : tensor<128xf32>
util.global private @"__iree_flow_bert/encoder/layer_11/ffn_layer_1/output/dense/bias" = dense<0.1> : tensor<128xf32>
util.global private @"__iree_flow_bert/encoder/layer_11/ffn_layer_1/output/dense/kernel" {noinline} = dense<0.0001> : tensor<512x128xf32>
util.global private @"__iree_flow_bert/encoder/layer_11/ffn_layer_2/intermediate/dense/bias" = dense<0.1> : tensor<512xf32>
util.global private @"__iree_flow_bert/encoder/layer_11/ffn_layer_2/intermediate/dense/kernel" {noinline} = dense<0.0001> : tensor<128x512xf32>
util.global private @"__iree_flow_bert/encoder/layer_11/ffn_layer_2/output/FakeLayerNorm/beta" = dense<1.0> : tensor<128xf32>
util.global private @"__iree_flow_bert/encoder/layer_11/ffn_layer_2/output/FakeLayerNorm/gamma" = dense<0.4> : tensor<128xf32>
util.global private @"__iree_flow_bert/encoder/layer_11/ffn_layer_2/output/dense/bias" = dense<0.1> : tensor<128xf32>
util.global private @"__iree_flow_bert/encoder/layer_11/ffn_layer_2/output/dense/kernel" {noinline} = dense<0.0001> : tensor<512x128xf32>
util.global private @"__iree_flow_bert/encoder/layer_11/intermediate/dense/bias" = dense<0.1> : tensor<512xf32>
util.global private @"__iree_flow_bert/encoder/layer_11/intermediate/dense/kernel" {noinline} = dense<0.0001> : tensor<128x512xf32>
util.global private @"__iree_flow_bert/encoder/layer_11/output/FakeLayerNorm/beta" = dense<1.0> : tensor<128xf32>
util.global private @"__iree_flow_bert/encoder/layer_11/output/FakeLayerNorm/gamma" = dense<0.4> : tensor<128xf32>
util.global private @"__iree_flow_bert/encoder/layer_11/output/bottleneck/FakeLayerNorm/beta" = dense<1.0> : tensor<512xf32>
util.global private @"__iree_flow_bert/encoder/layer_11/output/bottleneck/FakeLayerNorm/gamma" = dense<0.4> : tensor<512xf32>
util.global private @"__iree_flow_bert/encoder/layer_11/output/bottleneck/dense/bias" = dense<0.1> : tensor<512xf32>
util.global private @"__iree_flow_bert/encoder/layer_11/output/bottleneck/dense/kernel" {noinline} = dense<0.0001> : tensor<128x512xf32>
util.global private @"__iree_flow_bert/encoder/layer_11/output/dense/bias" = dense<0.1> : tensor<128xf32>
util.global private @"__iree_flow_bert/encoder/layer_11/output/dense/kernel" {noinline} = dense<0.0001> : tensor<512x128xf32>
util.global private @"__iree_flow_bert/encoder/layer_12/attention/output/FakeLayerNorm/beta" = dense<1.0> : tensor<128xf32>
util.global private @"__iree_flow_bert/encoder/layer_12/attention/output/FakeLayerNorm/gamma" = dense<0.4> : tensor<128xf32>
util.global private @"__iree_flow_bert/encoder/layer_12/attention/output/dense/bias" = dense<0.1> : tensor<128xf32>
util.global private @"__iree_flow_bert/encoder/layer_12/attention/output/dense/kernel" {noinline} = dense<0.0001> : tensor<128x128xf32>
util.global private @"__iree_flow_bert/encoder/layer_12/attention/self/key/bias" = dense<0.1> : tensor<128xf32>
util.global private @"__iree_flow_bert/encoder/layer_12/attention/self/key/kernel" {noinline} = dense<0.0001> : tensor<128x128xf32>
util.global private @"__iree_flow_bert/encoder/layer_12/attention/self/query/bias" = dense<0.1> : tensor<128xf32>
util.global private @"__iree_flow_bert/encoder/layer_12/attention/self/query/kernel" {noinline} = dense<0.0001> : tensor<128x128xf32>
util.global private @"__iree_flow_bert/encoder/layer_12/attention/self/value/bias" = dense<0.1> : tensor<128xf32>
util.global private @"__iree_flow_bert/encoder/layer_12/attention/self/value/kernel" {noinline} = dense<0.0001> : tensor<512x128xf32>
util.global private @"__iree_flow_bert/encoder/layer_12/bottleneck/attention/FakeLayerNorm/beta" = dense<1.0> : tensor<128xf32>
util.global private @"__iree_flow_bert/encoder/layer_12/bottleneck/attention/FakeLayerNorm/gamma" = dense<0.4> : tensor<128xf32>
util.global private @"__iree_flow_bert/encoder/layer_12/bottleneck/attention/dense/bias" = dense<0.1> : tensor<128xf32>
util.global private @"__iree_flow_bert/encoder/layer_12/bottleneck/attention/dense/kernel" {noinline} = dense<0.0001> : tensor<512x128xf32>
util.global private @"__iree_flow_bert/encoder/layer_12/bottleneck/input/FakeLayerNorm/beta" = dense<1.0> : tensor<128xf32>
util.global private @"__iree_flow_bert/encoder/layer_12/bottleneck/input/FakeLayerNorm/gamma" = dense<0.4> : tensor<128xf32>
util.global private @"__iree_flow_bert/encoder/layer_12/bottleneck/input/dense/bias" = dense<0.1> : tensor<128xf32>
util.global private @"__iree_flow_bert/encoder/layer_12/bottleneck/input/dense/kernel" {noinline} = dense<0.0001> : tensor<512x128xf32>
util.global private @"__iree_flow_bert/encoder/layer_12/ffn_layer_0/intermediate/dense/bias" = dense<0.1> : tensor<512xf32>
util.global private @"__iree_flow_bert/encoder/layer_12/ffn_layer_0/intermediate/dense/kernel" {noinline} = dense<0.0001> : tensor<128x512xf32>
util.global private @"__iree_flow_bert/encoder/layer_12/ffn_layer_0/output/FakeLayerNorm/beta" = dense<1.0> : tensor<128xf32>
util.global private @"__iree_flow_bert/encoder/layer_12/ffn_layer_0/output/FakeLayerNorm/gamma" = dense<0.4> : tensor<128xf32>
util.global private @"__iree_flow_bert/encoder/layer_12/ffn_layer_0/output/dense/bias" = dense<0.1> : tensor<128xf32>
util.global private @"__iree_flow_bert/encoder/layer_12/ffn_layer_0/output/dense/kernel" {noinline} = dense<0.0001> : tensor<512x128xf32>
util.global private @"__iree_flow_bert/encoder/layer_12/ffn_layer_1/intermediate/dense/bias" = dense<0.1> : tensor<512xf32>
util.global private @"__iree_flow_bert/encoder/layer_12/ffn_layer_1/intermediate/dense/kernel" {noinline} = dense<0.0001> : tensor<128x512xf32>
util.global private @"__iree_flow_bert/encoder/layer_12/ffn_layer_1/output/FakeLayerNorm/beta" = dense<1.0> : tensor<128xf32>
util.global private @"__iree_flow_bert/encoder/layer_12/ffn_layer_1/output/FakeLayerNorm/gamma" = dense<0.4> : tensor<128xf32>
util.global private @"__iree_flow_bert/encoder/layer_12/ffn_layer_1/output/dense/bias" = dense<0.1> : tensor<128xf32>
util.global private @"__iree_flow_bert/encoder/layer_12/ffn_layer_1/output/dense/kernel" {noinline} = dense<0.0001> : tensor<512x128xf32>
util.global private @"__iree_flow_bert/encoder/layer_12/ffn_layer_2/intermediate/dense/bias" = dense<0.1> : tensor<512xf32>
util.global private @"__iree_flow_bert/encoder/layer_12/ffn_layer_2/intermediate/dense/kernel" {noinline} = dense<0.0001> : tensor<128x512xf32>
util.global private @"__iree_flow_bert/encoder/layer_12/ffn_layer_2/output/FakeLayerNorm/beta" = dense<1.0> : tensor<128xf32>
util.global private @"__iree_flow_bert/encoder/layer_12/ffn_layer_2/output/FakeLayerNorm/gamma" = dense<0.4> : tensor<128xf32>
util.global private @"__iree_flow_bert/encoder/layer_12/ffn_layer_2/output/dense/bias" = dense<0.1> : tensor<128xf32>
util.global private @"__iree_flow_bert/encoder/layer_12/ffn_layer_2/output/dense/kernel" {noinline} = dense<0.0001> : tensor<512x128xf32>
util.global private @"__iree_flow_bert/encoder/layer_12/intermediate/dense/bias" = dense<0.1> : tensor<512xf32>
util.global private @"__iree_flow_bert/encoder/layer_12/intermediate/dense/kernel" {noinline} = dense<0.0001> : tensor<128x512xf32>
util.global private @"__iree_flow_bert/encoder/layer_12/output/FakeLayerNorm/beta" = dense<1.0> : tensor<128xf32>
util.global private @"__iree_flow_bert/encoder/layer_12/output/FakeLayerNorm/gamma" = dense<0.4> : tensor<128xf32>
util.global private @"__iree_flow_bert/encoder/layer_12/output/bottleneck/FakeLayerNorm/beta" = dense<1.0> : tensor<512xf32>
util.global private @"__iree_flow_bert/encoder/layer_12/output/bottleneck/FakeLayerNorm/gamma" = dense<0.4> : tensor<512xf32>
util.global private @"__iree_flow_bert/encoder/layer_12/output/bottleneck/dense/bias" = dense<0.1> : tensor<512xf32>
util.global private @"__iree_flow_bert/encoder/layer_12/output/bottleneck/dense/kernel" {noinline} = dense<0.0001> : tensor<128x512xf32>
util.global private @"__iree_flow_bert/encoder/layer_12/output/dense/bias" = dense<0.1> : tensor<128xf32>
util.global private @"__iree_flow_bert/encoder/layer_12/output/dense/kernel" {noinline} = dense<0.0001> : tensor<512x128xf32>
util.global private @"__iree_flow_bert/encoder/layer_13/attention/output/FakeLayerNorm/beta" = dense<1.0> : tensor<128xf32>
util.global private @"__iree_flow_bert/encoder/layer_13/attention/output/FakeLayerNorm/gamma" = dense<0.4> : tensor<128xf32>
util.global private @"__iree_flow_bert/encoder/layer_13/attention/output/dense/bias" = dense<0.1> : tensor<128xf32>
util.global private @"__iree_flow_bert/encoder/layer_13/attention/output/dense/kernel" {noinline} = dense<0.0001> : tensor<128x128xf32>
util.global private @"__iree_flow_bert/encoder/layer_13/attention/self/key/bias" = dense<0.1> : tensor<128xf32>
util.global private @"__iree_flow_bert/encoder/layer_13/attention/self/key/kernel" {noinline} = dense<0.0001> : tensor<128x128xf32>
util.global private @"__iree_flow_bert/encoder/layer_13/attention/self/query/bias" = dense<0.1> : tensor<128xf32>
util.global private @"__iree_flow_bert/encoder/layer_13/attention/self/query/kernel" {noinline} = dense<0.0001> : tensor<128x128xf32>
util.global private @"__iree_flow_bert/encoder/layer_13/attention/self/value/bias" = dense<0.1> : tensor<128xf32>
util.global private @"__iree_flow_bert/encoder/layer_13/attention/self/value/kernel" {noinline} = dense<0.0001> : tensor<512x128xf32>
util.global private @"__iree_flow_bert/encoder/layer_13/bottleneck/attention/FakeLayerNorm/beta" = dense<1.0> : tensor<128xf32>
util.global private @"__iree_flow_bert/encoder/layer_13/bottleneck/attention/FakeLayerNorm/gamma" = dense<0.4> : tensor<128xf32>
util.global private @"__iree_flow_bert/encoder/layer_13/bottleneck/attention/dense/bias" = dense<0.1> : tensor<128xf32>
util.global private @"__iree_flow_bert/encoder/layer_13/bottleneck/attention/dense/kernel" {noinline} = dense<0.0001> : tensor<512x128xf32>
util.global private @"__iree_flow_bert/encoder/layer_13/bottleneck/input/FakeLayerNorm/beta" = dense<1.0> : tensor<128xf32>
util.global private @"__iree_flow_bert/encoder/layer_13/bottleneck/input/FakeLayerNorm/gamma" = dense<0.4> : tensor<128xf32>
util.global private @"__iree_flow_bert/encoder/layer_13/bottleneck/input/dense/bias" = dense<0.1> : tensor<128xf32>
util.global private @"__iree_flow_bert/encoder/layer_13/bottleneck/input/dense/kernel" {noinline} = dense<0.0001> : tensor<512x128xf32>
util.global private @"__iree_flow_bert/encoder/layer_13/ffn_layer_0/intermediate/dense/bias" = dense<0.1> : tensor<512xf32>
util.global private @"__iree_flow_bert/encoder/layer_13/ffn_layer_0/intermediate/dense/kernel" {noinline} = dense<0.0001> : tensor<128x512xf32>
util.global private @"__iree_flow_bert/encoder/layer_13/ffn_layer_0/output/FakeLayerNorm/beta" = dense<1.0> : tensor<128xf32>
util.global private @"__iree_flow_bert/encoder/layer_13/ffn_layer_0/output/FakeLayerNorm/gamma" = dense<0.4> : tensor<128xf32>
util.global private @"__iree_flow_bert/encoder/layer_13/ffn_layer_0/output/dense/bias" = dense<0.1> : tensor<128xf32>
util.global private @"__iree_flow_bert/encoder/layer_13/ffn_layer_0/output/dense/kernel" {noinline} = dense<0.0001> : tensor<512x128xf32>
util.global private @"__iree_flow_bert/encoder/layer_13/ffn_layer_1/intermediate/dense/bias" = dense<0.1> : tensor<512xf32>
util.global private @"__iree_flow_bert/encoder/layer_13/ffn_layer_1/intermediate/dense/kernel" {noinline} = dense<0.0001> : tensor<128x512xf32>
util.global private @"__iree_flow_bert/encoder/layer_13/ffn_layer_1/output/FakeLayerNorm/beta" = dense<1.0> : tensor<128xf32>
util.global private @"__iree_flow_bert/encoder/layer_13/ffn_layer_1/output/FakeLayerNorm/gamma" = dense<0.4> : tensor<128xf32>
util.global private @"__iree_flow_bert/encoder/layer_13/ffn_layer_1/output/dense/bias" = dense<0.1> : tensor<128xf32>
util.global private @"__iree_flow_bert/encoder/layer_13/ffn_layer_1/output/dense/kernel" {noinline} = dense<0.0001> : tensor<512x128xf32>
util.global private @"__iree_flow_bert/encoder/layer_13/ffn_layer_2/intermediate/dense/bias" = dense<0.1> : tensor<512xf32>
util.global private @"__iree_flow_bert/encoder/layer_13/ffn_layer_2/intermediate/dense/kernel" {noinline} = dense<0.0001> : tensor<128x512xf32>
util.global private @"__iree_flow_bert/encoder/layer_13/ffn_layer_2/output/FakeLayerNorm/beta" = dense<1.0> : tensor<128xf32>
util.global private @"__iree_flow_bert/encoder/layer_13/ffn_layer_2/output/FakeLayerNorm/gamma" = dense<0.4> : tensor<128xf32>
util.global private @"__iree_flow_bert/encoder/layer_13/ffn_layer_2/output/dense/bias" = dense<0.1> : tensor<128xf32>
util.global private @"__iree_flow_bert/encoder/layer_13/ffn_layer_2/output/dense/kernel" {noinline} = dense<0.0001> : tensor<512x128xf32>
util.global private @"__iree_flow_bert/encoder/layer_13/intermediate/dense/bias" = dense<0.1> : tensor<512xf32>
util.global private @"__iree_flow_bert/encoder/layer_13/intermediate/dense/kernel" {noinline} = dense<0.0001> : tensor<128x512xf32>
util.global private @"__iree_flow_bert/encoder/layer_13/output/FakeLayerNorm/beta" = dense<1.0> : tensor<128xf32>
util.global private @"__iree_flow_bert/encoder/layer_13/output/FakeLayerNorm/gamma" = dense<0.4> : tensor<128xf32>
util.global private @"__iree_flow_bert/encoder/layer_13/output/bottleneck/FakeLayerNorm/beta" = dense<1.0> : tensor<512xf32>
util.global private @"__iree_flow_bert/encoder/layer_13/output/bottleneck/FakeLayerNorm/gamma" = dense<0.4> : tensor<512xf32>
util.global private @"__iree_flow_bert/encoder/layer_13/output/bottleneck/dense/bias" = dense<0.1> : tensor<512xf32>
util.global private @"__iree_flow_bert/encoder/layer_13/output/bottleneck/dense/kernel" {noinline} = dense<0.0001> : tensor<128x512xf32>
util.global private @"__iree_flow_bert/encoder/layer_13/output/dense/bias" = dense<0.1> : tensor<128xf32>
util.global private @"__iree_flow_bert/encoder/layer_13/output/dense/kernel" {noinline} = dense<0.0001> : tensor<512x128xf32>
util.global private @"__iree_flow_bert/encoder/layer_14/attention/output/FakeLayerNorm/beta" = dense<1.0> : tensor<128xf32>
util.global private @"__iree_flow_bert/encoder/layer_14/attention/output/FakeLayerNorm/gamma" = dense<0.4> : tensor<128xf32>
util.global private @"__iree_flow_bert/encoder/layer_14/attention/output/dense/bias" = dense<0.1> : tensor<128xf32>
util.global private @"__iree_flow_bert/encoder/layer_14/attention/output/dense/kernel" {noinline} = dense<0.0001> : tensor<128x128xf32>
util.global private @"__iree_flow_bert/encoder/layer_14/attention/self/key/bias" = dense<0.1> : tensor<128xf32>
util.global private @"__iree_flow_bert/encoder/layer_14/attention/self/key/kernel" {noinline} = dense<0.0001> : tensor<128x128xf32>
util.global private @"__iree_flow_bert/encoder/layer_14/attention/self/query/bias" = dense<0.1> : tensor<128xf32>
util.global private @"__iree_flow_bert/encoder/layer_14/attention/self/query/kernel" {noinline} = dense<0.0001> : tensor<128x128xf32>
util.global private @"__iree_flow_bert/encoder/layer_14/attention/self/value/bias" = dense<0.1> : tensor<128xf32>
util.global private @"__iree_flow_bert/encoder/layer_14/attention/self/value/kernel" {noinline} = dense<0.0001> : tensor<512x128xf32>
util.global private @"__iree_flow_bert/encoder/layer_14/bottleneck/attention/FakeLayerNorm/beta" = dense<1.0> : tensor<128xf32>
util.global private @"__iree_flow_bert/encoder/layer_14/bottleneck/attention/FakeLayerNorm/gamma" = dense<0.4> : tensor<128xf32>
util.global private @"__iree_flow_bert/encoder/layer_14/bottleneck/attention/dense/bias" = dense<0.1> : tensor<128xf32>
util.global private @"__iree_flow_bert/encoder/layer_14/bottleneck/attention/dense/kernel" {noinline} = dense<0.0001> : tensor<512x128xf32>
util.global private @"__iree_flow_bert/encoder/layer_14/bottleneck/input/FakeLayerNorm/beta" = dense<1.0> : tensor<128xf32>
util.global private @"__iree_flow_bert/encoder/layer_14/bottleneck/input/FakeLayerNorm/gamma" = dense<0.4> : tensor<128xf32>
util.global private @"__iree_flow_bert/encoder/layer_14/bottleneck/input/dense/bias" = dense<0.1> : tensor<128xf32>
util.global private @"__iree_flow_bert/encoder/layer_14/bottleneck/input/dense/kernel" {noinline} = dense<0.0001> : tensor<512x128xf32>
util.global private @"__iree_flow_bert/encoder/layer_14/ffn_layer_0/intermediate/dense/bias" = dense<0.1> : tensor<512xf32>
util.global private @"__iree_flow_bert/encoder/layer_14/ffn_layer_0/intermediate/dense/kernel" {noinline} = dense<0.0001> : tensor<128x512xf32>
util.global private @"__iree_flow_bert/encoder/layer_14/ffn_layer_0/output/FakeLayerNorm/beta" = dense<1.0> : tensor<128xf32>
util.global private @"__iree_flow_bert/encoder/layer_14/ffn_layer_0/output/FakeLayerNorm/gamma" = dense<0.4> : tensor<128xf32>
util.global private @"__iree_flow_bert/encoder/layer_14/ffn_layer_0/output/dense/bias" = dense<0.1> : tensor<128xf32>
util.global private @"__iree_flow_bert/encoder/layer_14/ffn_layer_0/output/dense/kernel" {noinline} = dense<0.0001> : tensor<512x128xf32>
util.global private @"__iree_flow_bert/encoder/layer_14/ffn_layer_1/intermediate/dense/bias" = dense<0.1> : tensor<512xf32>
util.global private @"__iree_flow_bert/encoder/layer_14/ffn_layer_1/intermediate/dense/kernel" {noinline} = dense<0.0001> : tensor<128x512xf32>
util.global private @"__iree_flow_bert/encoder/layer_14/ffn_layer_1/output/FakeLayerNorm/beta" = dense<1.0> : tensor<128xf32>
util.global private @"__iree_flow_bert/encoder/layer_14/ffn_layer_1/output/FakeLayerNorm/gamma" = dense<0.4> : tensor<128xf32>
util.global private @"__iree_flow_bert/encoder/layer_14/ffn_layer_1/output/dense/bias" = dense<0.1> : tensor<128xf32>
util.global private @"__iree_flow_bert/encoder/layer_14/ffn_layer_1/output/dense/kernel" {noinline} = dense<0.0001> : tensor<512x128xf32>
util.global private @"__iree_flow_bert/encoder/layer_14/ffn_layer_2/intermediate/dense/bias" = dense<0.1> : tensor<512xf32>
util.global private @"__iree_flow_bert/encoder/layer_14/ffn_layer_2/intermediate/dense/kernel" {noinline} = dense<0.0001> : tensor<128x512xf32>
util.global private @"__iree_flow_bert/encoder/layer_14/ffn_layer_2/output/FakeLayerNorm/beta" = dense<1.0> : tensor<128xf32>
util.global private @"__iree_flow_bert/encoder/layer_14/ffn_layer_2/output/FakeLayerNorm/gamma" = dense<0.4> : tensor<128xf32>
util.global private @"__iree_flow_bert/encoder/layer_14/ffn_layer_2/output/dense/bias" = dense<0.1> : tensor<128xf32>
util.global private @"__iree_flow_bert/encoder/layer_14/ffn_layer_2/output/dense/kernel" {noinline} = dense<0.0001> : tensor<512x128xf32>
util.global private @"__iree_flow_bert/encoder/layer_14/intermediate/dense/bias" = dense<0.1> : tensor<512xf32>
util.global private @"__iree_flow_bert/encoder/layer_14/intermediate/dense/kernel" {noinline} = dense<0.0001> : tensor<128x512xf32>
util.global private @"__iree_flow_bert/encoder/layer_14/output/FakeLayerNorm/beta" = dense<1.0> : tensor<128xf32>
util.global private @"__iree_flow_bert/encoder/layer_14/output/FakeLayerNorm/gamma" = dense<0.4> : tensor<128xf32>
util.global private @"__iree_flow_bert/encoder/layer_14/output/bottleneck/FakeLayerNorm/beta" = dense<1.0> : tensor<512xf32>
util.global private @"__iree_flow_bert/encoder/layer_14/output/bottleneck/FakeLayerNorm/gamma" = dense<0.4> : tensor<512xf32>
util.global private @"__iree_flow_bert/encoder/layer_14/output/bottleneck/dense/bias" = dense<0.1> : tensor<512xf32>
util.global private @"__iree_flow_bert/encoder/layer_14/output/bottleneck/dense/kernel" {noinline} = dense<0.0001> : tensor<128x512xf32>
util.global private @"__iree_flow_bert/encoder/layer_14/output/dense/bias" = dense<0.1> : tensor<128xf32>
util.global private @"__iree_flow_bert/encoder/layer_14/output/dense/kernel" {noinline} = dense<0.0001> : tensor<512x128xf32>
util.global private @"__iree_flow_bert/encoder/layer_15/attention/output/FakeLayerNorm/beta" = dense<1.0> : tensor<128xf32>
util.global private @"__iree_flow_bert/encoder/layer_15/attention/output/FakeLayerNorm/gamma" = dense<0.4> : tensor<128xf32>
util.global private @"__iree_flow_bert/encoder/layer_15/attention/output/dense/bias" = dense<0.1> : tensor<128xf32>
util.global private @"__iree_flow_bert/encoder/layer_15/attention/output/dense/kernel" {noinline} = dense<0.0001> : tensor<128x128xf32>
util.global private @"__iree_flow_bert/encoder/layer_15/attention/self/key/bias" = dense<0.1> : tensor<128xf32>
util.global private @"__iree_flow_bert/encoder/layer_15/attention/self/key/kernel" {noinline} = dense<0.0001> : tensor<128x128xf32>
util.global private @"__iree_flow_bert/encoder/layer_15/attention/self/query/bias" = dense<0.1> : tensor<128xf32>
util.global private @"__iree_flow_bert/encoder/layer_15/attention/self/query/kernel" {noinline} = dense<0.0001> : tensor<128x128xf32>
util.global private @"__iree_flow_bert/encoder/layer_15/attention/self/value/bias" = dense<0.1> : tensor<128xf32>
util.global private @"__iree_flow_bert/encoder/layer_15/attention/self/value/kernel" {noinline} = dense<0.0001> : tensor<512x128xf32>
util.global private @"__iree_flow_bert/encoder/layer_15/bottleneck/attention/FakeLayerNorm/beta" = dense<1.0> : tensor<128xf32>
util.global private @"__iree_flow_bert/encoder/layer_15/bottleneck/attention/FakeLayerNorm/gamma" = dense<0.4> : tensor<128xf32>
util.global private @"__iree_flow_bert/encoder/layer_15/bottleneck/attention/dense/bias" = dense<0.1> : tensor<128xf32>
util.global private @"__iree_flow_bert/encoder/layer_15/bottleneck/attention/dense/kernel" {noinline} = dense<0.0001> : tensor<512x128xf32>
util.global private @"__iree_flow_bert/encoder/layer_15/bottleneck/input/FakeLayerNorm/beta" = dense<1.0> : tensor<128xf32>
util.global private @"__iree_flow_bert/encoder/layer_15/bottleneck/input/FakeLayerNorm/gamma" = dense<0.4> : tensor<128xf32>
util.global private @"__iree_flow_bert/encoder/layer_15/bottleneck/input/dense/bias" = dense<0.1> : tensor<128xf32>
util.global private @"__iree_flow_bert/encoder/layer_15/bottleneck/input/dense/kernel" {noinline} = dense<0.0001> : tensor<512x128xf32>
util.global private @"__iree_flow_bert/encoder/layer_15/ffn_layer_0/intermediate/dense/bias" = dense<0.1> : tensor<512xf32>
util.global private @"__iree_flow_bert/encoder/layer_15/ffn_layer_0/intermediate/dense/kernel" {noinline} = dense<0.0001> : tensor<128x512xf32>
util.global private @"__iree_flow_bert/encoder/layer_15/ffn_layer_0/output/FakeLayerNorm/beta" = dense<1.0> : tensor<128xf32>
util.global private @"__iree_flow_bert/encoder/layer_15/ffn_layer_0/output/FakeLayerNorm/gamma" = dense<0.4> : tensor<128xf32>
util.global private @"__iree_flow_bert/encoder/layer_15/ffn_layer_0/output/dense/bias" = dense<0.1> : tensor<128xf32>
util.global private @"__iree_flow_bert/encoder/layer_15/ffn_layer_0/output/dense/kernel" {noinline} = dense<0.0001> : tensor<512x128xf32>
util.global private @"__iree_flow_bert/encoder/layer_15/ffn_layer_1/intermediate/dense/bias" = dense<0.1> : tensor<512xf32>
util.global private @"__iree_flow_bert/encoder/layer_15/ffn_layer_1/intermediate/dense/kernel" {noinline} = dense<0.0001> : tensor<128x512xf32>
util.global private @"__iree_flow_bert/encoder/layer_15/ffn_layer_1/output/FakeLayerNorm/beta" = dense<1.0> : tensor<128xf32>
util.global private @"__iree_flow_bert/encoder/layer_15/ffn_layer_1/output/FakeLayerNorm/gamma" = dense<0.4> : tensor<128xf32>
util.global private @"__iree_flow_bert/encoder/layer_15/ffn_layer_1/output/dense/bias" = dense<0.1> : tensor<128xf32>
util.global private @"__iree_flow_bert/encoder/layer_15/ffn_layer_1/output/dense/kernel" {noinline} = dense<0.0001> : tensor<512x128xf32>
util.global private @"__iree_flow_bert/encoder/layer_15/ffn_layer_2/intermediate/dense/bias" = dense<0.1> : tensor<512xf32>
util.global private @"__iree_flow_bert/encoder/layer_15/ffn_layer_2/intermediate/dense/kernel" {noinline} = dense<0.0001> : tensor<128x512xf32>
util.global private @"__iree_flow_bert/encoder/layer_15/ffn_layer_2/output/FakeLayerNorm/beta" = dense<1.0> : tensor<128xf32>
util.global private @"__iree_flow_bert/encoder/layer_15/ffn_layer_2/output/FakeLayerNorm/gamma" = dense<0.4> : tensor<128xf32>
util.global private @"__iree_flow_bert/encoder/layer_15/ffn_layer_2/output/dense/bias" = dense<0.1> : tensor<128xf32>
util.global private @"__iree_flow_bert/encoder/layer_15/ffn_layer_2/output/dense/kernel" {noinline} = dense<0.0001> : tensor<512x128xf32>
util.global private @"__iree_flow_bert/encoder/layer_15/intermediate/dense/bias" = dense<0.1> : tensor<512xf32>
util.global private @"__iree_flow_bert/encoder/layer_15/intermediate/dense/kernel" {noinline} = dense<0.0001> : tensor<128x512xf32>
util.global private @"__iree_flow_bert/encoder/layer_15/output/FakeLayerNorm/beta" = dense<1.0> : tensor<128xf32>
util.global private @"__iree_flow_bert/encoder/layer_15/output/FakeLayerNorm/gamma" = dense<0.4> : tensor<128xf32>
util.global private @"__iree_flow_bert/encoder/layer_15/output/bottleneck/FakeLayerNorm/beta" = dense<1.0> : tensor<512xf32>
util.global private @"__iree_flow_bert/encoder/layer_15/output/bottleneck/FakeLayerNorm/gamma" = dense<0.4> : tensor<512xf32>
util.global private @"__iree_flow_bert/encoder/layer_15/output/bottleneck/dense/bias" = dense<0.1> : tensor<512xf32>
util.global private @"__iree_flow_bert/encoder/layer_15/output/bottleneck/dense/kernel" {noinline} = dense<0.0001> : tensor<128x512xf32>
util.global private @"__iree_flow_bert/encoder/layer_15/output/dense/bias" = dense<0.1> : tensor<128xf32>
util.global private @"__iree_flow_bert/encoder/layer_15/output/dense/kernel" {noinline} = dense<0.0001> : tensor<512x128xf32>
util.global private @"__iree_flow_bert/encoder/layer_16/attention/output/FakeLayerNorm/beta" = dense<1.0> : tensor<128xf32>
util.global private @"__iree_flow_bert/encoder/layer_16/attention/output/FakeLayerNorm/gamma" = dense<0.4> : tensor<128xf32>
util.global private @"__iree_flow_bert/encoder/layer_16/attention/output/dense/bias" = dense<0.1> : tensor<128xf32>
util.global private @"__iree_flow_bert/encoder/layer_16/attention/output/dense/kernel" {noinline} = dense<0.0001> : tensor<128x128xf32>
util.global private @"__iree_flow_bert/encoder/layer_16/attention/self/key/bias" = dense<0.1> : tensor<128xf32>
util.global private @"__iree_flow_bert/encoder/layer_16/attention/self/key/kernel" {noinline} = dense<0.0001> : tensor<128x128xf32>
util.global private @"__iree_flow_bert/encoder/layer_16/attention/self/query/bias" = dense<0.1> : tensor<128xf32>
util.global private @"__iree_flow_bert/encoder/layer_16/attention/self/query/kernel" {noinline} = dense<0.0001> : tensor<128x128xf32>
util.global private @"__iree_flow_bert/encoder/layer_16/attention/self/value/bias" = dense<0.1> : tensor<128xf32>
util.global private @"__iree_flow_bert/encoder/layer_16/attention/self/value/kernel" {noinline} = dense<0.0001> : tensor<512x128xf32>
util.global private @"__iree_flow_bert/encoder/layer_16/bottleneck/attention/FakeLayerNorm/beta" = dense<1.0> : tensor<128xf32>
util.global private @"__iree_flow_bert/encoder/layer_16/bottleneck/attention/FakeLayerNorm/gamma" = dense<0.4> : tensor<128xf32>
util.global private @"__iree_flow_bert/encoder/layer_16/bottleneck/attention/dense/bias" = dense<0.1> : tensor<128xf32>
util.global private @"__iree_flow_bert/encoder/layer_16/bottleneck/attention/dense/kernel" {noinline} = dense<0.0001> : tensor<512x128xf32>
util.global private @"__iree_flow_bert/encoder/layer_16/bottleneck/input/FakeLayerNorm/beta" = dense<1.0> : tensor<128xf32>
util.global private @"__iree_flow_bert/encoder/layer_16/bottleneck/input/FakeLayerNorm/gamma" = dense<0.4> : tensor<128xf32>
util.global private @"__iree_flow_bert/encoder/layer_16/bottleneck/input/dense/bias" = dense<0.1> : tensor<128xf32>
util.global private @"__iree_flow_bert/encoder/layer_16/bottleneck/input/dense/kernel" {noinline} = dense<0.0001> : tensor<512x128xf32>
util.global private @"__iree_flow_bert/encoder/layer_16/ffn_layer_0/intermediate/dense/bias" = dense<0.1> : tensor<512xf32>
util.global private @"__iree_flow_bert/encoder/layer_16/ffn_layer_0/intermediate/dense/kernel" {noinline} = dense<0.0001> : tensor<128x512xf32>
util.global private @"__iree_flow_bert/encoder/layer_16/ffn_layer_0/output/FakeLayerNorm/beta" = dense<1.0> : tensor<128xf32>
util.global private @"__iree_flow_bert/encoder/layer_16/ffn_layer_0/output/FakeLayerNorm/gamma" = dense<0.4> : tensor<128xf32>
util.global private @"__iree_flow_bert/encoder/layer_16/ffn_layer_0/output/dense/bias" = dense<0.1> : tensor<128xf32>
util.global private @"__iree_flow_bert/encoder/layer_16/ffn_layer_0/output/dense/kernel" {noinline} = dense<0.0001> : tensor<512x128xf32>
util.global private @"__iree_flow_bert/encoder/layer_16/ffn_layer_1/intermediate/dense/bias" = dense<0.1> : tensor<512xf32>
util.global private @"__iree_flow_bert/encoder/layer_16/ffn_layer_1/intermediate/dense/kernel" {noinline} = dense<0.0001> : tensor<128x512xf32>
util.global private @"__iree_flow_bert/encoder/layer_16/ffn_layer_1/output/FakeLayerNorm/beta" = dense<1.0> : tensor<128xf32>
util.global private @"__iree_flow_bert/encoder/layer_16/ffn_layer_1/output/FakeLayerNorm/gamma" = dense<0.4> : tensor<128xf32>
util.global private @"__iree_flow_bert/encoder/layer_16/ffn_layer_1/output/dense/bias" = dense<0.1> : tensor<128xf32>
util.global private @"__iree_flow_bert/encoder/layer_16/ffn_layer_1/output/dense/kernel" {noinline} = dense<0.0001> : tensor<512x128xf32>
util.global private @"__iree_flow_bert/encoder/layer_16/ffn_layer_2/intermediate/dense/bias" = dense<0.1> : tensor<512xf32>
util.global private @"__iree_flow_bert/encoder/layer_16/ffn_layer_2/intermediate/dense/kernel" {noinline} = dense<0.0001> : tensor<128x512xf32>
util.global private @"__iree_flow_bert/encoder/layer_16/ffn_layer_2/output/FakeLayerNorm/beta" = dense<1.0> : tensor<128xf32>
util.global private @"__iree_flow_bert/encoder/layer_16/ffn_layer_2/output/FakeLayerNorm/gamma" = dense<0.4> : tensor<128xf32>
util.global private @"__iree_flow_bert/encoder/layer_16/ffn_layer_2/output/dense/bias" = dense<0.1> : tensor<128xf32>
util.global private @"__iree_flow_bert/encoder/layer_16/ffn_layer_2/output/dense/kernel" {noinline} = dense<0.0001> : tensor<512x128xf32>
util.global private @"__iree_flow_bert/encoder/layer_16/intermediate/dense/bias" = dense<0.1> : tensor<512xf32>
util.global private @"__iree_flow_bert/encoder/layer_16/intermediate/dense/kernel" {noinline} = dense<0.0001> : tensor<128x512xf32>
util.global private @"__iree_flow_bert/encoder/layer_16/output/FakeLayerNorm/beta" = dense<1.0> : tensor<128xf32>
util.global private @"__iree_flow_bert/encoder/layer_16/output/FakeLayerNorm/gamma" = dense<0.4> : tensor<128xf32>
util.global private @"__iree_flow_bert/encoder/layer_16/output/bottleneck/FakeLayerNorm/beta" = dense<1.0> : tensor<512xf32>
util.global private @"__iree_flow_bert/encoder/layer_16/output/bottleneck/FakeLayerNorm/gamma" = dense<0.4> : tensor<512xf32>
util.global private @"__iree_flow_bert/encoder/layer_16/output/bottleneck/dense/bias" = dense<0.1> : tensor<512xf32>
util.global private @"__iree_flow_bert/encoder/layer_16/output/bottleneck/dense/kernel" {noinline} = dense<0.0001> : tensor<128x512xf32>
util.global private @"__iree_flow_bert/encoder/layer_16/output/dense/bias" = dense<0.1> : tensor<128xf32>
util.global private @"__iree_flow_bert/encoder/layer_16/output/dense/kernel" {noinline} = dense<0.0001> : tensor<512x128xf32>
util.global private @"__iree_flow_bert/encoder/layer_17/attention/output/FakeLayerNorm/beta" = dense<1.0> : tensor<128xf32>
util.global private @"__iree_flow_bert/encoder/layer_17/attention/output/FakeLayerNorm/gamma" = dense<0.4> : tensor<128xf32>
util.global private @"__iree_flow_bert/encoder/layer_17/attention/output/dense/bias" = dense<0.1> : tensor<128xf32>
util.global private @"__iree_flow_bert/encoder/layer_17/attention/output/dense/kernel" {noinline} = dense<0.0001> : tensor<128x128xf32>
util.global private @"__iree_flow_bert/encoder/layer_17/attention/self/key/bias" = dense<0.1> : tensor<128xf32>
util.global private @"__iree_flow_bert/encoder/layer_17/attention/self/key/kernel" {noinline} = dense<0.0001> : tensor<128x128xf32>
util.global private @"__iree_flow_bert/encoder/layer_17/attention/self/query/bias" = dense<0.1> : tensor<128xf32>
util.global private @"__iree_flow_bert/encoder/layer_17/attention/self/query/kernel" {noinline} = dense<0.0001> : tensor<128x128xf32>
util.global private @"__iree_flow_bert/encoder/layer_17/attention/self/value/bias" = dense<0.1> : tensor<128xf32>
util.global private @"__iree_flow_bert/encoder/layer_17/attention/self/value/kernel" {noinline} = dense<0.0001> : tensor<512x128xf32>
util.global private @"__iree_flow_bert/encoder/layer_17/bottleneck/attention/FakeLayerNorm/beta" = dense<1.0> : tensor<128xf32>
util.global private @"__iree_flow_bert/encoder/layer_17/bottleneck/attention/FakeLayerNorm/gamma" = dense<0.4> : tensor<128xf32>
util.global private @"__iree_flow_bert/encoder/layer_17/bottleneck/attention/dense/bias" = dense<0.1> : tensor<128xf32>
util.global private @"__iree_flow_bert/encoder/layer_17/bottleneck/attention/dense/kernel" {noinline} = dense<0.0001> : tensor<512x128xf32>
util.global private @"__iree_flow_bert/encoder/layer_17/bottleneck/input/FakeLayerNorm/beta" = dense<1.0> : tensor<128xf32>
util.global private @"__iree_flow_bert/encoder/layer_17/bottleneck/input/FakeLayerNorm/gamma" = dense<0.4> : tensor<128xf32>
util.global private @"__iree_flow_bert/encoder/layer_17/bottleneck/input/dense/bias" = dense<0.1> : tensor<128xf32>
util.global private @"__iree_flow_bert/encoder/layer_17/bottleneck/input/dense/kernel" {noinline} = dense<0.0001> : tensor<512x128xf32>
util.global private @"__iree_flow_bert/encoder/layer_17/ffn_layer_0/intermediate/dense/bias" = dense<0.1> : tensor<512xf32>
util.global private @"__iree_flow_bert/encoder/layer_17/ffn_layer_0/intermediate/dense/kernel" {noinline} = dense<0.0001> : tensor<128x512xf32>
util.global private @"__iree_flow_bert/encoder/layer_17/ffn_layer_0/output/FakeLayerNorm/beta" = dense<1.0> : tensor<128xf32>
util.global private @"__iree_flow_bert/encoder/layer_17/ffn_layer_0/output/FakeLayerNorm/gamma" = dense<0.4> : tensor<128xf32>
util.global private @"__iree_flow_bert/encoder/layer_17/ffn_layer_0/output/dense/bias" = dense<0.1> : tensor<128xf32>
util.global private @"__iree_flow_bert/encoder/layer_17/ffn_layer_0/output/dense/kernel" {noinline} = dense<0.0001> : tensor<512x128xf32>
util.global private @"__iree_flow_bert/encoder/layer_17/ffn_layer_1/intermediate/dense/bias" = dense<0.1> : tensor<512xf32>
util.global private @"__iree_flow_bert/encoder/layer_17/ffn_layer_1/intermediate/dense/kernel" {noinline} = dense<0.0001> : tensor<128x512xf32>
util.global private @"__iree_flow_bert/encoder/layer_17/ffn_layer_1/output/FakeLayerNorm/beta" = dense<1.0> : tensor<128xf32>
util.global private @"__iree_flow_bert/encoder/layer_17/ffn_layer_1/output/FakeLayerNorm/gamma" = dense<0.4> : tensor<128xf32>
util.global private @"__iree_flow_bert/encoder/layer_17/ffn_layer_1/output/dense/bias" = dense<0.1> : tensor<128xf32>
util.global private @"__iree_flow_bert/encoder/layer_17/ffn_layer_1/output/dense/kernel" {noinline} = dense<0.0001> : tensor<512x128xf32>
util.global private @"__iree_flow_bert/encoder/layer_17/ffn_layer_2/intermediate/dense/bias" = dense<0.1> : tensor<512xf32>
util.global private @"__iree_flow_bert/encoder/layer_17/ffn_layer_2/intermediate/dense/kernel" {noinline} = dense<0.0001> : tensor<128x512xf32>
util.global private @"__iree_flow_bert/encoder/layer_17/ffn_layer_2/output/FakeLayerNorm/beta" = dense<1.0> : tensor<128xf32>
util.global private @"__iree_flow_bert/encoder/layer_17/ffn_layer_2/output/FakeLayerNorm/gamma" = dense<0.4> : tensor<128xf32>
util.global private @"__iree_flow_bert/encoder/layer_17/ffn_layer_2/output/dense/bias" = dense<0.1> : tensor<128xf32>
util.global private @"__iree_flow_bert/encoder/layer_17/ffn_layer_2/output/dense/kernel" {noinline} = dense<0.0001> : tensor<512x128xf32>
util.global private @"__iree_flow_bert/encoder/layer_17/intermediate/dense/bias" = dense<0.1> : tensor<512xf32>
util.global private @"__iree_flow_bert/encoder/layer_17/intermediate/dense/kernel" {noinline} = dense<0.0001> : tensor<128x512xf32>
util.global private @"__iree_flow_bert/encoder/layer_17/output/FakeLayerNorm/beta" = dense<1.0> : tensor<128xf32>
util.global private @"__iree_flow_bert/encoder/layer_17/output/FakeLayerNorm/gamma" = dense<0.4> : tensor<128xf32>
util.global private @"__iree_flow_bert/encoder/layer_17/output/bottleneck/FakeLayerNorm/beta" = dense<1.0> : tensor<512xf32>
util.global private @"__iree_flow_bert/encoder/layer_17/output/bottleneck/FakeLayerNorm/gamma" = dense<0.4> : tensor<512xf32>
util.global private @"__iree_flow_bert/encoder/layer_17/output/bottleneck/dense/bias" = dense<0.1> : tensor<512xf32>
util.global private @"__iree_flow_bert/encoder/layer_17/output/bottleneck/dense/kernel" {noinline} = dense<0.0001> : tensor<128x512xf32>
util.global private @"__iree_flow_bert/encoder/layer_17/output/dense/bias" = dense<0.1> : tensor<128xf32>
util.global private @"__iree_flow_bert/encoder/layer_17/output/dense/kernel" {noinline} = dense<0.0001> : tensor<512x128xf32>
util.global private @"__iree_flow_bert/encoder/layer_18/attention/output/FakeLayerNorm/beta" = dense<1.0> : tensor<128xf32>
util.global private @"__iree_flow_bert/encoder/layer_18/attention/output/FakeLayerNorm/gamma" = dense<0.4> : tensor<128xf32>
util.global private @"__iree_flow_bert/encoder/layer_18/attention/output/dense/bias" = dense<0.1> : tensor<128xf32>
util.global private @"__iree_flow_bert/encoder/layer_18/attention/output/dense/kernel" {noinline} = dense<0.0001> : tensor<128x128xf32>
util.global private @"__iree_flow_bert/encoder/layer_18/attention/self/key/bias" = dense<0.1> : tensor<128xf32>
util.global private @"__iree_flow_bert/encoder/layer_18/attention/self/key/kernel" {noinline} = dense<0.0001> : tensor<128x128xf32>
util.global private @"__iree_flow_bert/encoder/layer_18/attention/self/query/bias" = dense<0.1> : tensor<128xf32>
util.global private @"__iree_flow_bert/encoder/layer_18/attention/self/query/kernel" {noinline} = dense<0.0001> : tensor<128x128xf32>
util.global private @"__iree_flow_bert/encoder/layer_18/attention/self/value/bias" = dense<0.1> : tensor<128xf32>
util.global private @"__iree_flow_bert/encoder/layer_18/attention/self/value/kernel" {noinline} = dense<0.0001> : tensor<512x128xf32>
util.global private @"__iree_flow_bert/encoder/layer_18/bottleneck/attention/FakeLayerNorm/beta" = dense<1.0> : tensor<128xf32>
util.global private @"__iree_flow_bert/encoder/layer_18/bottleneck/attention/FakeLayerNorm/gamma" = dense<0.4> : tensor<128xf32>
util.global private @"__iree_flow_bert/encoder/layer_18/bottleneck/attention/dense/bias" = dense<0.1> : tensor<128xf32>
util.global private @"__iree_flow_bert/encoder/layer_18/bottleneck/attention/dense/kernel" {noinline} = dense<0.0001> : tensor<512x128xf32>
util.global private @"__iree_flow_bert/encoder/layer_18/bottleneck/input/FakeLayerNorm/beta" = dense<1.0> : tensor<128xf32>
util.global private @"__iree_flow_bert/encoder/layer_18/bottleneck/input/FakeLayerNorm/gamma" = dense<0.4> : tensor<128xf32>
util.global private @"__iree_flow_bert/encoder/layer_18/bottleneck/input/dense/bias" = dense<0.1> : tensor<128xf32>
util.global private @"__iree_flow_bert/encoder/layer_18/bottleneck/input/dense/kernel" {noinline} = dense<0.0001> : tensor<512x128xf32>
util.global private @"__iree_flow_bert/encoder/layer_18/ffn_layer_0/intermediate/dense/bias" = dense<0.1> : tensor<512xf32>
util.global private @"__iree_flow_bert/encoder/layer_18/ffn_layer_0/intermediate/dense/kernel" {noinline} = dense<0.0001> : tensor<128x512xf32>
util.global private @"__iree_flow_bert/encoder/layer_18/ffn_layer_0/output/FakeLayerNorm/beta" = dense<1.0> : tensor<128xf32>
util.global private @"__iree_flow_bert/encoder/layer_18/ffn_layer_0/output/FakeLayerNorm/gamma" = dense<0.4> : tensor<128xf32>
util.global private @"__iree_flow_bert/encoder/layer_18/ffn_layer_0/output/dense/bias" = dense<0.1> : tensor<128xf32>
util.global private @"__iree_flow_bert/encoder/layer_18/ffn_layer_0/output/dense/kernel" {noinline} = dense<0.0001> : tensor<512x128xf32>
util.global private @"__iree_flow_bert/encoder/layer_18/ffn_layer_1/intermediate/dense/bias" = dense<0.1> : tensor<512xf32>
util.global private @"__iree_flow_bert/encoder/layer_18/ffn_layer_1/intermediate/dense/kernel" {noinline} = dense<0.0001> : tensor<128x512xf32>
util.global private @"__iree_flow_bert/encoder/layer_18/ffn_layer_1/output/FakeLayerNorm/beta" = dense<1.0> : tensor<128xf32>
util.global private @"__iree_flow_bert/encoder/layer_18/ffn_layer_1/output/FakeLayerNorm/gamma" = dense<0.4> : tensor<128xf32>
util.global private @"__iree_flow_bert/encoder/layer_18/ffn_layer_1/output/dense/bias" = dense<0.1> : tensor<128xf32>
util.global private @"__iree_flow_bert/encoder/layer_18/ffn_layer_1/output/dense/kernel" {noinline} = dense<0.0001> : tensor<512x128xf32>
util.global private @"__iree_flow_bert/encoder/layer_18/ffn_layer_2/intermediate/dense/bias" = dense<0.1> : tensor<512xf32>
util.global private @"__iree_flow_bert/encoder/layer_18/ffn_layer_2/intermediate/dense/kernel" {noinline} = dense<0.0001> : tensor<128x512xf32>
util.global private @"__iree_flow_bert/encoder/layer_18/ffn_layer_2/output/FakeLayerNorm/beta" = dense<1.0> : tensor<128xf32>
util.global private @"__iree_flow_bert/encoder/layer_18/ffn_layer_2/output/FakeLayerNorm/gamma" = dense<0.4> : tensor<128xf32>
util.global private @"__iree_flow_bert/encoder/layer_18/ffn_layer_2/output/dense/bias" = dense<0.1> : tensor<128xf32>
util.global private @"__iree_flow_bert/encoder/layer_18/ffn_layer_2/output/dense/kernel" {noinline} = dense<0.0001> : tensor<512x128xf32>
util.global private @"__iree_flow_bert/encoder/layer_18/intermediate/dense/bias" = dense<0.1> : tensor<512xf32>
util.global private @"__iree_flow_bert/encoder/layer_18/intermediate/dense/kernel" {noinline} = dense<0.0001> : tensor<128x512xf32>
util.global private @"__iree_flow_bert/encoder/layer_18/output/FakeLayerNorm/beta" = dense<1.0> : tensor<128xf32>
util.global private @"__iree_flow_bert/encoder/layer_18/output/FakeLayerNorm/gamma" = dense<0.4> : tensor<128xf32>
util.global private @"__iree_flow_bert/encoder/layer_18/output/bottleneck/FakeLayerNorm/beta" = dense<1.0> : tensor<512xf32>
util.global private @"__iree_flow_bert/encoder/layer_18/output/bottleneck/FakeLayerNorm/gamma" = dense<0.4> : tensor<512xf32>
util.global private @"__iree_flow_bert/encoder/layer_18/output/bottleneck/dense/bias" = dense<0.1> : tensor<512xf32>
util.global private @"__iree_flow_bert/encoder/layer_18/output/bottleneck/dense/kernel" {noinline} = dense<0.0001> : tensor<128x512xf32>
util.global private @"__iree_flow_bert/encoder/layer_18/output/dense/bias" = dense<0.1> : tensor<128xf32>
util.global private @"__iree_flow_bert/encoder/layer_18/output/dense/kernel" {noinline} = dense<0.0001> : tensor<512x128xf32>
util.global private @"__iree_flow_bert/encoder/layer_19/attention/output/FakeLayerNorm/beta" = dense<1.0> : tensor<128xf32>
util.global private @"__iree_flow_bert/encoder/layer_19/attention/output/FakeLayerNorm/gamma" = dense<0.4> : tensor<128xf32>
util.global private @"__iree_flow_bert/encoder/layer_19/attention/output/dense/bias" = dense<0.1> : tensor<128xf32>
util.global private @"__iree_flow_bert/encoder/layer_19/attention/output/dense/kernel" {noinline} = dense<0.0001> : tensor<128x128xf32>
util.global private @"__iree_flow_bert/encoder/layer_19/attention/self/key/bias" = dense<0.1> : tensor<128xf32>
util.global private @"__iree_flow_bert/encoder/layer_19/attention/self/key/kernel" {noinline} = dense<0.0001> : tensor<128x128xf32>
util.global private @"__iree_flow_bert/encoder/layer_19/attention/self/query/bias" = dense<0.1> : tensor<128xf32>
util.global private @"__iree_flow_bert/encoder/layer_19/attention/self/query/kernel" {noinline} = dense<0.0001> : tensor<128x128xf32>
util.global private @"__iree_flow_bert/encoder/layer_19/attention/self/value/bias" = dense<0.1> : tensor<128xf32>
util.global private @"__iree_flow_bert/encoder/layer_19/attention/self/value/kernel" {noinline} = dense<0.0001> : tensor<512x128xf32>
util.global private @"__iree_flow_bert/encoder/layer_19/bottleneck/attention/FakeLayerNorm/beta" = dense<1.0> : tensor<128xf32>
util.global private @"__iree_flow_bert/encoder/layer_19/bottleneck/attention/FakeLayerNorm/gamma" = dense<0.4> : tensor<128xf32>
util.global private @"__iree_flow_bert/encoder/layer_19/bottleneck/attention/dense/bias" = dense<0.1> : tensor<128xf32>
util.global private @"__iree_flow_bert/encoder/layer_19/bottleneck/attention/dense/kernel" {noinline} = dense<0.0001> : tensor<512x128xf32>
util.global private @"__iree_flow_bert/encoder/layer_19/bottleneck/input/FakeLayerNorm/beta" = dense<1.0> : tensor<128xf32>
util.global private @"__iree_flow_bert/encoder/layer_19/bottleneck/input/FakeLayerNorm/gamma" = dense<0.4> : tensor<128xf32>
util.global private @"__iree_flow_bert/encoder/layer_19/bottleneck/input/dense/bias" = dense<0.1> : tensor<128xf32>
util.global private @"__iree_flow_bert/encoder/layer_19/bottleneck/input/dense/kernel" {noinline} = dense<0.0001> : tensor<512x128xf32>
util.global private @"__iree_flow_bert/encoder/layer_19/ffn_layer_0/intermediate/dense/bias" = dense<0.1> : tensor<512xf32>
util.global private @"__iree_flow_bert/encoder/layer_19/ffn_layer_0/intermediate/dense/kernel" {noinline} = dense<0.0001> : tensor<128x512xf32>
util.global private @"__iree_flow_bert/encoder/layer_19/ffn_layer_0/output/FakeLayerNorm/beta" = dense<1.0> : tensor<128xf32>
util.global private @"__iree_flow_bert/encoder/layer_19/ffn_layer_0/output/FakeLayerNorm/gamma" = dense<0.4> : tensor<128xf32>
util.global private @"__iree_flow_bert/encoder/layer_19/ffn_layer_0/output/dense/bias" = dense<0.1> : tensor<128xf32>
util.global private @"__iree_flow_bert/encoder/layer_19/ffn_layer_0/output/dense/kernel" {noinline} = dense<0.0001> : tensor<512x128xf32>
util.global private @"__iree_flow_bert/encoder/layer_19/ffn_layer_1/intermediate/dense/bias" = dense<0.1> : tensor<512xf32>
util.global private @"__iree_flow_bert/encoder/layer_19/ffn_layer_1/intermediate/dense/kernel" {noinline} = dense<0.0001> : tensor<128x512xf32>
util.global private @"__iree_flow_bert/encoder/layer_19/ffn_layer_1/output/FakeLayerNorm/beta" = dense<1.0> : tensor<128xf32>
util.global private @"__iree_flow_bert/encoder/layer_19/ffn_layer_1/output/FakeLayerNorm/gamma" = dense<0.4> : tensor<128xf32>
util.global private @"__iree_flow_bert/encoder/layer_19/ffn_layer_1/output/dense/bias" = dense<0.1> : tensor<128xf32>
util.global private @"__iree_flow_bert/encoder/layer_19/ffn_layer_1/output/dense/kernel" {noinline} = dense<0.0001> : tensor<512x128xf32>
util.global private @"__iree_flow_bert/encoder/layer_19/ffn_layer_2/intermediate/dense/bias" = dense<0.1> : tensor<512xf32>
util.global private @"__iree_flow_bert/encoder/layer_19/ffn_layer_2/intermediate/dense/kernel" {noinline} = dense<0.0001> : tensor<128x512xf32>
util.global private @"__iree_flow_bert/encoder/layer_19/ffn_layer_2/output/FakeLayerNorm/beta" = dense<1.0> : tensor<128xf32>
util.global private @"__iree_flow_bert/encoder/layer_19/ffn_layer_2/output/FakeLayerNorm/gamma" = dense<0.4> : tensor<128xf32>
util.global private @"__iree_flow_bert/encoder/layer_19/ffn_layer_2/output/dense/bias" = dense<0.1> : tensor<128xf32>
util.global private @"__iree_flow_bert/encoder/layer_19/ffn_layer_2/output/dense/kernel" {noinline} = dense<0.0001> : tensor<512x128xf32>
util.global private @"__iree_flow_bert/encoder/layer_19/intermediate/dense/bias" = dense<0.1> : tensor<512xf32>
util.global private @"__iree_flow_bert/encoder/layer_19/intermediate/dense/kernel" {noinline} = dense<0.0001> : tensor<128x512xf32>
util.global private @"__iree_flow_bert/encoder/layer_19/output/FakeLayerNorm/beta" = dense<1.0> : tensor<128xf32>
util.global private @"__iree_flow_bert/encoder/layer_19/output/FakeLayerNorm/gamma" = dense<0.4> : tensor<128xf32>
util.global private @"__iree_flow_bert/encoder/layer_19/output/bottleneck/FakeLayerNorm/beta" = dense<1.0> : tensor<512xf32>
util.global private @"__iree_flow_bert/encoder/layer_19/output/bottleneck/FakeLayerNorm/gamma" = dense<0.4> : tensor<512xf32>
util.global private @"__iree_flow_bert/encoder/layer_19/output/bottleneck/dense/bias" = dense<0.1> : tensor<512xf32>
util.global private @"__iree_flow_bert/encoder/layer_19/output/bottleneck/dense/kernel" {noinline} = dense<0.0001> : tensor<128x512xf32>
util.global private @"__iree_flow_bert/encoder/layer_19/output/dense/bias" = dense<0.1> : tensor<128xf32>
util.global private @"__iree_flow_bert/encoder/layer_19/output/dense/kernel" {noinline} = dense<0.0001> : tensor<512x128xf32>
util.global private @"__iree_flow_bert/encoder/layer_2/attention/output/FakeLayerNorm/beta" = dense<1.0> : tensor<128xf32>
util.global private @"__iree_flow_bert/encoder/layer_2/attention/output/FakeLayerNorm/gamma" = dense<0.4> : tensor<128xf32>
util.global private @"__iree_flow_bert/encoder/layer_2/attention/output/dense/bias" = dense<0.1> : tensor<128xf32>
util.global private @"__iree_flow_bert/encoder/layer_2/attention/output/dense/kernel" {noinline} = dense<0.0001> : tensor<128x128xf32>
util.global private @"__iree_flow_bert/encoder/layer_2/attention/self/key/bias" = dense<0.1> : tensor<128xf32>
util.global private @"__iree_flow_bert/encoder/layer_2/attention/self/key/kernel" {noinline} = dense<0.0001> : tensor<128x128xf32>
util.global private @"__iree_flow_bert/encoder/layer_2/attention/self/query/bias" = dense<0.1> : tensor<128xf32>
util.global private @"__iree_flow_bert/encoder/layer_2/attention/self/query/kernel" {noinline} = dense<0.0001> : tensor<128x128xf32>
util.global private @"__iree_flow_bert/encoder/layer_2/attention/self/value/bias" = dense<0.1> : tensor<128xf32>
util.global private @"__iree_flow_bert/encoder/layer_2/attention/self/value/kernel" {noinline} = dense<0.0001> : tensor<512x128xf32>
util.global private @"__iree_flow_bert/encoder/layer_2/bottleneck/attention/FakeLayerNorm/beta" = dense<1.0> : tensor<128xf32>
util.global private @"__iree_flow_bert/encoder/layer_2/bottleneck/attention/FakeLayerNorm/gamma" = dense<0.4> : tensor<128xf32>
util.global private @"__iree_flow_bert/encoder/layer_2/bottleneck/attention/dense/bias" = dense<0.1> : tensor<128xf32>
util.global private @"__iree_flow_bert/encoder/layer_2/bottleneck/attention/dense/kernel" {noinline} = dense<0.0001> : tensor<512x128xf32>
util.global private @"__iree_flow_bert/encoder/layer_2/bottleneck/input/FakeLayerNorm/beta" = dense<1.0> : tensor<128xf32>
util.global private @"__iree_flow_bert/encoder/layer_2/bottleneck/input/FakeLayerNorm/gamma" = dense<0.4> : tensor<128xf32>
util.global private @"__iree_flow_bert/encoder/layer_2/bottleneck/input/dense/bias" = dense<0.1> : tensor<128xf32>
util.global private @"__iree_flow_bert/encoder/layer_2/bottleneck/input/dense/kernel" {noinline} = dense<0.0001> : tensor<512x128xf32>
util.global private @"__iree_flow_bert/encoder/layer_2/ffn_layer_0/intermediate/dense/bias" = dense<0.1> : tensor<512xf32>
util.global private @"__iree_flow_bert/encoder/layer_2/ffn_layer_0/intermediate/dense/kernel" {noinline} = dense<0.0001> : tensor<128x512xf32>
util.global private @"__iree_flow_bert/encoder/layer_2/ffn_layer_0/output/FakeLayerNorm/beta" = dense<1.0> : tensor<128xf32>
util.global private @"__iree_flow_bert/encoder/layer_2/ffn_layer_0/output/FakeLayerNorm/gamma" = dense<0.4> : tensor<128xf32>
util.global private @"__iree_flow_bert/encoder/layer_2/ffn_layer_0/output/dense/bias" = dense<0.1> : tensor<128xf32>
util.global private @"__iree_flow_bert/encoder/layer_2/ffn_layer_0/output/dense/kernel" {noinline} = dense<0.0001> : tensor<512x128xf32>
util.global private @"__iree_flow_bert/encoder/layer_2/ffn_layer_1/intermediate/dense/bias" = dense<0.1> : tensor<512xf32>
util.global private @"__iree_flow_bert/encoder/layer_2/ffn_layer_1/intermediate/dense/kernel" {noinline} = dense<0.0001> : tensor<128x512xf32>
util.global private @"__iree_flow_bert/encoder/layer_2/ffn_layer_1/output/FakeLayerNorm/beta" = dense<1.0> : tensor<128xf32>
util.global private @"__iree_flow_bert/encoder/layer_2/ffn_layer_1/output/FakeLayerNorm/gamma" = dense<0.4> : tensor<128xf32>
util.global private @"__iree_flow_bert/encoder/layer_2/ffn_layer_1/output/dense/bias" = dense<0.1> : tensor<128xf32>
util.global private @"__iree_flow_bert/encoder/layer_2/ffn_layer_1/output/dense/kernel" {noinline} = dense<0.0001> : tensor<512x128xf32>
util.global private @"__iree_flow_bert/encoder/layer_2/ffn_layer_2/intermediate/dense/bias" = dense<0.1> : tensor<512xf32>
util.global private @"__iree_flow_bert/encoder/layer_2/ffn_layer_2/intermediate/dense/kernel" {noinline} = dense<0.0001> : tensor<128x512xf32>
util.global private @"__iree_flow_bert/encoder/layer_2/ffn_layer_2/output/FakeLayerNorm/beta" = dense<1.0> : tensor<128xf32>
util.global private @"__iree_flow_bert/encoder/layer_2/ffn_layer_2/output/FakeLayerNorm/gamma" = dense<0.4> : tensor<128xf32>
util.global private @"__iree_flow_bert/encoder/layer_2/ffn_layer_2/output/dense/bias" = dense<0.1> : tensor<128xf32>
util.global private @"__iree_flow_bert/encoder/layer_2/ffn_layer_2/output/dense/kernel" {noinline} = dense<0.0001> : tensor<512x128xf32>
util.global private @"__iree_flow_bert/encoder/layer_2/intermediate/dense/bias" = dense<0.1> : tensor<512xf32>
util.global private @"__iree_flow_bert/encoder/layer_2/intermediate/dense/kernel" {noinline} = dense<0.0001> : tensor<128x512xf32>
util.global private @"__iree_flow_bert/encoder/layer_2/output/FakeLayerNorm/beta" = dense<1.0> : tensor<128xf32>
util.global private @"__iree_flow_bert/encoder/layer_2/output/FakeLayerNorm/gamma" = dense<0.4> : tensor<128xf32>
util.global private @"__iree_flow_bert/encoder/layer_2/output/bottleneck/FakeLayerNorm/beta" = dense<1.0> : tensor<512xf32>
util.global private @"__iree_flow_bert/encoder/layer_2/output/bottleneck/FakeLayerNorm/gamma" = dense<0.4> : tensor<512xf32>
util.global private @"__iree_flow_bert/encoder/layer_2/output/bottleneck/dense/bias" = dense<0.1> : tensor<512xf32>
util.global private @"__iree_flow_bert/encoder/layer_2/output/bottleneck/dense/kernel" {noinline} = dense<0.0001> : tensor<128x512xf32>
util.global private @"__iree_flow_bert/encoder/layer_2/output/dense/bias" = dense<0.1> : tensor<128xf32>
util.global private @"__iree_flow_bert/encoder/layer_2/output/dense/kernel" {noinline} = dense<0.0001> : tensor<512x128xf32>
util.global private @"__iree_flow_bert/encoder/layer_20/attention/output/FakeLayerNorm/beta" = dense<1.0> : tensor<128xf32>
util.global private @"__iree_flow_bert/encoder/layer_20/attention/output/FakeLayerNorm/gamma" = dense<0.4> : tensor<128xf32>
util.global private @"__iree_flow_bert/encoder/layer_20/attention/output/dense/bias" = dense<0.1> : tensor<128xf32>
util.global private @"__iree_flow_bert/encoder/layer_20/attention/output/dense/kernel" {noinline} = dense<0.0001> : tensor<128x128xf32>
util.global private @"__iree_flow_bert/encoder/layer_20/attention/self/key/bias" = dense<0.1> : tensor<128xf32>
util.global private @"__iree_flow_bert/encoder/layer_20/attention/self/key/kernel" {noinline} = dense<0.0001> : tensor<128x128xf32>
util.global private @"__iree_flow_bert/encoder/layer_20/attention/self/query/bias" = dense<0.1> : tensor<128xf32>
util.global private @"__iree_flow_bert/encoder/layer_20/attention/self/query/kernel" {noinline} = dense<0.0001> : tensor<128x128xf32>
util.global private @"__iree_flow_bert/encoder/layer_20/attention/self/value/bias" = dense<0.1> : tensor<128xf32>
util.global private @"__iree_flow_bert/encoder/layer_20/attention/self/value/kernel" {noinline} = dense<0.0001> : tensor<512x128xf32>
util.global private @"__iree_flow_bert/encoder/layer_20/bottleneck/attention/FakeLayerNorm/beta" = dense<1.0> : tensor<128xf32>
util.global private @"__iree_flow_bert/encoder/layer_20/bottleneck/attention/FakeLayerNorm/gamma" = dense<0.4> : tensor<128xf32>
util.global private @"__iree_flow_bert/encoder/layer_20/bottleneck/attention/dense/bias" = dense<0.1> : tensor<128xf32>
util.global private @"__iree_flow_bert/encoder/layer_20/bottleneck/attention/dense/kernel" {noinline} = dense<0.0001> : tensor<512x128xf32>
util.global private @"__iree_flow_bert/encoder/layer_20/bottleneck/input/FakeLayerNorm/beta" = dense<1.0> : tensor<128xf32>
util.global private @"__iree_flow_bert/encoder/layer_20/bottleneck/input/FakeLayerNorm/gamma" = dense<0.4> : tensor<128xf32>
util.global private @"__iree_flow_bert/encoder/layer_20/bottleneck/input/dense/bias" = dense<0.1> : tensor<128xf32>
util.global private @"__iree_flow_bert/encoder/layer_20/bottleneck/input/dense/kernel" {noinline} = dense<0.0001> : tensor<512x128xf32>
util.global private @"__iree_flow_bert/encoder/layer_20/ffn_layer_0/intermediate/dense/bias" = dense<0.1> : tensor<512xf32>
util.global private @"__iree_flow_bert/encoder/layer_20/ffn_layer_0/intermediate/dense/kernel" {noinline} = dense<0.0001> : tensor<128x512xf32>
util.global private @"__iree_flow_bert/encoder/layer_20/ffn_layer_0/output/FakeLayerNorm/beta" = dense<1.0> : tensor<128xf32>
util.global private @"__iree_flow_bert/encoder/layer_20/ffn_layer_0/output/FakeLayerNorm/gamma" = dense<0.4> : tensor<128xf32>
util.global private @"__iree_flow_bert/encoder/layer_20/ffn_layer_0/output/dense/bias" = dense<0.1> : tensor<128xf32>
util.global private @"__iree_flow_bert/encoder/layer_20/ffn_layer_0/output/dense/kernel" {noinline} = dense<0.0001> : tensor<512x128xf32>
util.global private @"__iree_flow_bert/encoder/layer_20/ffn_layer_1/intermediate/dense/bias" = dense<0.1> : tensor<512xf32>
util.global private @"__iree_flow_bert/encoder/layer_20/ffn_layer_1/intermediate/dense/kernel" {noinline} = dense<0.0001> : tensor<128x512xf32>
util.global private @"__iree_flow_bert/encoder/layer_20/ffn_layer_1/output/FakeLayerNorm/beta" = dense<1.0> : tensor<128xf32>
util.global private @"__iree_flow_bert/encoder/layer_20/ffn_layer_1/output/FakeLayerNorm/gamma" = dense<0.4> : tensor<128xf32>
util.global private @"__iree_flow_bert/encoder/layer_20/ffn_layer_1/output/dense/bias" = dense<0.1> : tensor<128xf32>
util.global private @"__iree_flow_bert/encoder/layer_20/ffn_layer_1/output/dense/kernel" {noinline} = dense<0.0001> : tensor<512x128xf32>
util.global private @"__iree_flow_bert/encoder/layer_20/ffn_layer_2/intermediate/dense/bias" = dense<0.1> : tensor<512xf32>
util.global private @"__iree_flow_bert/encoder/layer_20/ffn_layer_2/intermediate/dense/kernel" {noinline} = dense<0.0001> : tensor<128x512xf32>
util.global private @"__iree_flow_bert/encoder/layer_20/ffn_layer_2/output/FakeLayerNorm/beta" = dense<1.0> : tensor<128xf32>
util.global private @"__iree_flow_bert/encoder/layer_20/ffn_layer_2/output/FakeLayerNorm/gamma" = dense<0.4> : tensor<128xf32>
util.global private @"__iree_flow_bert/encoder/layer_20/ffn_layer_2/output/dense/bias" = dense<0.1> : tensor<128xf32>
util.global private @"__iree_flow_bert/encoder/layer_20/ffn_layer_2/output/dense/kernel" {noinline} = dense<0.0001> : tensor<512x128xf32>
util.global private @"__iree_flow_bert/encoder/layer_20/intermediate/dense/bias" = dense<0.1> : tensor<512xf32>
util.global private @"__iree_flow_bert/encoder/layer_20/intermediate/dense/kernel" {noinline} = dense<0.0001> : tensor<128x512xf32>
util.global private @"__iree_flow_bert/encoder/layer_20/output/FakeLayerNorm/beta" = dense<1.0> : tensor<128xf32>
util.global private @"__iree_flow_bert/encoder/layer_20/output/FakeLayerNorm/gamma" = dense<0.4> : tensor<128xf32>
util.global private @"__iree_flow_bert/encoder/layer_20/output/bottleneck/FakeLayerNorm/beta" = dense<1.0> : tensor<512xf32>
util.global private @"__iree_flow_bert/encoder/layer_20/output/bottleneck/FakeLayerNorm/gamma" = dense<0.4> : tensor<512xf32>
util.global private @"__iree_flow_bert/encoder/layer_20/output/bottleneck/dense/bias" = dense<0.1> : tensor<512xf32>
util.global private @"__iree_flow_bert/encoder/layer_20/output/bottleneck/dense/kernel" {noinline} = dense<0.0001> : tensor<128x512xf32>
util.global private @"__iree_flow_bert/encoder/layer_20/output/dense/bias" = dense<0.1> : tensor<128xf32>
util.global private @"__iree_flow_bert/encoder/layer_20/output/dense/kernel" {noinline} = dense<0.0001> : tensor<512x128xf32>
util.global private @"__iree_flow_bert/encoder/layer_21/attention/output/FakeLayerNorm/beta" = dense<1.0> : tensor<128xf32>
util.global private @"__iree_flow_bert/encoder/layer_21/attention/output/FakeLayerNorm/gamma" = dense<0.4> : tensor<128xf32>
util.global private @"__iree_flow_bert/encoder/layer_21/attention/output/dense/bias" = dense<0.1> : tensor<128xf32>
util.global private @"__iree_flow_bert/encoder/layer_21/attention/output/dense/kernel" {noinline} = dense<0.0001> : tensor<128x128xf32>
util.global private @"__iree_flow_bert/encoder/layer_21/attention/self/key/bias" = dense<0.1> : tensor<128xf32>
util.global private @"__iree_flow_bert/encoder/layer_21/attention/self/key/kernel" {noinline} = dense<0.0001> : tensor<128x128xf32>
util.global private @"__iree_flow_bert/encoder/layer_21/attention/self/query/bias" = dense<0.1> : tensor<128xf32>
util.global private @"__iree_flow_bert/encoder/layer_21/attention/self/query/kernel" {noinline} = dense<0.0001> : tensor<128x128xf32>
util.global private @"__iree_flow_bert/encoder/layer_21/attention/self/value/bias" = dense<0.1> : tensor<128xf32>
util.global private @"__iree_flow_bert/encoder/layer_21/attention/self/value/kernel" {noinline} = dense<0.0001> : tensor<512x128xf32>
util.global private @"__iree_flow_bert/encoder/layer_21/bottleneck/attention/FakeLayerNorm/beta" = dense<1.0> : tensor<128xf32>
util.global private @"__iree_flow_bert/encoder/layer_21/bottleneck/attention/FakeLayerNorm/gamma" = dense<0.4> : tensor<128xf32>
util.global private @"__iree_flow_bert/encoder/layer_21/bottleneck/attention/dense/bias" = dense<0.1> : tensor<128xf32>
util.global private @"__iree_flow_bert/encoder/layer_21/bottleneck/attention/dense/kernel" {noinline} = dense<0.0001> : tensor<512x128xf32>
util.global private @"__iree_flow_bert/encoder/layer_21/bottleneck/input/FakeLayerNorm/beta" = dense<1.0> : tensor<128xf32>
util.global private @"__iree_flow_bert/encoder/layer_21/bottleneck/input/FakeLayerNorm/gamma" = dense<0.4> : tensor<128xf32>
util.global private @"__iree_flow_bert/encoder/layer_21/bottleneck/input/dense/bias" = dense<0.1> : tensor<128xf32>
util.global private @"__iree_flow_bert/encoder/layer_21/bottleneck/input/dense/kernel" {noinline} = dense<0.0001> : tensor<512x128xf32>
util.global private @"__iree_flow_bert/encoder/layer_21/ffn_layer_0/intermediate/dense/bias" = dense<0.1> : tensor<512xf32>
util.global private @"__iree_flow_bert/encoder/layer_21/ffn_layer_0/intermediate/dense/kernel" {noinline} = dense<0.0001> : tensor<128x512xf32>
util.global private @"__iree_flow_bert/encoder/layer_21/ffn_layer_0/output/FakeLayerNorm/beta" = dense<1.0> : tensor<128xf32>
util.global private @"__iree_flow_bert/encoder/layer_21/ffn_layer_0/output/FakeLayerNorm/gamma" = dense<0.4> : tensor<128xf32>
util.global private @"__iree_flow_bert/encoder/layer_21/ffn_layer_0/output/dense/bias" = dense<0.1> : tensor<128xf32>
util.global private @"__iree_flow_bert/encoder/layer_21/ffn_layer_0/output/dense/kernel" {noinline} = dense<0.0001> : tensor<512x128xf32>
util.global private @"__iree_flow_bert/encoder/layer_21/ffn_layer_1/intermediate/dense/bias" = dense<0.1> : tensor<512xf32>
util.global private @"__iree_flow_bert/encoder/layer_21/ffn_layer_1/intermediate/dense/kernel" {noinline} = dense<0.0001> : tensor<128x512xf32>
util.global private @"__iree_flow_bert/encoder/layer_21/ffn_layer_1/output/FakeLayerNorm/beta" = dense<1.0> : tensor<128xf32>
util.global private @"__iree_flow_bert/encoder/layer_21/ffn_layer_1/output/FakeLayerNorm/gamma" = dense<0.4> : tensor<128xf32>
util.global private @"__iree_flow_bert/encoder/layer_21/ffn_layer_1/output/dense/bias" = dense<0.1> : tensor<128xf32>
util.global private @"__iree_flow_bert/encoder/layer_21/ffn_layer_1/output/dense/kernel" {noinline} = dense<0.0001> : tensor<512x128xf32>
util.global private @"__iree_flow_bert/encoder/layer_21/ffn_layer_2/intermediate/dense/bias" = dense<0.1> : tensor<512xf32>
util.global private @"__iree_flow_bert/encoder/layer_21/ffn_layer_2/intermediate/dense/kernel" {noinline} = dense<0.0001> : tensor<128x512xf32>
util.global private @"__iree_flow_bert/encoder/layer_21/ffn_layer_2/output/FakeLayerNorm/beta" = dense<1.0> : tensor<128xf32>
util.global private @"__iree_flow_bert/encoder/layer_21/ffn_layer_2/output/FakeLayerNorm/gamma" = dense<0.4> : tensor<128xf32>
util.global private @"__iree_flow_bert/encoder/layer_21/ffn_layer_2/output/dense/bias" = dense<0.1> : tensor<128xf32>
util.global private @"__iree_flow_bert/encoder/layer_21/ffn_layer_2/output/dense/kernel" {noinline} = dense<0.0001> : tensor<512x128xf32>
util.global private @"__iree_flow_bert/encoder/layer_21/intermediate/dense/bias" = dense<0.1> : tensor<512xf32>
util.global private @"__iree_flow_bert/encoder/layer_21/intermediate/dense/kernel" {noinline} = dense<0.0001> : tensor<128x512xf32>
util.global private @"__iree_flow_bert/encoder/layer_21/output/FakeLayerNorm/beta" = dense<1.0> : tensor<128xf32>
util.global private @"__iree_flow_bert/encoder/layer_21/output/FakeLayerNorm/gamma" = dense<0.4> : tensor<128xf32>
util.global private @"__iree_flow_bert/encoder/layer_21/output/bottleneck/FakeLayerNorm/beta" = dense<1.0> : tensor<512xf32>
util.global private @"__iree_flow_bert/encoder/layer_21/output/bottleneck/FakeLayerNorm/gamma" = dense<0.4> : tensor<512xf32>
util.global private @"__iree_flow_bert/encoder/layer_21/output/bottleneck/dense/bias" = dense<0.1> : tensor<512xf32>
util.global private @"__iree_flow_bert/encoder/layer_21/output/bottleneck/dense/kernel" {noinline} = dense<0.0001> : tensor<128x512xf32>
util.global private @"__iree_flow_bert/encoder/layer_21/output/dense/bias" = dense<0.1> : tensor<128xf32>
util.global private @"__iree_flow_bert/encoder/layer_21/output/dense/kernel" {noinline} = dense<0.0001> : tensor<512x128xf32>
util.global private @"__iree_flow_bert/encoder/layer_22/attention/output/FakeLayerNorm/beta" = dense<1.0> : tensor<128xf32>
util.global private @"__iree_flow_bert/encoder/layer_22/attention/output/FakeLayerNorm/gamma" = dense<0.4> : tensor<128xf32>
util.global private @"__iree_flow_bert/encoder/layer_22/attention/output/dense/bias" = dense<0.1> : tensor<128xf32>
util.global private @"__iree_flow_bert/encoder/layer_22/attention/output/dense/kernel" {noinline} = dense<0.0001> : tensor<128x128xf32>
util.global private @"__iree_flow_bert/encoder/layer_22/attention/self/key/bias" = dense<0.1> : tensor<128xf32>
util.global private @"__iree_flow_bert/encoder/layer_22/attention/self/key/kernel" {noinline} = dense<0.0001> : tensor<128x128xf32>
util.global private @"__iree_flow_bert/encoder/layer_22/attention/self/query/bias" = dense<0.1> : tensor<128xf32>
util.global private @"__iree_flow_bert/encoder/layer_22/attention/self/query/kernel" {noinline} = dense<0.0001> : tensor<128x128xf32>
util.global private @"__iree_flow_bert/encoder/layer_22/attention/self/value/bias" = dense<0.1> : tensor<128xf32>
util.global private @"__iree_flow_bert/encoder/layer_22/attention/self/value/kernel" {noinline} = dense<0.0001> : tensor<512x128xf32>
util.global private @"__iree_flow_bert/encoder/layer_22/bottleneck/attention/FakeLayerNorm/beta" = dense<1.0> : tensor<128xf32>
util.global private @"__iree_flow_bert/encoder/layer_22/bottleneck/attention/FakeLayerNorm/gamma" = dense<0.4> : tensor<128xf32>
util.global private @"__iree_flow_bert/encoder/layer_22/bottleneck/attention/dense/bias" = dense<0.1> : tensor<128xf32>
util.global private @"__iree_flow_bert/encoder/layer_22/bottleneck/attention/dense/kernel" {noinline} = dense<0.0001> : tensor<512x128xf32>
util.global private @"__iree_flow_bert/encoder/layer_22/bottleneck/input/FakeLayerNorm/beta" = dense<1.0> : tensor<128xf32>
util.global private @"__iree_flow_bert/encoder/layer_22/bottleneck/input/FakeLayerNorm/gamma" = dense<0.4> : tensor<128xf32>
util.global private @"__iree_flow_bert/encoder/layer_22/bottleneck/input/dense/bias" = dense<0.1> : tensor<128xf32>
util.global private @"__iree_flow_bert/encoder/layer_22/bottleneck/input/dense/kernel" {noinline} = dense<0.0001> : tensor<512x128xf32>
util.global private @"__iree_flow_bert/encoder/layer_22/ffn_layer_0/intermediate/dense/bias" = dense<0.1> : tensor<512xf32>
util.global private @"__iree_flow_bert/encoder/layer_22/ffn_layer_0/intermediate/dense/kernel" {noinline} = dense<0.0001> : tensor<128x512xf32>
util.global private @"__iree_flow_bert/encoder/layer_22/ffn_layer_0/output/FakeLayerNorm/beta" = dense<1.0> : tensor<128xf32>
util.global private @"__iree_flow_bert/encoder/layer_22/ffn_layer_0/output/FakeLayerNorm/gamma" = dense<0.4> : tensor<128xf32>
util.global private @"__iree_flow_bert/encoder/layer_22/ffn_layer_0/output/dense/bias" = dense<0.1> : tensor<128xf32>
util.global private @"__iree_flow_bert/encoder/layer_22/ffn_layer_0/output/dense/kernel" {noinline} = dense<0.0001> : tensor<512x128xf32>
util.global private @"__iree_flow_bert/encoder/layer_22/ffn_layer_1/intermediate/dense/bias" = dense<0.1> : tensor<512xf32>
util.global private @"__iree_flow_bert/encoder/layer_22/ffn_layer_1/intermediate/dense/kernel" {noinline} = dense<0.0001> : tensor<128x512xf32>
util.global private @"__iree_flow_bert/encoder/layer_22/ffn_layer_1/output/FakeLayerNorm/beta" = dense<1.0> : tensor<128xf32>
util.global private @"__iree_flow_bert/encoder/layer_22/ffn_layer_1/output/FakeLayerNorm/gamma" = dense<0.4> : tensor<128xf32>
util.global private @"__iree_flow_bert/encoder/layer_22/ffn_layer_1/output/dense/bias" = dense<0.1> : tensor<128xf32>
util.global private @"__iree_flow_bert/encoder/layer_22/ffn_layer_1/output/dense/kernel" {noinline} = dense<0.0001> : tensor<512x128xf32>
util.global private @"__iree_flow_bert/encoder/layer_22/ffn_layer_2/intermediate/dense/bias" = dense<0.1> : tensor<512xf32>
util.global private @"__iree_flow_bert/encoder/layer_22/ffn_layer_2/intermediate/dense/kernel" {noinline} = dense<0.0001> : tensor<128x512xf32>
util.global private @"__iree_flow_bert/encoder/layer_22/ffn_layer_2/output/FakeLayerNorm/beta" = dense<1.0> : tensor<128xf32>
util.global private @"__iree_flow_bert/encoder/layer_22/ffn_layer_2/output/FakeLayerNorm/gamma" = dense<0.4> : tensor<128xf32>
util.global private @"__iree_flow_bert/encoder/layer_22/ffn_layer_2/output/dense/bias" = dense<0.1> : tensor<128xf32>
util.global private @"__iree_flow_bert/encoder/layer_22/ffn_layer_2/output/dense/kernel" {noinline} = dense<0.0001> : tensor<512x128xf32>
util.global private @"__iree_flow_bert/encoder/layer_22/intermediate/dense/bias" = dense<0.1> : tensor<512xf32>
util.global private @"__iree_flow_bert/encoder/layer_22/intermediate/dense/kernel" {noinline} = dense<0.0001> : tensor<128x512xf32>
util.global private @"__iree_flow_bert/encoder/layer_22/output/FakeLayerNorm/beta" = dense<1.0> : tensor<128xf32>
util.global private @"__iree_flow_bert/encoder/layer_22/output/FakeLayerNorm/gamma" = dense<0.4> : tensor<128xf32>
util.global private @"__iree_flow_bert/encoder/layer_22/output/bottleneck/FakeLayerNorm/beta" = dense<1.0> : tensor<512xf32>
util.global private @"__iree_flow_bert/encoder/layer_22/output/bottleneck/FakeLayerNorm/gamma" = dense<0.4> : tensor<512xf32>
util.global private @"__iree_flow_bert/encoder/layer_22/output/bottleneck/dense/bias" = dense<0.1> : tensor<512xf32>
util.global private @"__iree_flow_bert/encoder/layer_22/output/bottleneck/dense/kernel" {noinline} = dense<0.0001> : tensor<128x512xf32>
util.global private @"__iree_flow_bert/encoder/layer_22/output/dense/bias" = dense<0.1> : tensor<128xf32>
util.global private @"__iree_flow_bert/encoder/layer_22/output/dense/kernel" {noinline} = dense<0.0001> : tensor<512x128xf32>
util.global private @"__iree_flow_bert/encoder/layer_23/attention/output/FakeLayerNorm/beta" = dense<1.0> : tensor<128xf32>
util.global private @"__iree_flow_bert/encoder/layer_23/attention/output/FakeLayerNorm/gamma" = dense<0.4> : tensor<128xf32>
util.global private @"__iree_flow_bert/encoder/layer_23/attention/output/dense/bias" = dense<0.1> : tensor<128xf32>
util.global private @"__iree_flow_bert/encoder/layer_23/attention/output/dense/kernel" {noinline} = dense<0.0001> : tensor<128x128xf32>
util.global private @"__iree_flow_bert/encoder/layer_23/attention/self/key/bias" = dense<0.1> : tensor<128xf32>
util.global private @"__iree_flow_bert/encoder/layer_23/attention/self/key/kernel" {noinline} = dense<0.0001> : tensor<128x128xf32>
util.global private @"__iree_flow_bert/encoder/layer_23/attention/self/query/bias" = dense<0.1> : tensor<128xf32>
util.global private @"__iree_flow_bert/encoder/layer_23/attention/self/query/kernel" {noinline} = dense<0.0001> : tensor<128x128xf32>
util.global private @"__iree_flow_bert/encoder/layer_23/attention/self/value/bias" = dense<0.1> : tensor<128xf32>
util.global private @"__iree_flow_bert/encoder/layer_23/attention/self/value/kernel" {noinline} = dense<0.0001> : tensor<512x128xf32>
util.global private @"__iree_flow_bert/encoder/layer_23/bottleneck/attention/FakeLayerNorm/beta" = dense<1.0> : tensor<128xf32>
util.global private @"__iree_flow_bert/encoder/layer_23/bottleneck/attention/FakeLayerNorm/gamma" = dense<0.4> : tensor<128xf32>
util.global private @"__iree_flow_bert/encoder/layer_23/bottleneck/attention/dense/bias" = dense<0.1> : tensor<128xf32>
util.global private @"__iree_flow_bert/encoder/layer_23/bottleneck/attention/dense/kernel" {noinline} = dense<0.0001> : tensor<512x128xf32>
util.global private @"__iree_flow_bert/encoder/layer_23/bottleneck/input/FakeLayerNorm/beta" = dense<1.0> : tensor<128xf32>
util.global private @"__iree_flow_bert/encoder/layer_23/bottleneck/input/FakeLayerNorm/gamma" = dense<0.4> : tensor<128xf32>
util.global private @"__iree_flow_bert/encoder/layer_23/bottleneck/input/dense/bias" = dense<0.1> : tensor<128xf32>
util.global private @"__iree_flow_bert/encoder/layer_23/bottleneck/input/dense/kernel" {noinline} = dense<0.0001> : tensor<512x128xf32>
util.global private @"__iree_flow_bert/encoder/layer_23/ffn_layer_0/intermediate/dense/bias" = dense<0.1> : tensor<512xf32>
util.global private @"__iree_flow_bert/encoder/layer_23/ffn_layer_0/intermediate/dense/kernel" {noinline} = dense<0.0001> : tensor<128x512xf32>
util.global private @"__iree_flow_bert/encoder/layer_23/ffn_layer_0/output/FakeLayerNorm/beta" = dense<1.0> : tensor<128xf32>
util.global private @"__iree_flow_bert/encoder/layer_23/ffn_layer_0/output/FakeLayerNorm/gamma" = dense<0.4> : tensor<128xf32>
util.global private @"__iree_flow_bert/encoder/layer_23/ffn_layer_0/output/dense/bias" = dense<0.1> : tensor<128xf32>
util.global private @"__iree_flow_bert/encoder/layer_23/ffn_layer_0/output/dense/kernel" {noinline} = dense<0.0001> : tensor<512x128xf32>
util.global private @"__iree_flow_bert/encoder/layer_23/ffn_layer_1/intermediate/dense/bias" = dense<0.1> : tensor<512xf32>
util.global private @"__iree_flow_bert/encoder/layer_23/ffn_layer_1/intermediate/dense/kernel" {noinline} = dense<0.0001> : tensor<128x512xf32>
util.global private @"__iree_flow_bert/encoder/layer_23/ffn_layer_1/output/FakeLayerNorm/beta" = dense<1.0> : tensor<128xf32>
util.global private @"__iree_flow_bert/encoder/layer_23/ffn_layer_1/output/FakeLayerNorm/gamma" = dense<0.4> : tensor<128xf32>
util.global private @"__iree_flow_bert/encoder/layer_23/ffn_layer_1/output/dense/bias" = dense<0.1> : tensor<128xf32>
util.global private @"__iree_flow_bert/encoder/layer_23/ffn_layer_1/output/dense/kernel" {noinline} = dense<0.0001> : tensor<512x128xf32>
util.global private @"__iree_flow_bert/encoder/layer_23/ffn_layer_2/intermediate/dense/bias" = dense<0.1> : tensor<512xf32>
util.global private @"__iree_flow_bert/encoder/layer_23/ffn_layer_2/intermediate/dense/kernel" {noinline} = dense<0.0001> : tensor<128x512xf32>
util.global private @"__iree_flow_bert/encoder/layer_23/ffn_layer_2/output/FakeLayerNorm/beta" = dense<1.0> : tensor<128xf32>
util.global private @"__iree_flow_bert/encoder/layer_23/ffn_layer_2/output/FakeLayerNorm/gamma" = dense<0.4> : tensor<128xf32>
util.global private @"__iree_flow_bert/encoder/layer_23/ffn_layer_2/output/dense/bias" = dense<0.1> : tensor<128xf32>
util.global private @"__iree_flow_bert/encoder/layer_23/ffn_layer_2/output/dense/kernel" {noinline} = dense<0.0001> : tensor<512x128xf32>
util.global private @"__iree_flow_bert/encoder/layer_23/intermediate/dense/bias" = dense<0.1> : tensor<512xf32>
util.global private @"__iree_flow_bert/encoder/layer_23/intermediate/dense/kernel" {noinline} = dense<0.0001> : tensor<128x512xf32>
util.global private @"__iree_flow_bert/encoder/layer_23/output/FakeLayerNorm/beta" = dense<1.0> : tensor<128xf32>
util.global private @"__iree_flow_bert/encoder/layer_23/output/FakeLayerNorm/gamma" = dense<0.4> : tensor<128xf32>
util.global private @"__iree_flow_bert/encoder/layer_23/output/bottleneck/FakeLayerNorm/beta" = dense<1.0> : tensor<512xf32>
util.global private @"__iree_flow_bert/encoder/layer_23/output/bottleneck/FakeLayerNorm/gamma" = dense<0.4> : tensor<512xf32>
util.global private @"__iree_flow_bert/encoder/layer_23/output/bottleneck/dense/bias" = dense<0.1> : tensor<512xf32>
util.global private @"__iree_flow_bert/encoder/layer_23/output/bottleneck/dense/kernel" {noinline} = dense<0.0001> : tensor<128x512xf32>
util.global private @"__iree_flow_bert/encoder/layer_23/output/dense/bias" = dense<0.1> : tensor<128xf32>
util.global private @"__iree_flow_bert/encoder/layer_23/output/dense/kernel" {noinline} = dense<0.0001> : tensor<512x128xf32>
util.global private @"__iree_flow_bert/encoder/layer_3/attention/output/FakeLayerNorm/beta" = dense<1.0> : tensor<128xf32>
util.global private @"__iree_flow_bert/encoder/layer_3/attention/output/FakeLayerNorm/gamma" = dense<0.4> : tensor<128xf32>
util.global private @"__iree_flow_bert/encoder/layer_3/attention/output/dense/bias" = dense<0.1> : tensor<128xf32>
util.global private @"__iree_flow_bert/encoder/layer_3/attention/output/dense/kernel" {noinline} = dense<0.0001> : tensor<128x128xf32>
util.global private @"__iree_flow_bert/encoder/layer_3/attention/self/key/bias" = dense<0.1> : tensor<128xf32>
util.global private @"__iree_flow_bert/encoder/layer_3/attention/self/key/kernel" {noinline} = dense<0.0001> : tensor<128x128xf32>
util.global private @"__iree_flow_bert/encoder/layer_3/attention/self/query/bias" = dense<0.1> : tensor<128xf32>
util.global private @"__iree_flow_bert/encoder/layer_3/attention/self/query/kernel" {noinline} = dense<0.0001> : tensor<128x128xf32>
util.global private @"__iree_flow_bert/encoder/layer_3/attention/self/value/bias" = dense<0.1> : tensor<128xf32>
util.global private @"__iree_flow_bert/encoder/layer_3/attention/self/value/kernel" {noinline} = dense<0.0001> : tensor<512x128xf32>
util.global private @"__iree_flow_bert/encoder/layer_3/bottleneck/attention/FakeLayerNorm/beta" = dense<1.0> : tensor<128xf32>
util.global private @"__iree_flow_bert/encoder/layer_3/bottleneck/attention/FakeLayerNorm/gamma" = dense<0.4> : tensor<128xf32>
util.global private @"__iree_flow_bert/encoder/layer_3/bottleneck/attention/dense/bias" = dense<0.1> : tensor<128xf32>
util.global private @"__iree_flow_bert/encoder/layer_3/bottleneck/attention/dense/kernel" {noinline} = dense<0.0001> : tensor<512x128xf32>
util.global private @"__iree_flow_bert/encoder/layer_3/bottleneck/input/FakeLayerNorm/beta" = dense<1.0> : tensor<128xf32>
util.global private @"__iree_flow_bert/encoder/layer_3/bottleneck/input/FakeLayerNorm/gamma" = dense<0.4> : tensor<128xf32>
util.global private @"__iree_flow_bert/encoder/layer_3/bottleneck/input/dense/bias" = dense<0.1> : tensor<128xf32>
util.global private @"__iree_flow_bert/encoder/layer_3/bottleneck/input/dense/kernel" {noinline} = dense<0.0001> : tensor<512x128xf32>
util.global private @"__iree_flow_bert/encoder/layer_3/ffn_layer_0/intermediate/dense/bias" = dense<0.1> : tensor<512xf32>
util.global private @"__iree_flow_bert/encoder/layer_3/ffn_layer_0/intermediate/dense/kernel" {noinline} = dense<0.0001> : tensor<128x512xf32>
util.global private @"__iree_flow_bert/encoder/layer_3/ffn_layer_0/output/FakeLayerNorm/beta" = dense<1.0> : tensor<128xf32>
util.global private @"__iree_flow_bert/encoder/layer_3/ffn_layer_0/output/FakeLayerNorm/gamma" = dense<0.4> : tensor<128xf32>
util.global private @"__iree_flow_bert/encoder/layer_3/ffn_layer_0/output/dense/bias" = dense<0.1> : tensor<128xf32>
util.global private @"__iree_flow_bert/encoder/layer_3/ffn_layer_0/output/dense/kernel" {noinline} = dense<0.0001> : tensor<512x128xf32>
util.global private @"__iree_flow_bert/encoder/layer_3/ffn_layer_1/intermediate/dense/bias" = dense<0.1> : tensor<512xf32>
util.global private @"__iree_flow_bert/encoder/layer_3/ffn_layer_1/intermediate/dense/kernel" {noinline} = dense<0.0001> : tensor<128x512xf32>
util.global private @"__iree_flow_bert/encoder/layer_3/ffn_layer_1/output/FakeLayerNorm/beta" = dense<1.0> : tensor<128xf32>
util.global private @"__iree_flow_bert/encoder/layer_3/ffn_layer_1/output/FakeLayerNorm/gamma" = dense<0.4> : tensor<128xf32>
util.global private @"__iree_flow_bert/encoder/layer_3/ffn_layer_1/output/dense/bias" = dense<0.1> : tensor<128xf32>
util.global private @"__iree_flow_bert/encoder/layer_3/ffn_layer_1/output/dense/kernel" {noinline} = dense<0.0001> : tensor<512x128xf32>
util.global private @"__iree_flow_bert/encoder/layer_3/ffn_layer_2/intermediate/dense/bias" = dense<0.1> : tensor<512xf32>
util.global private @"__iree_flow_bert/encoder/layer_3/ffn_layer_2/intermediate/dense/kernel" {noinline} = dense<0.0001> : tensor<128x512xf32>
util.global private @"__iree_flow_bert/encoder/layer_3/ffn_layer_2/output/FakeLayerNorm/beta" = dense<1.0> : tensor<128xf32>
util.global private @"__iree_flow_bert/encoder/layer_3/ffn_layer_2/output/FakeLayerNorm/gamma" = dense<0.4> : tensor<128xf32>
util.global private @"__iree_flow_bert/encoder/layer_3/ffn_layer_2/output/dense/bias" = dense<0.1> : tensor<128xf32>
util.global private @"__iree_flow_bert/encoder/layer_3/ffn_layer_2/output/dense/kernel" {noinline} = dense<0.0001> : tensor<512x128xf32>
util.global private @"__iree_flow_bert/encoder/layer_3/intermediate/dense/bias" = dense<0.1> : tensor<512xf32>
util.global private @"__iree_flow_bert/encoder/layer_3/intermediate/dense/kernel" {noinline} = dense<0.0001> : tensor<128x512xf32>
util.global private @"__iree_flow_bert/encoder/layer_3/output/FakeLayerNorm/beta" = dense<1.0> : tensor<128xf32>
util.global private @"__iree_flow_bert/encoder/layer_3/output/FakeLayerNorm/gamma" = dense<0.4> : tensor<128xf32>
util.global private @"__iree_flow_bert/encoder/layer_3/output/bottleneck/FakeLayerNorm/beta" = dense<1.0> : tensor<512xf32>
util.global private @"__iree_flow_bert/encoder/layer_3/output/bottleneck/FakeLayerNorm/gamma" = dense<0.4> : tensor<512xf32>
util.global private @"__iree_flow_bert/encoder/layer_3/output/bottleneck/dense/bias" = dense<0.1> : tensor<512xf32>
util.global private @"__iree_flow_bert/encoder/layer_3/output/bottleneck/dense/kernel" {noinline} = dense<0.0001> : tensor<128x512xf32>
util.global private @"__iree_flow_bert/encoder/layer_3/output/dense/bias" = dense<0.1> : tensor<128xf32>
util.global private @"__iree_flow_bert/encoder/layer_3/output/dense/kernel" {noinline} = dense<0.0001> : tensor<512x128xf32>
util.global private @"__iree_flow_bert/encoder/layer_4/attention/output/FakeLayerNorm/beta" = dense<1.0> : tensor<128xf32>
util.global private @"__iree_flow_bert/encoder/layer_4/attention/output/FakeLayerNorm/gamma" = dense<0.4> : tensor<128xf32>
util.global private @"__iree_flow_bert/encoder/layer_4/attention/output/dense/bias" = dense<0.1> : tensor<128xf32>
util.global private @"__iree_flow_bert/encoder/layer_4/attention/output/dense/kernel" {noinline} = dense<0.0001> : tensor<128x128xf32>
util.global private @"__iree_flow_bert/encoder/layer_4/attention/self/key/bias" = dense<0.1> : tensor<128xf32>
util.global private @"__iree_flow_bert/encoder/layer_4/attention/self/key/kernel" {noinline} = dense<0.0001> : tensor<128x128xf32>
util.global private @"__iree_flow_bert/encoder/layer_4/attention/self/query/bias" = dense<0.1> : tensor<128xf32>
util.global private @"__iree_flow_bert/encoder/layer_4/attention/self/query/kernel" {noinline} = dense<0.0001> : tensor<128x128xf32>
util.global private @"__iree_flow_bert/encoder/layer_4/attention/self/value/bias" = dense<0.1> : tensor<128xf32>
util.global private @"__iree_flow_bert/encoder/layer_4/attention/self/value/kernel" {noinline} = dense<0.0001> : tensor<512x128xf32>
util.global private @"__iree_flow_bert/encoder/layer_4/bottleneck/attention/FakeLayerNorm/beta" = dense<1.0> : tensor<128xf32>
util.global private @"__iree_flow_bert/encoder/layer_4/bottleneck/attention/FakeLayerNorm/gamma" = dense<0.4> : tensor<128xf32>
util.global private @"__iree_flow_bert/encoder/layer_4/bottleneck/attention/dense/bias" = dense<0.1> : tensor<128xf32>
util.global private @"__iree_flow_bert/encoder/layer_4/bottleneck/attention/dense/kernel" {noinline} = dense<0.0001> : tensor<512x128xf32>
util.global private @"__iree_flow_bert/encoder/layer_4/bottleneck/input/FakeLayerNorm/beta" = dense<1.0> : tensor<128xf32>
util.global private @"__iree_flow_bert/encoder/layer_4/bottleneck/input/FakeLayerNorm/gamma" = dense<0.4> : tensor<128xf32>
util.global private @"__iree_flow_bert/encoder/layer_4/bottleneck/input/dense/bias" = dense<0.1> : tensor<128xf32>
util.global private @"__iree_flow_bert/encoder/layer_4/bottleneck/input/dense/kernel" {noinline} = dense<0.0001> : tensor<512x128xf32>
util.global private @"__iree_flow_bert/encoder/layer_4/ffn_layer_0/intermediate/dense/bias" = dense<0.1> : tensor<512xf32>
util.global private @"__iree_flow_bert/encoder/layer_4/ffn_layer_0/intermediate/dense/kernel" {noinline} = dense<0.0001> : tensor<128x512xf32>
util.global private @"__iree_flow_bert/encoder/layer_4/ffn_layer_0/output/FakeLayerNorm/beta" = dense<1.0> : tensor<128xf32>
util.global private @"__iree_flow_bert/encoder/layer_4/ffn_layer_0/output/FakeLayerNorm/gamma" = dense<0.4> : tensor<128xf32>
util.global private @"__iree_flow_bert/encoder/layer_4/ffn_layer_0/output/dense/bias" = dense<0.1> : tensor<128xf32>
util.global private @"__iree_flow_bert/encoder/layer_4/ffn_layer_0/output/dense/kernel" {noinline} = dense<0.0001> : tensor<512x128xf32>
util.global private @"__iree_flow_bert/encoder/layer_4/ffn_layer_1/intermediate/dense/bias" = dense<0.1> : tensor<512xf32>
util.global private @"__iree_flow_bert/encoder/layer_4/ffn_layer_1/intermediate/dense/kernel" {noinline} = dense<0.0001> : tensor<128x512xf32>
util.global private @"__iree_flow_bert/encoder/layer_4/ffn_layer_1/output/FakeLayerNorm/beta" = dense<1.0> : tensor<128xf32>
util.global private @"__iree_flow_bert/encoder/layer_4/ffn_layer_1/output/FakeLayerNorm/gamma" = dense<0.4> : tensor<128xf32>
util.global private @"__iree_flow_bert/encoder/layer_4/ffn_layer_1/output/dense/bias" = dense<0.1> : tensor<128xf32>
util.global private @"__iree_flow_bert/encoder/layer_4/ffn_layer_1/output/dense/kernel" {noinline} = dense<0.0001> : tensor<512x128xf32>
util.global private @"__iree_flow_bert/encoder/layer_4/ffn_layer_2/intermediate/dense/bias" = dense<0.1> : tensor<512xf32>
util.global private @"__iree_flow_bert/encoder/layer_4/ffn_layer_2/intermediate/dense/kernel" {noinline} = dense<0.0001> : tensor<128x512xf32>
util.global private @"__iree_flow_bert/encoder/layer_4/ffn_layer_2/output/FakeLayerNorm/beta" = dense<1.0> : tensor<128xf32>
util.global private @"__iree_flow_bert/encoder/layer_4/ffn_layer_2/output/FakeLayerNorm/gamma" = dense<0.4> : tensor<128xf32>
util.global private @"__iree_flow_bert/encoder/layer_4/ffn_layer_2/output/dense/bias" = dense<0.1> : tensor<128xf32>
util.global private @"__iree_flow_bert/encoder/layer_4/ffn_layer_2/output/dense/kernel" {noinline} = dense<0.0001> : tensor<512x128xf32>
util.global private @"__iree_flow_bert/encoder/layer_4/intermediate/dense/bias" = dense<0.1> : tensor<512xf32>
util.global private @"__iree_flow_bert/encoder/layer_4/intermediate/dense/kernel" {noinline} = dense<0.0001> : tensor<128x512xf32>
util.global private @"__iree_flow_bert/encoder/layer_4/output/FakeLayerNorm/beta" = dense<1.0> : tensor<128xf32>
util.global private @"__iree_flow_bert/encoder/layer_4/output/FakeLayerNorm/gamma" = dense<0.4> : tensor<128xf32>
util.global private @"__iree_flow_bert/encoder/layer_4/output/bottleneck/FakeLayerNorm/beta" = dense<1.0> : tensor<512xf32>
util.global private @"__iree_flow_bert/encoder/layer_4/output/bottleneck/FakeLayerNorm/gamma" = dense<0.4> : tensor<512xf32>
util.global private @"__iree_flow_bert/encoder/layer_4/output/bottleneck/dense/bias" = dense<0.1> : tensor<512xf32>
util.global private @"__iree_flow_bert/encoder/layer_4/output/bottleneck/dense/kernel" {noinline} = dense<0.0001> : tensor<128x512xf32>
util.global private @"__iree_flow_bert/encoder/layer_4/output/dense/bias" = dense<0.1> : tensor<128xf32>
util.global private @"__iree_flow_bert/encoder/layer_4/output/dense/kernel" {noinline} = dense<0.0001> : tensor<512x128xf32>
util.global private @"__iree_flow_bert/encoder/layer_5/attention/output/FakeLayerNorm/beta" = dense<1.0> : tensor<128xf32>
util.global private @"__iree_flow_bert/encoder/layer_5/attention/output/FakeLayerNorm/gamma" = dense<0.4> : tensor<128xf32>
util.global private @"__iree_flow_bert/encoder/layer_5/attention/output/dense/bias" = dense<0.1> : tensor<128xf32>
util.global private @"__iree_flow_bert/encoder/layer_5/attention/output/dense/kernel" {noinline} = dense<0.0001> : tensor<128x128xf32>
util.global private @"__iree_flow_bert/encoder/layer_5/attention/self/key/bias" = dense<0.1> : tensor<128xf32>
util.global private @"__iree_flow_bert/encoder/layer_5/attention/self/key/kernel" {noinline} = dense<0.0001> : tensor<128x128xf32>
util.global private @"__iree_flow_bert/encoder/layer_5/attention/self/query/bias" = dense<0.1> : tensor<128xf32>
util.global private @"__iree_flow_bert/encoder/layer_5/attention/self/query/kernel" {noinline} = dense<0.0001> : tensor<128x128xf32>
util.global private @"__iree_flow_bert/encoder/layer_5/attention/self/value/bias" = dense<0.1> : tensor<128xf32>
util.global private @"__iree_flow_bert/encoder/layer_5/attention/self/value/kernel" {noinline} = dense<0.0001> : tensor<512x128xf32>
util.global private @"__iree_flow_bert/encoder/layer_5/bottleneck/attention/FakeLayerNorm/beta" = dense<1.0> : tensor<128xf32>
util.global private @"__iree_flow_bert/encoder/layer_5/bottleneck/attention/FakeLayerNorm/gamma" = dense<0.4> : tensor<128xf32>
util.global private @"__iree_flow_bert/encoder/layer_5/bottleneck/attention/dense/bias" = dense<0.1> : tensor<128xf32>
util.global private @"__iree_flow_bert/encoder/layer_5/bottleneck/attention/dense/kernel" {noinline} = dense<0.0001> : tensor<512x128xf32>
util.global private @"__iree_flow_bert/encoder/layer_5/bottleneck/input/FakeLayerNorm/beta" = dense<1.0> : tensor<128xf32>
util.global private @"__iree_flow_bert/encoder/layer_5/bottleneck/input/FakeLayerNorm/gamma" = dense<0.4> : tensor<128xf32>
util.global private @"__iree_flow_bert/encoder/layer_5/bottleneck/input/dense/bias" = dense<0.1> : tensor<128xf32>
util.global private @"__iree_flow_bert/encoder/layer_5/bottleneck/input/dense/kernel" {noinline} = dense<0.0001> : tensor<512x128xf32>
util.global private @"__iree_flow_bert/encoder/layer_5/ffn_layer_0/intermediate/dense/bias" = dense<0.1> : tensor<512xf32>
util.global private @"__iree_flow_bert/encoder/layer_5/ffn_layer_0/intermediate/dense/kernel" {noinline} = dense<0.0001> : tensor<128x512xf32>
util.global private @"__iree_flow_bert/encoder/layer_5/ffn_layer_0/output/FakeLayerNorm/beta" = dense<1.0> : tensor<128xf32>
util.global private @"__iree_flow_bert/encoder/layer_5/ffn_layer_0/output/FakeLayerNorm/gamma" = dense<0.4> : tensor<128xf32>
util.global private @"__iree_flow_bert/encoder/layer_5/ffn_layer_0/output/dense/bias" = dense<0.1> : tensor<128xf32>
util.global private @"__iree_flow_bert/encoder/layer_5/ffn_layer_0/output/dense/kernel" {noinline} = dense<0.0001> : tensor<512x128xf32>
util.global private @"__iree_flow_bert/encoder/layer_5/ffn_layer_1/intermediate/dense/bias" = dense<0.1> : tensor<512xf32>
util.global private @"__iree_flow_bert/encoder/layer_5/ffn_layer_1/intermediate/dense/kernel" {noinline} = dense<0.0001> : tensor<128x512xf32>
util.global private @"__iree_flow_bert/encoder/layer_5/ffn_layer_1/output/FakeLayerNorm/beta" = dense<1.0> : tensor<128xf32>
util.global private @"__iree_flow_bert/encoder/layer_5/ffn_layer_1/output/FakeLayerNorm/gamma" = dense<0.4> : tensor<128xf32>
util.global private @"__iree_flow_bert/encoder/layer_5/ffn_layer_1/output/dense/bias" = dense<0.1> : tensor<128xf32>
util.global private @"__iree_flow_bert/encoder/layer_5/ffn_layer_1/output/dense/kernel" {noinline} = dense<0.0001> : tensor<512x128xf32>
util.global private @"__iree_flow_bert/encoder/layer_5/ffn_layer_2/intermediate/dense/bias" = dense<0.1> : tensor<512xf32>
util.global private @"__iree_flow_bert/encoder/layer_5/ffn_layer_2/intermediate/dense/kernel" {noinline} = dense<0.0001> : tensor<128x512xf32>
util.global private @"__iree_flow_bert/encoder/layer_5/ffn_layer_2/output/FakeLayerNorm/beta" = dense<1.0> : tensor<128xf32>
util.global private @"__iree_flow_bert/encoder/layer_5/ffn_layer_2/output/FakeLayerNorm/gamma" = dense<0.4> : tensor<128xf32>
util.global private @"__iree_flow_bert/encoder/layer_5/ffn_layer_2/output/dense/bias" = dense<0.1> : tensor<128xf32>
util.global private @"__iree_flow_bert/encoder/layer_5/ffn_layer_2/output/dense/kernel" {noinline} = dense<0.0001> : tensor<512x128xf32>
util.global private @"__iree_flow_bert/encoder/layer_5/intermediate/dense/bias" = dense<0.1> : tensor<512xf32>
util.global private @"__iree_flow_bert/encoder/layer_5/intermediate/dense/kernel" {noinline} = dense<0.0001> : tensor<128x512xf32>
util.global private @"__iree_flow_bert/encoder/layer_5/output/FakeLayerNorm/beta" = dense<1.0> : tensor<128xf32>
util.global private @"__iree_flow_bert/encoder/layer_5/output/FakeLayerNorm/gamma" = dense<0.4> : tensor<128xf32>
util.global private @"__iree_flow_bert/encoder/layer_5/output/bottleneck/FakeLayerNorm/beta" = dense<1.0> : tensor<512xf32>
util.global private @"__iree_flow_bert/encoder/layer_5/output/bottleneck/FakeLayerNorm/gamma" = dense<0.4> : tensor<512xf32>
util.global private @"__iree_flow_bert/encoder/layer_5/output/bottleneck/dense/bias" = dense<0.1> : tensor<512xf32>
util.global private @"__iree_flow_bert/encoder/layer_5/output/bottleneck/dense/kernel" {noinline} = dense<0.0001> : tensor<128x512xf32>
util.global private @"__iree_flow_bert/encoder/layer_5/output/dense/bias" = dense<0.1> : tensor<128xf32>
util.global private @"__iree_flow_bert/encoder/layer_5/output/dense/kernel" {noinline} = dense<0.0001> : tensor<512x128xf32>
util.global private @"__iree_flow_bert/encoder/layer_6/attention/output/FakeLayerNorm/beta" = dense<1.0> : tensor<128xf32>
util.global private @"__iree_flow_bert/encoder/layer_6/attention/output/FakeLayerNorm/gamma" = dense<0.4> : tensor<128xf32>
util.global private @"__iree_flow_bert/encoder/layer_6/attention/output/dense/bias" = dense<0.1> : tensor<128xf32>
util.global private @"__iree_flow_bert/encoder/layer_6/attention/output/dense/kernel" {noinline} = dense<0.0001> : tensor<128x128xf32>
util.global private @"__iree_flow_bert/encoder/layer_6/attention/self/key/bias" = dense<0.1> : tensor<128xf32>
util.global private @"__iree_flow_bert/encoder/layer_6/attention/self/key/kernel" {noinline} = dense<0.0001> : tensor<128x128xf32>
util.global private @"__iree_flow_bert/encoder/layer_6/attention/self/query/bias" = dense<0.1> : tensor<128xf32>
util.global private @"__iree_flow_bert/encoder/layer_6/attention/self/query/kernel" {noinline} = dense<0.0001> : tensor<128x128xf32>
util.global private @"__iree_flow_bert/encoder/layer_6/attention/self/value/bias" = dense<0.1> : tensor<128xf32>
util.global private @"__iree_flow_bert/encoder/layer_6/attention/self/value/kernel" {noinline} = dense<0.0001> : tensor<512x128xf32>
util.global private @"__iree_flow_bert/encoder/layer_6/bottleneck/attention/FakeLayerNorm/beta" = dense<1.0> : tensor<128xf32>
util.global private @"__iree_flow_bert/encoder/layer_6/bottleneck/attention/FakeLayerNorm/gamma" = dense<0.4> : tensor<128xf32>
util.global private @"__iree_flow_bert/encoder/layer_6/bottleneck/attention/dense/bias" = dense<0.1> : tensor<128xf32>
util.global private @"__iree_flow_bert/encoder/layer_6/bottleneck/attention/dense/kernel" {noinline} = dense<0.0001> : tensor<512x128xf32>
util.global private @"__iree_flow_bert/encoder/layer_6/bottleneck/input/FakeLayerNorm/beta" = dense<1.0> : tensor<128xf32>
util.global private @"__iree_flow_bert/encoder/layer_6/bottleneck/input/FakeLayerNorm/gamma" = dense<0.4> : tensor<128xf32>
util.global private @"__iree_flow_bert/encoder/layer_6/bottleneck/input/dense/bias" = dense<0.1> : tensor<128xf32>
util.global private @"__iree_flow_bert/encoder/layer_6/bottleneck/input/dense/kernel" {noinline} = dense<0.0001> : tensor<512x128xf32>
util.global private @"__iree_flow_bert/encoder/layer_6/ffn_layer_0/intermediate/dense/bias" = dense<0.1> : tensor<512xf32>
util.global private @"__iree_flow_bert/encoder/layer_6/ffn_layer_0/intermediate/dense/kernel" {noinline} = dense<0.0001> : tensor<128x512xf32>
util.global private @"__iree_flow_bert/encoder/layer_6/ffn_layer_0/output/FakeLayerNorm/beta" = dense<1.0> : tensor<128xf32>
util.global private @"__iree_flow_bert/encoder/layer_6/ffn_layer_0/output/FakeLayerNorm/gamma" = dense<0.4> : tensor<128xf32>
util.global private @"__iree_flow_bert/encoder/layer_6/ffn_layer_0/output/dense/bias" = dense<0.1> : tensor<128xf32>
util.global private @"__iree_flow_bert/encoder/layer_6/ffn_layer_0/output/dense/kernel" {noinline} = dense<0.0001> : tensor<512x128xf32>
util.global private @"__iree_flow_bert/encoder/layer_6/ffn_layer_1/intermediate/dense/bias" = dense<0.1> : tensor<512xf32>
util.global private @"__iree_flow_bert/encoder/layer_6/ffn_layer_1/intermediate/dense/kernel" {noinline} = dense<0.0001> : tensor<128x512xf32>
util.global private @"__iree_flow_bert/encoder/layer_6/ffn_layer_1/output/FakeLayerNorm/beta" = dense<1.0> : tensor<128xf32>
util.global private @"__iree_flow_bert/encoder/layer_6/ffn_layer_1/output/FakeLayerNorm/gamma" = dense<0.4> : tensor<128xf32>
util.global private @"__iree_flow_bert/encoder/layer_6/ffn_layer_1/output/dense/bias" = dense<0.1> : tensor<128xf32>
util.global private @"__iree_flow_bert/encoder/layer_6/ffn_layer_1/output/dense/kernel" {noinline} = dense<0.0001> : tensor<512x128xf32>
util.global private @"__iree_flow_bert/encoder/layer_6/ffn_layer_2/intermediate/dense/bias" = dense<0.1> : tensor<512xf32>
util.global private @"__iree_flow_bert/encoder/layer_6/ffn_layer_2/intermediate/dense/kernel" {noinline} = dense<0.0001> : tensor<128x512xf32>
util.global private @"__iree_flow_bert/encoder/layer_6/ffn_layer_2/output/FakeLayerNorm/beta" = dense<1.0> : tensor<128xf32>
util.global private @"__iree_flow_bert/encoder/layer_6/ffn_layer_2/output/FakeLayerNorm/gamma" = dense<0.4> : tensor<128xf32>
util.global private @"__iree_flow_bert/encoder/layer_6/ffn_layer_2/output/dense/bias" = dense<0.1> : tensor<128xf32>
util.global private @"__iree_flow_bert/encoder/layer_6/ffn_layer_2/output/dense/kernel" {noinline} = dense<0.0001> : tensor<512x128xf32>
util.global private @"__iree_flow_bert/encoder/layer_6/intermediate/dense/bias" = dense<0.1> : tensor<512xf32>
util.global private @"__iree_flow_bert/encoder/layer_6/intermediate/dense/kernel" {noinline} = dense<0.0001> : tensor<128x512xf32>
util.global private @"__iree_flow_bert/encoder/layer_6/output/FakeLayerNorm/beta" = dense<1.0> : tensor<128xf32>
util.global private @"__iree_flow_bert/encoder/layer_6/output/FakeLayerNorm/gamma" = dense<0.4> : tensor<128xf32>
util.global private @"__iree_flow_bert/encoder/layer_6/output/bottleneck/FakeLayerNorm/beta" = dense<1.0> : tensor<512xf32>
util.global private @"__iree_flow_bert/encoder/layer_6/output/bottleneck/FakeLayerNorm/gamma" = dense<0.4> : tensor<512xf32>
util.global private @"__iree_flow_bert/encoder/layer_6/output/bottleneck/dense/bias" = dense<0.1> : tensor<512xf32>
util.global private @"__iree_flow_bert/encoder/layer_6/output/bottleneck/dense/kernel" {noinline} = dense<0.0001> : tensor<128x512xf32>
util.global private @"__iree_flow_bert/encoder/layer_6/output/dense/bias" = dense<0.1> : tensor<128xf32>
util.global private @"__iree_flow_bert/encoder/layer_6/output/dense/kernel" {noinline} = dense<0.0001> : tensor<512x128xf32>
util.global private @"__iree_flow_bert/encoder/layer_7/attention/output/FakeLayerNorm/beta" = dense<1.0> : tensor<128xf32>
util.global private @"__iree_flow_bert/encoder/layer_7/attention/output/FakeLayerNorm/gamma" = dense<0.4> : tensor<128xf32>
util.global private @"__iree_flow_bert/encoder/layer_7/attention/output/dense/bias" = dense<0.1> : tensor<128xf32>
util.global private @"__iree_flow_bert/encoder/layer_7/attention/output/dense/kernel" {noinline} = dense<0.0001> : tensor<128x128xf32>
util.global private @"__iree_flow_bert/encoder/layer_7/attention/self/key/bias" = dense<0.1> : tensor<128xf32>
util.global private @"__iree_flow_bert/encoder/layer_7/attention/self/key/kernel" {noinline} = dense<0.0001> : tensor<128x128xf32>
util.global private @"__iree_flow_bert/encoder/layer_7/attention/self/query/bias" = dense<0.1> : tensor<128xf32>
util.global private @"__iree_flow_bert/encoder/layer_7/attention/self/query/kernel" {noinline} = dense<0.0001> : tensor<128x128xf32>
util.global private @"__iree_flow_bert/encoder/layer_7/attention/self/value/bias" = dense<0.1> : tensor<128xf32>
util.global private @"__iree_flow_bert/encoder/layer_7/attention/self/value/kernel" {noinline} = dense<0.0001> : tensor<512x128xf32>
util.global private @"__iree_flow_bert/encoder/layer_7/bottleneck/attention/FakeLayerNorm/beta" = dense<1.0> : tensor<128xf32>
util.global private @"__iree_flow_bert/encoder/layer_7/bottleneck/attention/FakeLayerNorm/gamma" = dense<0.4> : tensor<128xf32>
util.global private @"__iree_flow_bert/encoder/layer_7/bottleneck/attention/dense/bias" = dense<0.1> : tensor<128xf32>
util.global private @"__iree_flow_bert/encoder/layer_7/bottleneck/attention/dense/kernel" {noinline} = dense<0.0001> : tensor<512x128xf32>
util.global private @"__iree_flow_bert/encoder/layer_7/bottleneck/input/FakeLayerNorm/beta" = dense<1.0> : tensor<128xf32>
util.global private @"__iree_flow_bert/encoder/layer_7/bottleneck/input/FakeLayerNorm/gamma" = dense<0.4> : tensor<128xf32>
util.global private @"__iree_flow_bert/encoder/layer_7/bottleneck/input/dense/bias" = dense<0.1> : tensor<128xf32>
util.global private @"__iree_flow_bert/encoder/layer_7/bottleneck/input/dense/kernel" {noinline} = dense<0.0001> : tensor<512x128xf32>
util.global private @"__iree_flow_bert/encoder/layer_7/ffn_layer_0/intermediate/dense/bias" = dense<0.1> : tensor<512xf32>
util.global private @"__iree_flow_bert/encoder/layer_7/ffn_layer_0/intermediate/dense/kernel" {noinline} = dense<0.0001> : tensor<128x512xf32>
util.global private @"__iree_flow_bert/encoder/layer_7/ffn_layer_0/output/FakeLayerNorm/beta" = dense<1.0> : tensor<128xf32>
util.global private @"__iree_flow_bert/encoder/layer_7/ffn_layer_0/output/FakeLayerNorm/gamma" = dense<0.4> : tensor<128xf32>
util.global private @"__iree_flow_bert/encoder/layer_7/ffn_layer_0/output/dense/bias" = dense<0.1> : tensor<128xf32>
util.global private @"__iree_flow_bert/encoder/layer_7/ffn_layer_0/output/dense/kernel" {noinline} = dense<0.0001> : tensor<512x128xf32>
util.global private @"__iree_flow_bert/encoder/layer_7/ffn_layer_1/intermediate/dense/bias" = dense<0.1> : tensor<512xf32>
util.global private @"__iree_flow_bert/encoder/layer_7/ffn_layer_1/intermediate/dense/kernel" {noinline} = dense<0.0001> : tensor<128x512xf32>
util.global private @"__iree_flow_bert/encoder/layer_7/ffn_layer_1/output/FakeLayerNorm/beta" = dense<1.0> : tensor<128xf32>
util.global private @"__iree_flow_bert/encoder/layer_7/ffn_layer_1/output/FakeLayerNorm/gamma" = dense<0.4> : tensor<128xf32>
util.global private @"__iree_flow_bert/encoder/layer_7/ffn_layer_1/output/dense/bias" = dense<0.1> : tensor<128xf32>
util.global private @"__iree_flow_bert/encoder/layer_7/ffn_layer_1/output/dense/kernel" {noinline} = dense<0.0001> : tensor<512x128xf32>
util.global private @"__iree_flow_bert/encoder/layer_7/ffn_layer_2/intermediate/dense/bias" = dense<0.1> : tensor<512xf32>
util.global private @"__iree_flow_bert/encoder/layer_7/ffn_layer_2/intermediate/dense/kernel" {noinline} = dense<0.0001> : tensor<128x512xf32>
util.global private @"__iree_flow_bert/encoder/layer_7/ffn_layer_2/output/FakeLayerNorm/beta" = dense<1.0> : tensor<128xf32>
util.global private @"__iree_flow_bert/encoder/layer_7/ffn_layer_2/output/FakeLayerNorm/gamma" = dense<0.4> : tensor<128xf32>
util.global private @"__iree_flow_bert/encoder/layer_7/ffn_layer_2/output/dense/bias" = dense<0.1> : tensor<128xf32>
util.global private @"__iree_flow_bert/encoder/layer_7/ffn_layer_2/output/dense/kernel" {noinline} = dense<0.0001> : tensor<512x128xf32>
util.global private @"__iree_flow_bert/encoder/layer_7/intermediate/dense/bias" = dense<0.1> : tensor<512xf32>
util.global private @"__iree_flow_bert/encoder/layer_7/intermediate/dense/kernel" {noinline} = dense<0.0001> : tensor<128x512xf32>
util.global private @"__iree_flow_bert/encoder/layer_7/output/FakeLayerNorm/beta" = dense<1.0> : tensor<128xf32>
util.global private @"__iree_flow_bert/encoder/layer_7/output/FakeLayerNorm/gamma" = dense<0.4> : tensor<128xf32>
util.global private @"__iree_flow_bert/encoder/layer_7/output/bottleneck/FakeLayerNorm/beta" = dense<1.0> : tensor<512xf32>
util.global private @"__iree_flow_bert/encoder/layer_7/output/bottleneck/FakeLayerNorm/gamma" = dense<0.4> : tensor<512xf32>
util.global private @"__iree_flow_bert/encoder/layer_7/output/bottleneck/dense/bias" = dense<0.1> : tensor<512xf32>
util.global private @"__iree_flow_bert/encoder/layer_7/output/bottleneck/dense/kernel" {noinline} = dense<0.0001> : tensor<128x512xf32>
util.global private @"__iree_flow_bert/encoder/layer_7/output/dense/bias" = dense<0.1> : tensor<128xf32>
util.global private @"__iree_flow_bert/encoder/layer_7/output/dense/kernel" {noinline} = dense<0.0001> : tensor<512x128xf32>
util.global private @"__iree_flow_bert/encoder/layer_8/attention/output/FakeLayerNorm/beta" = dense<1.0> : tensor<128xf32>
util.global private @"__iree_flow_bert/encoder/layer_8/attention/output/FakeLayerNorm/gamma" = dense<0.4> : tensor<128xf32>
util.global private @"__iree_flow_bert/encoder/layer_8/attention/output/dense/bias" = dense<0.1> : tensor<128xf32>
util.global private @"__iree_flow_bert/encoder/layer_8/attention/output/dense/kernel" {noinline} = dense<0.0001> : tensor<128x128xf32>
util.global private @"__iree_flow_bert/encoder/layer_8/attention/self/key/bias" = dense<0.1> : tensor<128xf32>
util.global private @"__iree_flow_bert/encoder/layer_8/attention/self/key/kernel" {noinline} = dense<0.0001> : tensor<128x128xf32>
util.global private @"__iree_flow_bert/encoder/layer_8/attention/self/query/bias" = dense<0.1> : tensor<128xf32>
util.global private @"__iree_flow_bert/encoder/layer_8/attention/self/query/kernel" {noinline} = dense<0.0001> : tensor<128x128xf32>
util.global private @"__iree_flow_bert/encoder/layer_8/attention/self/value/bias" = dense<0.1> : tensor<128xf32>
util.global private @"__iree_flow_bert/encoder/layer_8/attention/self/value/kernel" {noinline} = dense<0.0001> : tensor<512x128xf32>
util.global private @"__iree_flow_bert/encoder/layer_8/bottleneck/attention/FakeLayerNorm/beta" = dense<1.0> : tensor<128xf32>
util.global private @"__iree_flow_bert/encoder/layer_8/bottleneck/attention/FakeLayerNorm/gamma" = dense<0.4> : tensor<128xf32>
util.global private @"__iree_flow_bert/encoder/layer_8/bottleneck/attention/dense/bias" = dense<0.1> : tensor<128xf32>
util.global private @"__iree_flow_bert/encoder/layer_8/bottleneck/attention/dense/kernel" {noinline} = dense<0.0001> : tensor<512x128xf32>
util.global private @"__iree_flow_bert/encoder/layer_8/bottleneck/input/FakeLayerNorm/beta" = dense<1.0> : tensor<128xf32>
util.global private @"__iree_flow_bert/encoder/layer_8/bottleneck/input/FakeLayerNorm/gamma" = dense<0.4> : tensor<128xf32>
util.global private @"__iree_flow_bert/encoder/layer_8/bottleneck/input/dense/bias" = dense<0.1> : tensor<128xf32>
util.global private @"__iree_flow_bert/encoder/layer_8/bottleneck/input/dense/kernel" {noinline} = dense<0.0001> : tensor<512x128xf32>
util.global private @"__iree_flow_bert/encoder/layer_8/ffn_layer_0/intermediate/dense/bias" = dense<0.1> : tensor<512xf32>
util.global private @"__iree_flow_bert/encoder/layer_8/ffn_layer_0/intermediate/dense/kernel" {noinline} = dense<0.0001> : tensor<128x512xf32>
util.global private @"__iree_flow_bert/encoder/layer_8/ffn_layer_0/output/FakeLayerNorm/beta" = dense<1.0> : tensor<128xf32>
util.global private @"__iree_flow_bert/encoder/layer_8/ffn_layer_0/output/FakeLayerNorm/gamma" = dense<0.4> : tensor<128xf32>
util.global private @"__iree_flow_bert/encoder/layer_8/ffn_layer_0/output/dense/bias" = dense<0.1> : tensor<128xf32>
util.global private @"__iree_flow_bert/encoder/layer_8/ffn_layer_0/output/dense/kernel" {noinline} = dense<0.0001> : tensor<512x128xf32>
util.global private @"__iree_flow_bert/encoder/layer_8/ffn_layer_1/intermediate/dense/bias" = dense<0.1> : tensor<512xf32>
util.global private @"__iree_flow_bert/encoder/layer_8/ffn_layer_1/intermediate/dense/kernel" {noinline} = dense<0.0001> : tensor<128x512xf32>
util.global private @"__iree_flow_bert/encoder/layer_8/ffn_layer_1/output/FakeLayerNorm/beta" = dense<1.0> : tensor<128xf32>
util.global private @"__iree_flow_bert/encoder/layer_8/ffn_layer_1/output/FakeLayerNorm/gamma" = dense<0.4> : tensor<128xf32>
util.global private @"__iree_flow_bert/encoder/layer_8/ffn_layer_1/output/dense/bias" = dense<0.1> : tensor<128xf32>
util.global private @"__iree_flow_bert/encoder/layer_8/ffn_layer_1/output/dense/kernel" {noinline} = dense<0.0001> : tensor<512x128xf32>
util.global private @"__iree_flow_bert/encoder/layer_8/ffn_layer_2/intermediate/dense/bias" = dense<0.1> : tensor<512xf32>
util.global private @"__iree_flow_bert/encoder/layer_8/ffn_layer_2/intermediate/dense/kernel" {noinline} = dense<0.0001> : tensor<128x512xf32>
util.global private @"__iree_flow_bert/encoder/layer_8/ffn_layer_2/output/FakeLayerNorm/beta" = dense<1.0> : tensor<128xf32>
util.global private @"__iree_flow_bert/encoder/layer_8/ffn_layer_2/output/FakeLayerNorm/gamma" = dense<0.4> : tensor<128xf32>
util.global private @"__iree_flow_bert/encoder/layer_8/ffn_layer_2/output/dense/bias" = dense<0.1> : tensor<128xf32>
util.global private @"__iree_flow_bert/encoder/layer_8/ffn_layer_2/output/dense/kernel" {noinline} = dense<0.0001> : tensor<512x128xf32>
util.global private @"__iree_flow_bert/encoder/layer_8/intermediate/dense/bias" = dense<0.1> : tensor<512xf32>
util.global private @"__iree_flow_bert/encoder/layer_8/intermediate/dense/kernel" {noinline} = dense<0.0001> : tensor<128x512xf32>
util.global private @"__iree_flow_bert/encoder/layer_8/output/FakeLayerNorm/beta" = dense<1.0> : tensor<128xf32>
util.global private @"__iree_flow_bert/encoder/layer_8/output/FakeLayerNorm/gamma" = dense<0.4> : tensor<128xf32>
util.global private @"__iree_flow_bert/encoder/layer_8/output/bottleneck/FakeLayerNorm/beta" = dense<1.0> : tensor<512xf32>
util.global private @"__iree_flow_bert/encoder/layer_8/output/bottleneck/FakeLayerNorm/gamma" = dense<0.4> : tensor<512xf32>
util.global private @"__iree_flow_bert/encoder/layer_8/output/bottleneck/dense/bias" = dense<0.1> : tensor<512xf32>
util.global private @"__iree_flow_bert/encoder/layer_8/output/bottleneck/dense/kernel" {noinline} = dense<0.0001> : tensor<128x512xf32>
util.global private @"__iree_flow_bert/encoder/layer_8/output/dense/bias" = dense<0.1> : tensor<128xf32>
util.global private @"__iree_flow_bert/encoder/layer_8/output/dense/kernel" {noinline} = dense<0.0001> : tensor<512x128xf32>
util.global private @"__iree_flow_bert/encoder/layer_9/attention/output/FakeLayerNorm/beta" = dense<1.0> : tensor<128xf32>
util.global private @"__iree_flow_bert/encoder/layer_9/attention/output/FakeLayerNorm/gamma" = dense<0.4> : tensor<128xf32>
util.global private @"__iree_flow_bert/encoder/layer_9/attention/output/dense/bias" = dense<0.1> : tensor<128xf32>
util.global private @"__iree_flow_bert/encoder/layer_9/attention/output/dense/kernel" {noinline} = dense<0.0001> : tensor<128x128xf32>
util.global private @"__iree_flow_bert/encoder/layer_9/attention/self/key/bias" = dense<0.1> : tensor<128xf32>
util.global private @"__iree_flow_bert/encoder/layer_9/attention/self/key/kernel" {noinline} = dense<0.0001> : tensor<128x128xf32>
util.global private @"__iree_flow_bert/encoder/layer_9/attention/self/query/bias" = dense<0.1> : tensor<128xf32>
util.global private @"__iree_flow_bert/encoder/layer_9/attention/self/query/kernel" {noinline} = dense<0.0001> : tensor<128x128xf32>
util.global private @"__iree_flow_bert/encoder/layer_9/attention/self/value/bias" = dense<0.1> : tensor<128xf32>
util.global private @"__iree_flow_bert/encoder/layer_9/attention/self/value/kernel" {noinline} = dense<0.0001> : tensor<512x128xf32>
util.global private @"__iree_flow_bert/encoder/layer_9/bottleneck/attention/FakeLayerNorm/beta" = dense<1.0> : tensor<128xf32>
util.global private @"__iree_flow_bert/encoder/layer_9/bottleneck/attention/FakeLayerNorm/gamma" = dense<0.4> : tensor<128xf32>
util.global private @"__iree_flow_bert/encoder/layer_9/bottleneck/attention/dense/bias" = dense<0.1> : tensor<128xf32>
util.global private @"__iree_flow_bert/encoder/layer_9/bottleneck/attention/dense/kernel" {noinline} = dense<0.0001> : tensor<512x128xf32>
util.global private @"__iree_flow_bert/encoder/layer_9/bottleneck/input/FakeLayerNorm/beta" = dense<1.0> : tensor<128xf32>
util.global private @"__iree_flow_bert/encoder/layer_9/bottleneck/input/FakeLayerNorm/gamma" = dense<0.4> : tensor<128xf32>
util.global private @"__iree_flow_bert/encoder/layer_9/bottleneck/input/dense/bias" = dense<0.1> : tensor<128xf32>
util.global private @"__iree_flow_bert/encoder/layer_9/bottleneck/input/dense/kernel" {noinline} = dense<0.0001> : tensor<512x128xf32>
util.global private @"__iree_flow_bert/encoder/layer_9/ffn_layer_0/intermediate/dense/bias" = dense<0.1> : tensor<512xf32>
util.global private @"__iree_flow_bert/encoder/layer_9/ffn_layer_0/intermediate/dense/kernel" {noinline} = dense<0.0001> : tensor<128x512xf32>
util.global private @"__iree_flow_bert/encoder/layer_9/ffn_layer_0/output/FakeLayerNorm/beta" = dense<1.0> : tensor<128xf32>
util.global private @"__iree_flow_bert/encoder/layer_9/ffn_layer_0/output/FakeLayerNorm/gamma" = dense<0.4> : tensor<128xf32>
util.global private @"__iree_flow_bert/encoder/layer_9/ffn_layer_0/output/dense/bias" = dense<0.1> : tensor<128xf32>
util.global private @"__iree_flow_bert/encoder/layer_9/ffn_layer_0/output/dense/kernel" {noinline} = dense<0.0001> : tensor<512x128xf32>
util.global private @"__iree_flow_bert/encoder/layer_9/ffn_layer_1/intermediate/dense/bias" = dense<0.1> : tensor<512xf32>
util.global private @"__iree_flow_bert/encoder/layer_9/ffn_layer_1/intermediate/dense/kernel" {noinline} = dense<0.0001> : tensor<128x512xf32>
util.global private @"__iree_flow_bert/encoder/layer_9/ffn_layer_1/output/FakeLayerNorm/beta" = dense<1.0> : tensor<128xf32>
util.global private @"__iree_flow_bert/encoder/layer_9/ffn_layer_1/output/FakeLayerNorm/gamma" = dense<0.4> : tensor<128xf32>
util.global private @"__iree_flow_bert/encoder/layer_9/ffn_layer_1/output/dense/bias" = dense<0.1> : tensor<128xf32>
util.global private @"__iree_flow_bert/encoder/layer_9/ffn_layer_1/output/dense/kernel" {noinline} = dense<0.0001> : tensor<512x128xf32>
util.global private @"__iree_flow_bert/encoder/layer_9/ffn_layer_2/intermediate/dense/bias" = dense<0.1> : tensor<512xf32>
util.global private @"__iree_flow_bert/encoder/layer_9/ffn_layer_2/intermediate/dense/kernel" {noinline} = dense<0.0001> : tensor<128x512xf32>
util.global private @"__iree_flow_bert/encoder/layer_9/ffn_layer_2/output/FakeLayerNorm/beta" = dense<1.0> : tensor<128xf32>
util.global private @"__iree_flow_bert/encoder/layer_9/ffn_layer_2/output/FakeLayerNorm/gamma" = dense<0.4> : tensor<128xf32>
util.global private @"__iree_flow_bert/encoder/layer_9/ffn_layer_2/output/dense/bias" = dense<0.1> : tensor<128xf32>
util.global private @"__iree_flow_bert/encoder/layer_9/ffn_layer_2/output/dense/kernel" {noinline} = dense<0.0001> : tensor<512x128xf32>
util.global private @"__iree_flow_bert/encoder/layer_9/intermediate/dense/bias" = dense<0.1> : tensor<512xf32>
util.global private @"__iree_flow_bert/encoder/layer_9/intermediate/dense/kernel" {noinline} = dense<0.0001> : tensor<128x512xf32>
util.global private @"__iree_flow_bert/encoder/layer_9/output/FakeLayerNorm/beta" = dense<1.0> : tensor<128xf32>
util.global private @"__iree_flow_bert/encoder/layer_9/output/FakeLayerNorm/gamma" = dense<0.4> : tensor<128xf32>
util.global private @"__iree_flow_bert/encoder/layer_9/output/bottleneck/FakeLayerNorm/beta" = dense<1.0> : tensor<512xf32>
util.global private @"__iree_flow_bert/encoder/layer_9/output/bottleneck/FakeLayerNorm/gamma" = dense<0.4> : tensor<512xf32>
util.global private @"__iree_flow_bert/encoder/layer_9/output/bottleneck/dense/bias" = dense<0.1> : tensor<512xf32>
util.global private @"__iree_flow_bert/encoder/layer_9/output/bottleneck/dense/kernel" {noinline} = dense<0.0001> : tensor<128x512xf32>
util.global private @"__iree_flow_bert/encoder/layer_9/output/dense/bias" = dense<0.1> : tensor<128xf32>
util.global private @"__iree_flow_bert/encoder/layer_9/output/dense/kernel" {noinline} = dense<0.0001> : tensor<512x128xf32>
util.global private @"__iree_flow_cls/squad/output_bias" = dense<0.1> : tensor<2xf32>
util.global private @"__iree_flow_cls/squad/output_weights" = dense<1.0> : tensor<2x512xf32>
func.func @serving_default() attributes { iree.module.export} {
%arg0 = util.unfoldable_constant dense<0> : tensor<1x384xi32>
%arg1 = util.unfoldable_constant dense<0> : tensor<1x384xi32>
%arg2 = util.unfoldable_constant dense<0> : tensor<1x384xi32>
%0 = util.global.address @"__iree_flow_bert/embeddings/FakeLayerNorm/beta" : !util.ptr<tensor<512xf32>>
%1 = util.global.address @"__iree_flow_bert/embeddings/FakeLayerNorm/gamma" : !util.ptr<tensor<512xf32>>
%2 = util.global.address @"__iree_flow_bert/embeddings/embedding_transformation/bias" : !util.ptr<tensor<512xf32>>
%3 = util.global.address @"__iree_flow_bert/embeddings/embedding_transformation/kernel" : !util.ptr<tensor<384x512xf32>>
%4 = util.global.address @"__iree_flow_bert/embeddings/position_embeddings" : !util.ptr<tensor<512x512xf32>>
%5 = util.global.address @"__iree_flow_bert/embeddings/token_type_embeddings" : !util.ptr<tensor<2x512xf32>>
%6 = util.global.address @"__iree_flow_bert/embeddings/word_embeddings" : !util.ptr<tensor<30522x128xf32>>
%7 = util.global.address @"__iree_flow_bert/encoder/layer_0/attention/output/FakeLayerNorm/beta" : !util.ptr<tensor<128xf32>>
%8 = util.global.address @"__iree_flow_bert/encoder/layer_0/attention/output/FakeLayerNorm/gamma" : !util.ptr<tensor<128xf32>>
%9 = util.global.address @"__iree_flow_bert/encoder/layer_0/attention/output/dense/bias" : !util.ptr<tensor<128xf32>>
%10 = util.global.address @"__iree_flow_bert/encoder/layer_0/attention/output/dense/kernel" : !util.ptr<tensor<128x128xf32>>
%11 = util.global.address @"__iree_flow_bert/encoder/layer_0/attention/self/key/bias" : !util.ptr<tensor<128xf32>>
%12 = util.global.address @"__iree_flow_bert/encoder/layer_0/attention/self/key/kernel" : !util.ptr<tensor<128x128xf32>>
%13 = util.global.address @"__iree_flow_bert/encoder/layer_0/attention/self/query/bias" : !util.ptr<tensor<128xf32>>
%14 = util.global.address @"__iree_flow_bert/encoder/layer_0/attention/self/query/kernel" : !util.ptr<tensor<128x128xf32>>
%15 = util.global.address @"__iree_flow_bert/encoder/layer_0/attention/self/value/bias" : !util.ptr<tensor<128xf32>>
%16 = util.global.address @"__iree_flow_bert/encoder/layer_0/attention/self/value/kernel" : !util.ptr<tensor<512x128xf32>>
%17 = util.global.address @"__iree_flow_bert/encoder/layer_0/bottleneck/attention/FakeLayerNorm/beta" : !util.ptr<tensor<128xf32>>
%18 = util.global.address @"__iree_flow_bert/encoder/layer_0/bottleneck/attention/FakeLayerNorm/gamma" : !util.ptr<tensor<128xf32>>
%19 = util.global.address @"__iree_flow_bert/encoder/layer_0/bottleneck/attention/dense/bias" : !util.ptr<tensor<128xf32>>
%20 = util.global.address @"__iree_flow_bert/encoder/layer_0/bottleneck/attention/dense/kernel" : !util.ptr<tensor<512x128xf32>>
%21 = util.global.address @"__iree_flow_bert/encoder/layer_0/bottleneck/input/FakeLayerNorm/beta" : !util.ptr<tensor<128xf32>>
%22 = util.global.address @"__iree_flow_bert/encoder/layer_0/bottleneck/input/FakeLayerNorm/gamma" : !util.ptr<tensor<128xf32>>
%23 = util.global.address @"__iree_flow_bert/encoder/layer_0/bottleneck/input/dense/bias" : !util.ptr<tensor<128xf32>>
%24 = util.global.address @"__iree_flow_bert/encoder/layer_0/bottleneck/input/dense/kernel" : !util.ptr<tensor<512x128xf32>>
%25 = util.global.address @"__iree_flow_bert/encoder/layer_0/ffn_layer_0/intermediate/dense/bias" : !util.ptr<tensor<512xf32>>
%26 = util.global.address @"__iree_flow_bert/encoder/layer_0/ffn_layer_0/intermediate/dense/kernel" : !util.ptr<tensor<128x512xf32>>
%27 = util.global.address @"__iree_flow_bert/encoder/layer_0/ffn_layer_0/output/FakeLayerNorm/beta" : !util.ptr<tensor<128xf32>>
%28 = util.global.address @"__iree_flow_bert/encoder/layer_0/ffn_layer_0/output/FakeLayerNorm/gamma" : !util.ptr<tensor<128xf32>>
%29 = util.global.address @"__iree_flow_bert/encoder/layer_0/ffn_layer_0/output/dense/bias" : !util.ptr<tensor<128xf32>>
%30 = util.global.address @"__iree_flow_bert/encoder/layer_0/ffn_layer_0/output/dense/kernel" : !util.ptr<tensor<512x128xf32>>
%31 = util.global.address @"__iree_flow_bert/encoder/layer_0/ffn_layer_1/intermediate/dense/bias" : !util.ptr<tensor<512xf32>>
%32 = util.global.address @"__iree_flow_bert/encoder/layer_0/ffn_layer_1/intermediate/dense/kernel" : !util.ptr<tensor<128x512xf32>>
%33 = util.global.address @"__iree_flow_bert/encoder/layer_0/ffn_layer_1/output/FakeLayerNorm/beta" : !util.ptr<tensor<128xf32>>
%34 = util.global.address @"__iree_flow_bert/encoder/layer_0/ffn_layer_1/output/FakeLayerNorm/gamma" : !util.ptr<tensor<128xf32>>
%35 = util.global.address @"__iree_flow_bert/encoder/layer_0/ffn_layer_1/output/dense/bias" : !util.ptr<tensor<128xf32>>
%36 = util.global.address @"__iree_flow_bert/encoder/layer_0/ffn_layer_1/output/dense/kernel" : !util.ptr<tensor<512x128xf32>>
%37 = util.global.address @"__iree_flow_bert/encoder/layer_0/ffn_layer_2/intermediate/dense/bias" : !util.ptr<tensor<512xf32>>
%38 = util.global.address @"__iree_flow_bert/encoder/layer_0/ffn_layer_2/intermediate/dense/kernel" : !util.ptr<tensor<128x512xf32>>
%39 = util.global.address @"__iree_flow_bert/encoder/layer_0/ffn_layer_2/output/FakeLayerNorm/beta" : !util.ptr<tensor<128xf32>>
%40 = util.global.address @"__iree_flow_bert/encoder/layer_0/ffn_layer_2/output/FakeLayerNorm/gamma" : !util.ptr<tensor<128xf32>>
%41 = util.global.address @"__iree_flow_bert/encoder/layer_0/ffn_layer_2/output/dense/bias" : !util.ptr<tensor<128xf32>>
%42 = util.global.address @"__iree_flow_bert/encoder/layer_0/ffn_layer_2/output/dense/kernel" : !util.ptr<tensor<512x128xf32>>
%43 = util.global.address @"__iree_flow_bert/encoder/layer_0/intermediate/dense/bias" : !util.ptr<tensor<512xf32>>
%44 = util.global.address @"__iree_flow_bert/encoder/layer_0/intermediate/dense/kernel" : !util.ptr<tensor<128x512xf32>>
%45 = util.global.address @"__iree_flow_bert/encoder/layer_0/output/FakeLayerNorm/beta" : !util.ptr<tensor<128xf32>>
%46 = util.global.address @"__iree_flow_bert/encoder/layer_0/output/FakeLayerNorm/gamma" : !util.ptr<tensor<128xf32>>
%47 = util.global.address @"__iree_flow_bert/encoder/layer_0/output/bottleneck/FakeLayerNorm/beta" : !util.ptr<tensor<512xf32>>
%48 = util.global.address @"__iree_flow_bert/encoder/layer_0/output/bottleneck/FakeLayerNorm/gamma" : !util.ptr<tensor<512xf32>>
%49 = util.global.address @"__iree_flow_bert/encoder/layer_0/output/bottleneck/dense/bias" : !util.ptr<tensor<512xf32>>
%50 = util.global.address @"__iree_flow_bert/encoder/layer_0/output/bottleneck/dense/kernel" : !util.ptr<tensor<128x512xf32>>
%51 = util.global.address @"__iree_flow_bert/encoder/layer_0/output/dense/bias" : !util.ptr<tensor<128xf32>>
%52 = util.global.address @"__iree_flow_bert/encoder/layer_0/output/dense/kernel" : !util.ptr<tensor<512x128xf32>>
%53 = util.global.address @"__iree_flow_bert/encoder/layer_1/attention/output/FakeLayerNorm/beta" : !util.ptr<tensor<128xf32>>
%54 = util.global.address @"__iree_flow_bert/encoder/layer_1/attention/output/FakeLayerNorm/gamma" : !util.ptr<tensor<128xf32>>
%55 = util.global.address @"__iree_flow_bert/encoder/layer_1/attention/output/dense/bias" : !util.ptr<tensor<128xf32>>
%56 = util.global.address @"__iree_flow_bert/encoder/layer_1/attention/output/dense/kernel" : !util.ptr<tensor<128x128xf32>>
%57 = util.global.address @"__iree_flow_bert/encoder/layer_1/attention/self/key/bias" : !util.ptr<tensor<128xf32>>
%58 = util.global.address @"__iree_flow_bert/encoder/layer_1/attention/self/key/kernel" : !util.ptr<tensor<128x128xf32>>
%59 = util.global.address @"__iree_flow_bert/encoder/layer_1/attention/self/query/bias" : !util.ptr<tensor<128xf32>>
%60 = util.global.address @"__iree_flow_bert/encoder/layer_1/attention/self/query/kernel" : !util.ptr<tensor<128x128xf32>>
%61 = util.global.address @"__iree_flow_bert/encoder/layer_1/attention/self/value/bias" : !util.ptr<tensor<128xf32>>
%62 = util.global.address @"__iree_flow_bert/encoder/layer_1/attention/self/value/kernel" : !util.ptr<tensor<512x128xf32>>
%63 = util.global.address @"__iree_flow_bert/encoder/layer_1/bottleneck/attention/FakeLayerNorm/beta" : !util.ptr<tensor<128xf32>>
%64 = util.global.address @"__iree_flow_bert/encoder/layer_1/bottleneck/attention/FakeLayerNorm/gamma" : !util.ptr<tensor<128xf32>>
%65 = util.global.address @"__iree_flow_bert/encoder/layer_1/bottleneck/attention/dense/bias" : !util.ptr<tensor<128xf32>>
%66 = util.global.address @"__iree_flow_bert/encoder/layer_1/bottleneck/attention/dense/kernel" : !util.ptr<tensor<512x128xf32>>
%67 = util.global.address @"__iree_flow_bert/encoder/layer_1/bottleneck/input/FakeLayerNorm/beta" : !util.ptr<tensor<128xf32>>
%68 = util.global.address @"__iree_flow_bert/encoder/layer_1/bottleneck/input/FakeLayerNorm/gamma" : !util.ptr<tensor<128xf32>>
%69 = util.global.address @"__iree_flow_bert/encoder/layer_1/bottleneck/input/dense/bias" : !util.ptr<tensor<128xf32>>
%70 = util.global.address @"__iree_flow_bert/encoder/layer_1/bottleneck/input/dense/kernel" : !util.ptr<tensor<512x128xf32>>
%71 = util.global.address @"__iree_flow_bert/encoder/layer_1/ffn_layer_0/intermediate/dense/bias" : !util.ptr<tensor<512xf32>>
%72 = util.global.address @"__iree_flow_bert/encoder/layer_1/ffn_layer_0/intermediate/dense/kernel" : !util.ptr<tensor<128x512xf32>>
%73 = util.global.address @"__iree_flow_bert/encoder/layer_1/ffn_layer_0/output/FakeLayerNorm/beta" : !util.ptr<tensor<128xf32>>
%74 = util.global.address @"__iree_flow_bert/encoder/layer_1/ffn_layer_0/output/FakeLayerNorm/gamma" : !util.ptr<tensor<128xf32>>
%75 = util.global.address @"__iree_flow_bert/encoder/layer_1/ffn_layer_0/output/dense/bias" : !util.ptr<tensor<128xf32>>
%76 = util.global.address @"__iree_flow_bert/encoder/layer_1/ffn_layer_0/output/dense/kernel" : !util.ptr<tensor<512x128xf32>>
%77 = util.global.address @"__iree_flow_bert/encoder/layer_1/ffn_layer_1/intermediate/dense/bias" : !util.ptr<tensor<512xf32>>
%78 = util.global.address @"__iree_flow_bert/encoder/layer_1/ffn_layer_1/intermediate/dense/kernel" : !util.ptr<tensor<128x512xf32>>
%79 = util.global.address @"__iree_flow_bert/encoder/layer_1/ffn_layer_1/output/FakeLayerNorm/beta" : !util.ptr<tensor<128xf32>>
%80 = util.global.address @"__iree_flow_bert/encoder/layer_1/ffn_layer_1/output/FakeLayerNorm/gamma" : !util.ptr<tensor<128xf32>>
%81 = util.global.address @"__iree_flow_bert/encoder/layer_1/ffn_layer_1/output/dense/bias" : !util.ptr<tensor<128xf32>>
%82 = util.global.address @"__iree_flow_bert/encoder/layer_1/ffn_layer_1/output/dense/kernel" : !util.ptr<tensor<512x128xf32>>
%83 = util.global.address @"__iree_flow_bert/encoder/layer_1/ffn_layer_2/intermediate/dense/bias" : !util.ptr<tensor<512xf32>>
%84 = util.global.address @"__iree_flow_bert/encoder/layer_1/ffn_layer_2/intermediate/dense/kernel" : !util.ptr<tensor<128x512xf32>>
%85 = util.global.address @"__iree_flow_bert/encoder/layer_1/ffn_layer_2/output/FakeLayerNorm/beta" : !util.ptr<tensor<128xf32>>
%86 = util.global.address @"__iree_flow_bert/encoder/layer_1/ffn_layer_2/output/FakeLayerNorm/gamma" : !util.ptr<tensor<128xf32>>
%87 = util.global.address @"__iree_flow_bert/encoder/layer_1/ffn_layer_2/output/dense/bias" : !util.ptr<tensor<128xf32>>
%88 = util.global.address @"__iree_flow_bert/encoder/layer_1/ffn_layer_2/output/dense/kernel" : !util.ptr<tensor<512x128xf32>>
%89 = util.global.address @"__iree_flow_bert/encoder/layer_1/intermediate/dense/bias" : !util.ptr<tensor<512xf32>>
%90 = util.global.address @"__iree_flow_bert/encoder/layer_1/intermediate/dense/kernel" : !util.ptr<tensor<128x512xf32>>
%91 = util.global.address @"__iree_flow_bert/encoder/layer_1/output/FakeLayerNorm/beta" : !util.ptr<tensor<128xf32>>
%92 = util.global.address @"__iree_flow_bert/encoder/layer_1/output/FakeLayerNorm/gamma" : !util.ptr<tensor<128xf32>>
%93 = util.global.address @"__iree_flow_bert/encoder/layer_1/output/bottleneck/FakeLayerNorm/beta" : !util.ptr<tensor<512xf32>>
%94 = util.global.address @"__iree_flow_bert/encoder/layer_1/output/bottleneck/FakeLayerNorm/gamma" : !util.ptr<tensor<512xf32>>
%95 = util.global.address @"__iree_flow_bert/encoder/layer_1/output/bottleneck/dense/bias" : !util.ptr<tensor<512xf32>>
%96 = util.global.address @"__iree_flow_bert/encoder/layer_1/output/bottleneck/dense/kernel" : !util.ptr<tensor<128x512xf32>>
%97 = util.global.address @"__iree_flow_bert/encoder/layer_1/output/dense/bias" : !util.ptr<tensor<128xf32>>
%98 = util.global.address @"__iree_flow_bert/encoder/layer_1/output/dense/kernel" : !util.ptr<tensor<512x128xf32>>
%99 = util.global.address @"__iree_flow_bert/encoder/layer_10/attention/output/FakeLayerNorm/beta" : !util.ptr<tensor<128xf32>>
%100 = util.global.address @"__iree_flow_bert/encoder/layer_10/attention/output/FakeLayerNorm/gamma" : !util.ptr<tensor<128xf32>>
%101 = util.global.address @"__iree_flow_bert/encoder/layer_10/attention/output/dense/bias" : !util.ptr<tensor<128xf32>>
%102 = util.global.address @"__iree_flow_bert/encoder/layer_10/attention/output/dense/kernel" : !util.ptr<tensor<128x128xf32>>
%103 = util.global.address @"__iree_flow_bert/encoder/layer_10/attention/self/key/bias" : !util.ptr<tensor<128xf32>>
%104 = util.global.address @"__iree_flow_bert/encoder/layer_10/attention/self/key/kernel" : !util.ptr<tensor<128x128xf32>>
%105 = util.global.address @"__iree_flow_bert/encoder/layer_10/attention/self/query/bias" : !util.ptr<tensor<128xf32>>
%106 = util.global.address @"__iree_flow_bert/encoder/layer_10/attention/self/query/kernel" : !util.ptr<tensor<128x128xf32>>
%107 = util.global.address @"__iree_flow_bert/encoder/layer_10/attention/self/value/bias" : !util.ptr<tensor<128xf32>>
%108 = util.global.address @"__iree_flow_bert/encoder/layer_10/attention/self/value/kernel" : !util.ptr<tensor<512x128xf32>>
%109 = util.global.address @"__iree_flow_bert/encoder/layer_10/bottleneck/attention/FakeLayerNorm/beta" : !util.ptr<tensor<128xf32>>
%110 = util.global.address @"__iree_flow_bert/encoder/layer_10/bottleneck/attention/FakeLayerNorm/gamma" : !util.ptr<tensor<128xf32>>
%111 = util.global.address @"__iree_flow_bert/encoder/layer_10/bottleneck/attention/dense/bias" : !util.ptr<tensor<128xf32>>
%112 = util.global.address @"__iree_flow_bert/encoder/layer_10/bottleneck/attention/dense/kernel" : !util.ptr<tensor<512x128xf32>>
%113 = util.global.address @"__iree_flow_bert/encoder/layer_10/bottleneck/input/FakeLayerNorm/beta" : !util.ptr<tensor<128xf32>>
%114 = util.global.address @"__iree_flow_bert/encoder/layer_10/bottleneck/input/FakeLayerNorm/gamma" : !util.ptr<tensor<128xf32>>
%115 = util.global.address @"__iree_flow_bert/encoder/layer_10/bottleneck/input/dense/bias" : !util.ptr<tensor<128xf32>>
%116 = util.global.address @"__iree_flow_bert/encoder/layer_10/bottleneck/input/dense/kernel" : !util.ptr<tensor<512x128xf32>>
%117 = util.global.address @"__iree_flow_bert/encoder/layer_10/ffn_layer_0/intermediate/dense/bias" : !util.ptr<tensor<512xf32>>
%118 = util.global.address @"__iree_flow_bert/encoder/layer_10/ffn_layer_0/intermediate/dense/kernel" : !util.ptr<tensor<128x512xf32>>
%119 = util.global.address @"__iree_flow_bert/encoder/layer_10/ffn_layer_0/output/FakeLayerNorm/beta" : !util.ptr<tensor<128xf32>>
%120 = util.global.address @"__iree_flow_bert/encoder/layer_10/ffn_layer_0/output/FakeLayerNorm/gamma" : !util.ptr<tensor<128xf32>>
%121 = util.global.address @"__iree_flow_bert/encoder/layer_10/ffn_layer_0/output/dense/bias" : !util.ptr<tensor<128xf32>>
%122 = util.global.address @"__iree_flow_bert/encoder/layer_10/ffn_layer_0/output/dense/kernel" : !util.ptr<tensor<512x128xf32>>
%123 = util.global.address @"__iree_flow_bert/encoder/layer_10/ffn_layer_1/intermediate/dense/bias" : !util.ptr<tensor<512xf32>>
%124 = util.global.address @"__iree_flow_bert/encoder/layer_10/ffn_layer_1/intermediate/dense/kernel" : !util.ptr<tensor<128x512xf32>>
%125 = util.global.address @"__iree_flow_bert/encoder/layer_10/ffn_layer_1/output/FakeLayerNorm/beta" : !util.ptr<tensor<128xf32>>
%126 = util.global.address @"__iree_flow_bert/encoder/layer_10/ffn_layer_1/output/FakeLayerNorm/gamma" : !util.ptr<tensor<128xf32>>
%127 = util.global.address @"__iree_flow_bert/encoder/layer_10/ffn_layer_1/output/dense/bias" : !util.ptr<tensor<128xf32>>
%128 = util.global.address @"__iree_flow_bert/encoder/layer_10/ffn_layer_1/output/dense/kernel" : !util.ptr<tensor<512x128xf32>>
%129 = util.global.address @"__iree_flow_bert/encoder/layer_10/ffn_layer_2/intermediate/dense/bias" : !util.ptr<tensor<512xf32>>
%130 = util.global.address @"__iree_flow_bert/encoder/layer_10/ffn_layer_2/intermediate/dense/kernel" : !util.ptr<tensor<128x512xf32>>
%131 = util.global.address @"__iree_flow_bert/encoder/layer_10/ffn_layer_2/output/FakeLayerNorm/beta" : !util.ptr<tensor<128xf32>>
%132 = util.global.address @"__iree_flow_bert/encoder/layer_10/ffn_layer_2/output/FakeLayerNorm/gamma" : !util.ptr<tensor<128xf32>>
%133 = util.global.address @"__iree_flow_bert/encoder/layer_10/ffn_layer_2/output/dense/bias" : !util.ptr<tensor<128xf32>>
%134 = util.global.address @"__iree_flow_bert/encoder/layer_10/ffn_layer_2/output/dense/kernel" : !util.ptr<tensor<512x128xf32>>
%135 = util.global.address @"__iree_flow_bert/encoder/layer_10/intermediate/dense/bias" : !util.ptr<tensor<512xf32>>
%136 = util.global.address @"__iree_flow_bert/encoder/layer_10/intermediate/dense/kernel" : !util.ptr<tensor<128x512xf32>>
%137 = util.global.address @"__iree_flow_bert/encoder/layer_10/output/FakeLayerNorm/beta" : !util.ptr<tensor<128xf32>>
%138 = util.global.address @"__iree_flow_bert/encoder/layer_10/output/FakeLayerNorm/gamma" : !util.ptr<tensor<128xf32>>
%139 = util.global.address @"__iree_flow_bert/encoder/layer_10/output/bottleneck/FakeLayerNorm/beta" : !util.ptr<tensor<512xf32>>
%140 = util.global.address @"__iree_flow_bert/encoder/layer_10/output/bottleneck/FakeLayerNorm/gamma" : !util.ptr<tensor<512xf32>>
%141 = util.global.address @"__iree_flow_bert/encoder/layer_10/output/bottleneck/dense/bias" : !util.ptr<tensor<512xf32>>
%142 = util.global.address @"__iree_flow_bert/encoder/layer_10/output/bottleneck/dense/kernel" : !util.ptr<tensor<128x512xf32>>
%143 = util.global.address @"__iree_flow_bert/encoder/layer_10/output/dense/bias" : !util.ptr<tensor<128xf32>>
%144 = util.global.address @"__iree_flow_bert/encoder/layer_10/output/dense/kernel" : !util.ptr<tensor<512x128xf32>>
%145 = util.global.address @"__iree_flow_bert/encoder/layer_11/attention/output/FakeLayerNorm/beta" : !util.ptr<tensor<128xf32>>
%146 = util.global.address @"__iree_flow_bert/encoder/layer_11/attention/output/FakeLayerNorm/gamma" : !util.ptr<tensor<128xf32>>
%147 = util.global.address @"__iree_flow_bert/encoder/layer_11/attention/output/dense/bias" : !util.ptr<tensor<128xf32>>
%148 = util.global.address @"__iree_flow_bert/encoder/layer_11/attention/output/dense/kernel" : !util.ptr<tensor<128x128xf32>>
%149 = util.global.address @"__iree_flow_bert/encoder/layer_11/attention/self/key/bias" : !util.ptr<tensor<128xf32>>
%150 = util.global.address @"__iree_flow_bert/encoder/layer_11/attention/self/key/kernel" : !util.ptr<tensor<128x128xf32>>
%151 = util.global.address @"__iree_flow_bert/encoder/layer_11/attention/self/query/bias" : !util.ptr<tensor<128xf32>>
%152 = util.global.address @"__iree_flow_bert/encoder/layer_11/attention/self/query/kernel" : !util.ptr<tensor<128x128xf32>>
%153 = util.global.address @"__iree_flow_bert/encoder/layer_11/attention/self/value/bias" : !util.ptr<tensor<128xf32>>
%154 = util.global.address @"__iree_flow_bert/encoder/layer_11/attention/self/value/kernel" : !util.ptr<tensor<512x128xf32>>
%155 = util.global.address @"__iree_flow_bert/encoder/layer_11/bottleneck/attention/FakeLayerNorm/beta" : !util.ptr<tensor<128xf32>>
%156 = util.global.address @"__iree_flow_bert/encoder/layer_11/bottleneck/attention/FakeLayerNorm/gamma" : !util.ptr<tensor<128xf32>>
%157 = util.global.address @"__iree_flow_bert/encoder/layer_11/bottleneck/attention/dense/bias" : !util.ptr<tensor<128xf32>>
%158 = util.global.address @"__iree_flow_bert/encoder/layer_11/bottleneck/attention/dense/kernel" : !util.ptr<tensor<512x128xf32>>
%159 = util.global.address @"__iree_flow_bert/encoder/layer_11/bottleneck/input/FakeLayerNorm/beta" : !util.ptr<tensor<128xf32>>
%160 = util.global.address @"__iree_flow_bert/encoder/layer_11/bottleneck/input/FakeLayerNorm/gamma" : !util.ptr<tensor<128xf32>>
%161 = util.global.address @"__iree_flow_bert/encoder/layer_11/bottleneck/input/dense/bias" : !util.ptr<tensor<128xf32>>
%162 = util.global.address @"__iree_flow_bert/encoder/layer_11/bottleneck/input/dense/kernel" : !util.ptr<tensor<512x128xf32>>
%163 = util.global.address @"__iree_flow_bert/encoder/layer_11/ffn_layer_0/intermediate/dense/bias" : !util.ptr<tensor<512xf32>>
%164 = util.global.address @"__iree_flow_bert/encoder/layer_11/ffn_layer_0/intermediate/dense/kernel" : !util.ptr<tensor<128x512xf32>>
%165 = util.global.address @"__iree_flow_bert/encoder/layer_11/ffn_layer_0/output/FakeLayerNorm/beta" : !util.ptr<tensor<128xf32>>
%166 = util.global.address @"__iree_flow_bert/encoder/layer_11/ffn_layer_0/output/FakeLayerNorm/gamma" : !util.ptr<tensor<128xf32>>
%167 = util.global.address @"__iree_flow_bert/encoder/layer_11/ffn_layer_0/output/dense/bias" : !util.ptr<tensor<128xf32>>
%168 = util.global.address @"__iree_flow_bert/encoder/layer_11/ffn_layer_0/output/dense/kernel" : !util.ptr<tensor<512x128xf32>>
%169 = util.global.address @"__iree_flow_bert/encoder/layer_11/ffn_layer_1/intermediate/dense/bias" : !util.ptr<tensor<512xf32>>
%170 = util.global.address @"__iree_flow_bert/encoder/layer_11/ffn_layer_1/intermediate/dense/kernel" : !util.ptr<tensor<128x512xf32>>
%171 = util.global.address @"__iree_flow_bert/encoder/layer_11/ffn_layer_1/output/FakeLayerNorm/beta" : !util.ptr<tensor<128xf32>>
%172 = util.global.address @"__iree_flow_bert/encoder/layer_11/ffn_layer_1/output/FakeLayerNorm/gamma" : !util.ptr<tensor<128xf32>>
%173 = util.global.address @"__iree_flow_bert/encoder/layer_11/ffn_layer_1/output/dense/bias" : !util.ptr<tensor<128xf32>>
%174 = util.global.address @"__iree_flow_bert/encoder/layer_11/ffn_layer_1/output/dense/kernel" : !util.ptr<tensor<512x128xf32>>
%175 = util.global.address @"__iree_flow_bert/encoder/layer_11/ffn_layer_2/intermediate/dense/bias" : !util.ptr<tensor<512xf32>>
%176 = util.global.address @"__iree_flow_bert/encoder/layer_11/ffn_layer_2/intermediate/dense/kernel" : !util.ptr<tensor<128x512xf32>>
%177 = util.global.address @"__iree_flow_bert/encoder/layer_11/ffn_layer_2/output/FakeLayerNorm/beta" : !util.ptr<tensor<128xf32>>
%178 = util.global.address @"__iree_flow_bert/encoder/layer_11/ffn_layer_2/output/FakeLayerNorm/gamma" : !util.ptr<tensor<128xf32>>
%179 = util.global.address @"__iree_flow_bert/encoder/layer_11/ffn_layer_2/output/dense/bias" : !util.ptr<tensor<128xf32>>
%180 = util.global.address @"__iree_flow_bert/encoder/layer_11/ffn_layer_2/output/dense/kernel" : !util.ptr<tensor<512x128xf32>>
%181 = util.global.address @"__iree_flow_bert/encoder/layer_11/intermediate/dense/bias" : !util.ptr<tensor<512xf32>>
%182 = util.global.address @"__iree_flow_bert/encoder/layer_11/intermediate/dense/kernel" : !util.ptr<tensor<128x512xf32>>
%183 = util.global.address @"__iree_flow_bert/encoder/layer_11/output/FakeLayerNorm/beta" : !util.ptr<tensor<128xf32>>
%184 = util.global.address @"__iree_flow_bert/encoder/layer_11/output/FakeLayerNorm/gamma" : !util.ptr<tensor<128xf32>>
%185 = util.global.address @"__iree_flow_bert/encoder/layer_11/output/bottleneck/FakeLayerNorm/beta" : !util.ptr<tensor<512xf32>>
%186 = util.global.address @"__iree_flow_bert/encoder/layer_11/output/bottleneck/FakeLayerNorm/gamma" : !util.ptr<tensor<512xf32>>
%187 = util.global.address @"__iree_flow_bert/encoder/layer_11/output/bottleneck/dense/bias" : !util.ptr<tensor<512xf32>>
%188 = util.global.address @"__iree_flow_bert/encoder/layer_11/output/bottleneck/dense/kernel" : !util.ptr<tensor<128x512xf32>>
%189 = util.global.address @"__iree_flow_bert/encoder/layer_11/output/dense/bias" : !util.ptr<tensor<128xf32>>
%190 = util.global.address @"__iree_flow_bert/encoder/layer_11/output/dense/kernel" : !util.ptr<tensor<512x128xf32>>
%191 = util.global.address @"__iree_flow_bert/encoder/layer_12/attention/output/FakeLayerNorm/beta" : !util.ptr<tensor<128xf32>>
%192 = util.global.address @"__iree_flow_bert/encoder/layer_12/attention/output/FakeLayerNorm/gamma" : !util.ptr<tensor<128xf32>>
%193 = util.global.address @"__iree_flow_bert/encoder/layer_12/attention/output/dense/bias" : !util.ptr<tensor<128xf32>>
%194 = util.global.address @"__iree_flow_bert/encoder/layer_12/attention/output/dense/kernel" : !util.ptr<tensor<128x128xf32>>
%195 = util.global.address @"__iree_flow_bert/encoder/layer_12/attention/self/key/bias" : !util.ptr<tensor<128xf32>>
%196 = util.global.address @"__iree_flow_bert/encoder/layer_12/attention/self/key/kernel" : !util.ptr<tensor<128x128xf32>>
%197 = util.global.address @"__iree_flow_bert/encoder/layer_12/attention/self/query/bias" : !util.ptr<tensor<128xf32>>
%198 = util.global.address @"__iree_flow_bert/encoder/layer_12/attention/self/query/kernel" : !util.ptr<tensor<128x128xf32>>
%199 = util.global.address @"__iree_flow_bert/encoder/layer_12/attention/self/value/bias" : !util.ptr<tensor<128xf32>>
%200 = util.global.address @"__iree_flow_bert/encoder/layer_12/attention/self/value/kernel" : !util.ptr<tensor<512x128xf32>>
%201 = util.global.address @"__iree_flow_bert/encoder/layer_12/bottleneck/attention/FakeLayerNorm/beta" : !util.ptr<tensor<128xf32>>
%202 = util.global.address @"__iree_flow_bert/encoder/layer_12/bottleneck/attention/FakeLayerNorm/gamma" : !util.ptr<tensor<128xf32>>
%203 = util.global.address @"__iree_flow_bert/encoder/layer_12/bottleneck/attention/dense/bias" : !util.ptr<tensor<128xf32>>
%204 = util.global.address @"__iree_flow_bert/encoder/layer_12/bottleneck/attention/dense/kernel" : !util.ptr<tensor<512x128xf32>>
%205 = util.global.address @"__iree_flow_bert/encoder/layer_12/bottleneck/input/FakeLayerNorm/beta" : !util.ptr<tensor<128xf32>>
%206 = util.global.address @"__iree_flow_bert/encoder/layer_12/bottleneck/input/FakeLayerNorm/gamma" : !util.ptr<tensor<128xf32>>
%207 = util.global.address @"__iree_flow_bert/encoder/layer_12/bottleneck/input/dense/bias" : !util.ptr<tensor<128xf32>>
%208 = util.global.address @"__iree_flow_bert/encoder/layer_12/bottleneck/input/dense/kernel" : !util.ptr<tensor<512x128xf32>>
%209 = util.global.address @"__iree_flow_bert/encoder/layer_12/ffn_layer_0/intermediate/dense/bias" : !util.ptr<tensor<512xf32>>
%210 = util.global.address @"__iree_flow_bert/encoder/layer_12/ffn_layer_0/intermediate/dense/kernel" : !util.ptr<tensor<128x512xf32>>
%211 = util.global.address @"__iree_flow_bert/encoder/layer_12/ffn_layer_0/output/FakeLayerNorm/beta" : !util.ptr<tensor<128xf32>>
%212 = util.global.address @"__iree_flow_bert/encoder/layer_12/ffn_layer_0/output/FakeLayerNorm/gamma" : !util.ptr<tensor<128xf32>>
%213 = util.global.address @"__iree_flow_bert/encoder/layer_12/ffn_layer_0/output/dense/bias" : !util.ptr<tensor<128xf32>>
%214 = util.global.address @"__iree_flow_bert/encoder/layer_12/ffn_layer_0/output/dense/kernel" : !util.ptr<tensor<512x128xf32>>
%215 = util.global.address @"__iree_flow_bert/encoder/layer_12/ffn_layer_1/intermediate/dense/bias" : !util.ptr<tensor<512xf32>>
%216 = util.global.address @"__iree_flow_bert/encoder/layer_12/ffn_layer_1/intermediate/dense/kernel" : !util.ptr<tensor<128x512xf32>>
%217 = util.global.address @"__iree_flow_bert/encoder/layer_12/ffn_layer_1/output/FakeLayerNorm/beta" : !util.ptr<tensor<128xf32>>
%218 = util.global.address @"__iree_flow_bert/encoder/layer_12/ffn_layer_1/output/FakeLayerNorm/gamma" : !util.ptr<tensor<128xf32>>
%219 = util.global.address @"__iree_flow_bert/encoder/layer_12/ffn_layer_1/output/dense/bias" : !util.ptr<tensor<128xf32>>
%220 = util.global.address @"__iree_flow_bert/encoder/layer_12/ffn_layer_1/output/dense/kernel" : !util.ptr<tensor<512x128xf32>>
%221 = util.global.address @"__iree_flow_bert/encoder/layer_12/ffn_layer_2/intermediate/dense/bias" : !util.ptr<tensor<512xf32>>
%222 = util.global.address @"__iree_flow_bert/encoder/layer_12/ffn_layer_2/intermediate/dense/kernel" : !util.ptr<tensor<128x512xf32>>
%223 = util.global.address @"__iree_flow_bert/encoder/layer_12/ffn_layer_2/output/FakeLayerNorm/beta" : !util.ptr<tensor<128xf32>>
%224 = util.global.address @"__iree_flow_bert/encoder/layer_12/ffn_layer_2/output/FakeLayerNorm/gamma" : !util.ptr<tensor<128xf32>>
%225 = util.global.address @"__iree_flow_bert/encoder/layer_12/ffn_layer_2/output/dense/bias" : !util.ptr<tensor<128xf32>>
%226 = util.global.address @"__iree_flow_bert/encoder/layer_12/ffn_layer_2/output/dense/kernel" : !util.ptr<tensor<512x128xf32>>
%227 = util.global.address @"__iree_flow_bert/encoder/layer_12/intermediate/dense/bias" : !util.ptr<tensor<512xf32>>
%228 = util.global.address @"__iree_flow_bert/encoder/layer_12/intermediate/dense/kernel" : !util.ptr<tensor<128x512xf32>>
%229 = util.global.address @"__iree_flow_bert/encoder/layer_12/output/FakeLayerNorm/beta" : !util.ptr<tensor<128xf32>>
%230 = util.global.address @"__iree_flow_bert/encoder/layer_12/output/FakeLayerNorm/gamma" : !util.ptr<tensor<128xf32>>
%231 = util.global.address @"__iree_flow_bert/encoder/layer_12/output/bottleneck/FakeLayerNorm/beta" : !util.ptr<tensor<512xf32>>
%232 = util.global.address @"__iree_flow_bert/encoder/layer_12/output/bottleneck/FakeLayerNorm/gamma" : !util.ptr<tensor<512xf32>>
%233 = util.global.address @"__iree_flow_bert/encoder/layer_12/output/bottleneck/dense/bias" : !util.ptr<tensor<512xf32>>
%234 = util.global.address @"__iree_flow_bert/encoder/layer_12/output/bottleneck/dense/kernel" : !util.ptr<tensor<128x512xf32>>
%235 = util.global.address @"__iree_flow_bert/encoder/layer_12/output/dense/bias" : !util.ptr<tensor<128xf32>>
%236 = util.global.address @"__iree_flow_bert/encoder/layer_12/output/dense/kernel" : !util.ptr<tensor<512x128xf32>>
%237 = util.global.address @"__iree_flow_bert/encoder/layer_13/attention/output/FakeLayerNorm/beta" : !util.ptr<tensor<128xf32>>
%238 = util.global.address @"__iree_flow_bert/encoder/layer_13/attention/output/FakeLayerNorm/gamma" : !util.ptr<tensor<128xf32>>
%239 = util.global.address @"__iree_flow_bert/encoder/layer_13/attention/output/dense/bias" : !util.ptr<tensor<128xf32>>
%240 = util.global.address @"__iree_flow_bert/encoder/layer_13/attention/output/dense/kernel" : !util.ptr<tensor<128x128xf32>>
%241 = util.global.address @"__iree_flow_bert/encoder/layer_13/attention/self/key/bias" : !util.ptr<tensor<128xf32>>
%242 = util.global.address @"__iree_flow_bert/encoder/layer_13/attention/self/key/kernel" : !util.ptr<tensor<128x128xf32>>
%243 = util.global.address @"__iree_flow_bert/encoder/layer_13/attention/self/query/bias" : !util.ptr<tensor<128xf32>>
%244 = util.global.address @"__iree_flow_bert/encoder/layer_13/attention/self/query/kernel" : !util.ptr<tensor<128x128xf32>>
%245 = util.global.address @"__iree_flow_bert/encoder/layer_13/attention/self/value/bias" : !util.ptr<tensor<128xf32>>
%246 = util.global.address @"__iree_flow_bert/encoder/layer_13/attention/self/value/kernel" : !util.ptr<tensor<512x128xf32>>
%247 = util.global.address @"__iree_flow_bert/encoder/layer_13/bottleneck/attention/FakeLayerNorm/beta" : !util.ptr<tensor<128xf32>>
%248 = util.global.address @"__iree_flow_bert/encoder/layer_13/bottleneck/attention/FakeLayerNorm/gamma" : !util.ptr<tensor<128xf32>>
%249 = util.global.address @"__iree_flow_bert/encoder/layer_13/bottleneck/attention/dense/bias" : !util.ptr<tensor<128xf32>>
%250 = util.global.address @"__iree_flow_bert/encoder/layer_13/bottleneck/attention/dense/kernel" : !util.ptr<tensor<512x128xf32>>
%251 = util.global.address @"__iree_flow_bert/encoder/layer_13/bottleneck/input/FakeLayerNorm/beta" : !util.ptr<tensor<128xf32>>
%252 = util.global.address @"__iree_flow_bert/encoder/layer_13/bottleneck/input/FakeLayerNorm/gamma" : !util.ptr<tensor<128xf32>>
%253 = util.global.address @"__iree_flow_bert/encoder/layer_13/bottleneck/input/dense/bias" : !util.ptr<tensor<128xf32>>
%254 = util.global.address @"__iree_flow_bert/encoder/layer_13/bottleneck/input/dense/kernel" : !util.ptr<tensor<512x128xf32>>
%255 = util.global.address @"__iree_flow_bert/encoder/layer_13/ffn_layer_0/intermediate/dense/bias" : !util.ptr<tensor<512xf32>>
%256 = util.global.address @"__iree_flow_bert/encoder/layer_13/ffn_layer_0/intermediate/dense/kernel" : !util.ptr<tensor<128x512xf32>>
%257 = util.global.address @"__iree_flow_bert/encoder/layer_13/ffn_layer_0/output/FakeLayerNorm/beta" : !util.ptr<tensor<128xf32>>
%258 = util.global.address @"__iree_flow_bert/encoder/layer_13/ffn_layer_0/output/FakeLayerNorm/gamma" : !util.ptr<tensor<128xf32>>
%259 = util.global.address @"__iree_flow_bert/encoder/layer_13/ffn_layer_0/output/dense/bias" : !util.ptr<tensor<128xf32>>
%260 = util.global.address @"__iree_flow_bert/encoder/layer_13/ffn_layer_0/output/dense/kernel" : !util.ptr<tensor<512x128xf32>>
%261 = util.global.address @"__iree_flow_bert/encoder/layer_13/ffn_layer_1/intermediate/dense/bias" : !util.ptr<tensor<512xf32>>
%262 = util.global.address @"__iree_flow_bert/encoder/layer_13/ffn_layer_1/intermediate/dense/kernel" : !util.ptr<tensor<128x512xf32>>
%263 = util.global.address @"__iree_flow_bert/encoder/layer_13/ffn_layer_1/output/FakeLayerNorm/beta" : !util.ptr<tensor<128xf32>>
%264 = util.global.address @"__iree_flow_bert/encoder/layer_13/ffn_layer_1/output/FakeLayerNorm/gamma" : !util.ptr<tensor<128xf32>>
%265 = util.global.address @"__iree_flow_bert/encoder/layer_13/ffn_layer_1/output/dense/bias" : !util.ptr<tensor<128xf32>>
%266 = util.global.address @"__iree_flow_bert/encoder/layer_13/ffn_layer_1/output/dense/kernel" : !util.ptr<tensor<512x128xf32>>
%267 = util.global.address @"__iree_flow_bert/encoder/layer_13/ffn_layer_2/intermediate/dense/bias" : !util.ptr<tensor<512xf32>>
%268 = util.global.address @"__iree_flow_bert/encoder/layer_13/ffn_layer_2/intermediate/dense/kernel" : !util.ptr<tensor<128x512xf32>>
%269 = util.global.address @"__iree_flow_bert/encoder/layer_13/ffn_layer_2/output/FakeLayerNorm/beta" : !util.ptr<tensor<128xf32>>
%270 = util.global.address @"__iree_flow_bert/encoder/layer_13/ffn_layer_2/output/FakeLayerNorm/gamma" : !util.ptr<tensor<128xf32>>
%271 = util.global.address @"__iree_flow_bert/encoder/layer_13/ffn_layer_2/output/dense/bias" : !util.ptr<tensor<128xf32>>
%272 = util.global.address @"__iree_flow_bert/encoder/layer_13/ffn_layer_2/output/dense/kernel" : !util.ptr<tensor<512x128xf32>>
%273 = util.global.address @"__iree_flow_bert/encoder/layer_13/intermediate/dense/bias" : !util.ptr<tensor<512xf32>>
%274 = util.global.address @"__iree_flow_bert/encoder/layer_13/intermediate/dense/kernel" : !util.ptr<tensor<128x512xf32>>
%275 = util.global.address @"__iree_flow_bert/encoder/layer_13/output/FakeLayerNorm/beta" : !util.ptr<tensor<128xf32>>
%276 = util.global.address @"__iree_flow_bert/encoder/layer_13/output/FakeLayerNorm/gamma" : !util.ptr<tensor<128xf32>>
%277 = util.global.address @"__iree_flow_bert/encoder/layer_13/output/bottleneck/FakeLayerNorm/beta" : !util.ptr<tensor<512xf32>>
%278 = util.global.address @"__iree_flow_bert/encoder/layer_13/output/bottleneck/FakeLayerNorm/gamma" : !util.ptr<tensor<512xf32>>
%279 = util.global.address @"__iree_flow_bert/encoder/layer_13/output/bottleneck/dense/bias" : !util.ptr<tensor<512xf32>>
%280 = util.global.address @"__iree_flow_bert/encoder/layer_13/output/bottleneck/dense/kernel" : !util.ptr<tensor<128x512xf32>>
%281 = util.global.address @"__iree_flow_bert/encoder/layer_13/output/dense/bias" : !util.ptr<tensor<128xf32>>
%282 = util.global.address @"__iree_flow_bert/encoder/layer_13/output/dense/kernel" : !util.ptr<tensor<512x128xf32>>
%283 = util.global.address @"__iree_flow_bert/encoder/layer_14/attention/output/FakeLayerNorm/beta" : !util.ptr<tensor<128xf32>>
%284 = util.global.address @"__iree_flow_bert/encoder/layer_14/attention/output/FakeLayerNorm/gamma" : !util.ptr<tensor<128xf32>>
%285 = util.global.address @"__iree_flow_bert/encoder/layer_14/attention/output/dense/bias" : !util.ptr<tensor<128xf32>>
%286 = util.global.address @"__iree_flow_bert/encoder/layer_14/attention/output/dense/kernel" : !util.ptr<tensor<128x128xf32>>
%287 = util.global.address @"__iree_flow_bert/encoder/layer_14/attention/self/key/bias" : !util.ptr<tensor<128xf32>>
%288 = util.global.address @"__iree_flow_bert/encoder/layer_14/attention/self/key/kernel" : !util.ptr<tensor<128x128xf32>>
%289 = util.global.address @"__iree_flow_bert/encoder/layer_14/attention/self/query/bias" : !util.ptr<tensor<128xf32>>
%290 = util.global.address @"__iree_flow_bert/encoder/layer_14/attention/self/query/kernel" : !util.ptr<tensor<128x128xf32>>
%291 = util.global.address @"__iree_flow_bert/encoder/layer_14/attention/self/value/bias" : !util.ptr<tensor<128xf32>>
%292 = util.global.address @"__iree_flow_bert/encoder/layer_14/attention/self/value/kernel" : !util.ptr<tensor<512x128xf32>>
%293 = util.global.address @"__iree_flow_bert/encoder/layer_14/bottleneck/attention/FakeLayerNorm/beta" : !util.ptr<tensor<128xf32>>
%294 = util.global.address @"__iree_flow_bert/encoder/layer_14/bottleneck/attention/FakeLayerNorm/gamma" : !util.ptr<tensor<128xf32>>
%295 = util.global.address @"__iree_flow_bert/encoder/layer_14/bottleneck/attention/dense/bias" : !util.ptr<tensor<128xf32>>
%296 = util.global.address @"__iree_flow_bert/encoder/layer_14/bottleneck/attention/dense/kernel" : !util.ptr<tensor<512x128xf32>>
%297 = util.global.address @"__iree_flow_bert/encoder/layer_14/bottleneck/input/FakeLayerNorm/beta" : !util.ptr<tensor<128xf32>>
%298 = util.global.address @"__iree_flow_bert/encoder/layer_14/bottleneck/input/FakeLayerNorm/gamma" : !util.ptr<tensor<128xf32>>
%299 = util.global.address @"__iree_flow_bert/encoder/layer_14/bottleneck/input/dense/bias" : !util.ptr<tensor<128xf32>>
%300 = util.global.address @"__iree_flow_bert/encoder/layer_14/bottleneck/input/dense/kernel" : !util.ptr<tensor<512x128xf32>>
%301 = util.global.address @"__iree_flow_bert/encoder/layer_14/ffn_layer_0/intermediate/dense/bias" : !util.ptr<tensor<512xf32>>
%302 = util.global.address @"__iree_flow_bert/encoder/layer_14/ffn_layer_0/intermediate/dense/kernel" : !util.ptr<tensor<128x512xf32>>
%303 = util.global.address @"__iree_flow_bert/encoder/layer_14/ffn_layer_0/output/FakeLayerNorm/beta" : !util.ptr<tensor<128xf32>>
%304 = util.global.address @"__iree_flow_bert/encoder/layer_14/ffn_layer_0/output/FakeLayerNorm/gamma" : !util.ptr<tensor<128xf32>>
%305 = util.global.address @"__iree_flow_bert/encoder/layer_14/ffn_layer_0/output/dense/bias" : !util.ptr<tensor<128xf32>>
%306 = util.global.address @"__iree_flow_bert/encoder/layer_14/ffn_layer_0/output/dense/kernel" : !util.ptr<tensor<512x128xf32>>
%307 = util.global.address @"__iree_flow_bert/encoder/layer_14/ffn_layer_1/intermediate/dense/bias" : !util.ptr<tensor<512xf32>>
%308 = util.global.address @"__iree_flow_bert/encoder/layer_14/ffn_layer_1/intermediate/dense/kernel" : !util.ptr<tensor<128x512xf32>>
%309 = util.global.address @"__iree_flow_bert/encoder/layer_14/ffn_layer_1/output/FakeLayerNorm/beta" : !util.ptr<tensor<128xf32>>
%310 = util.global.address @"__iree_flow_bert/encoder/layer_14/ffn_layer_1/output/FakeLayerNorm/gamma" : !util.ptr<tensor<128xf32>>
%311 = util.global.address @"__iree_flow_bert/encoder/layer_14/ffn_layer_1/output/dense/bias" : !util.ptr<tensor<128xf32>>
%312 = util.global.address @"__iree_flow_bert/encoder/layer_14/ffn_layer_1/output/dense/kernel" : !util.ptr<tensor<512x128xf32>>
%313 = util.global.address @"__iree_flow_bert/encoder/layer_14/ffn_layer_2/intermediate/dense/bias" : !util.ptr<tensor<512xf32>>
%314 = util.global.address @"__iree_flow_bert/encoder/layer_14/ffn_layer_2/intermediate/dense/kernel" : !util.ptr<tensor<128x512xf32>>
%315 = util.global.address @"__iree_flow_bert/encoder/layer_14/ffn_layer_2/output/FakeLayerNorm/beta" : !util.ptr<tensor<128xf32>>
%316 = util.global.address @"__iree_flow_bert/encoder/layer_14/ffn_layer_2/output/FakeLayerNorm/gamma" : !util.ptr<tensor<128xf32>>
%317 = util.global.address @"__iree_flow_bert/encoder/layer_14/ffn_layer_2/output/dense/bias" : !util.ptr<tensor<128xf32>>
%318 = util.global.address @"__iree_flow_bert/encoder/layer_14/ffn_layer_2/output/dense/kernel" : !util.ptr<tensor<512x128xf32>>
%319 = util.global.address @"__iree_flow_bert/encoder/layer_14/intermediate/dense/bias" : !util.ptr<tensor<512xf32>>
%320 = util.global.address @"__iree_flow_bert/encoder/layer_14/intermediate/dense/kernel" : !util.ptr<tensor<128x512xf32>>
%321 = util.global.address @"__iree_flow_bert/encoder/layer_14/output/FakeLayerNorm/beta" : !util.ptr<tensor<128xf32>>
%322 = util.global.address @"__iree_flow_bert/encoder/layer_14/output/FakeLayerNorm/gamma" : !util.ptr<tensor<128xf32>>
%323 = util.global.address @"__iree_flow_bert/encoder/layer_14/output/bottleneck/FakeLayerNorm/beta" : !util.ptr<tensor<512xf32>>
%324 = util.global.address @"__iree_flow_bert/encoder/layer_14/output/bottleneck/FakeLayerNorm/gamma" : !util.ptr<tensor<512xf32>>
%325 = util.global.address @"__iree_flow_bert/encoder/layer_14/output/bottleneck/dense/bias" : !util.ptr<tensor<512xf32>>
%326 = util.global.address @"__iree_flow_bert/encoder/layer_14/output/bottleneck/dense/kernel" : !util.ptr<tensor<128x512xf32>>
%327 = util.global.address @"__iree_flow_bert/encoder/layer_14/output/dense/bias" : !util.ptr<tensor<128xf32>>
%328 = util.global.address @"__iree_flow_bert/encoder/layer_14/output/dense/kernel" : !util.ptr<tensor<512x128xf32>>
%329 = util.global.address @"__iree_flow_bert/encoder/layer_15/attention/output/FakeLayerNorm/beta" : !util.ptr<tensor<128xf32>>
%330 = util.global.address @"__iree_flow_bert/encoder/layer_15/attention/output/FakeLayerNorm/gamma" : !util.ptr<tensor<128xf32>>
%331 = util.global.address @"__iree_flow_bert/encoder/layer_15/attention/output/dense/bias" : !util.ptr<tensor<128xf32>>
%332 = util.global.address @"__iree_flow_bert/encoder/layer_15/attention/output/dense/kernel" : !util.ptr<tensor<128x128xf32>>
%333 = util.global.address @"__iree_flow_bert/encoder/layer_15/attention/self/key/bias" : !util.ptr<tensor<128xf32>>
%334 = util.global.address @"__iree_flow_bert/encoder/layer_15/attention/self/key/kernel" : !util.ptr<tensor<128x128xf32>>
%335 = util.global.address @"__iree_flow_bert/encoder/layer_15/attention/self/query/bias" : !util.ptr<tensor<128xf32>>
%336 = util.global.address @"__iree_flow_bert/encoder/layer_15/attention/self/query/kernel" : !util.ptr<tensor<128x128xf32>>
%337 = util.global.address @"__iree_flow_bert/encoder/layer_15/attention/self/value/bias" : !util.ptr<tensor<128xf32>>
%338 = util.global.address @"__iree_flow_bert/encoder/layer_15/attention/self/value/kernel" : !util.ptr<tensor<512x128xf32>>
%339 = util.global.address @"__iree_flow_bert/encoder/layer_15/bottleneck/attention/FakeLayerNorm/beta" : !util.ptr<tensor<128xf32>>
%340 = util.global.address @"__iree_flow_bert/encoder/layer_15/bottleneck/attention/FakeLayerNorm/gamma" : !util.ptr<tensor<128xf32>>
%341 = util.global.address @"__iree_flow_bert/encoder/layer_15/bottleneck/attention/dense/bias" : !util.ptr<tensor<128xf32>>
%342 = util.global.address @"__iree_flow_bert/encoder/layer_15/bottleneck/attention/dense/kernel" : !util.ptr<tensor<512x128xf32>>
%343 = util.global.address @"__iree_flow_bert/encoder/layer_15/bottleneck/input/FakeLayerNorm/beta" : !util.ptr<tensor<128xf32>>
%344 = util.global.address @"__iree_flow_bert/encoder/layer_15/bottleneck/input/FakeLayerNorm/gamma" : !util.ptr<tensor<128xf32>>
%345 = util.global.address @"__iree_flow_bert/encoder/layer_15/bottleneck/input/dense/bias" : !util.ptr<tensor<128xf32>>
%346 = util.global.address @"__iree_flow_bert/encoder/layer_15/bottleneck/input/dense/kernel" : !util.ptr<tensor<512x128xf32>>
%347 = util.global.address @"__iree_flow_bert/encoder/layer_15/ffn_layer_0/intermediate/dense/bias" : !util.ptr<tensor<512xf32>>
%348 = util.global.address @"__iree_flow_bert/encoder/layer_15/ffn_layer_0/intermediate/dense/kernel" : !util.ptr<tensor<128x512xf32>>
%349 = util.global.address @"__iree_flow_bert/encoder/layer_15/ffn_layer_0/output/FakeLayerNorm/beta" : !util.ptr<tensor<128xf32>>
%350 = util.global.address @"__iree_flow_bert/encoder/layer_15/ffn_layer_0/output/FakeLayerNorm/gamma" : !util.ptr<tensor<128xf32>>
%351 = util.global.address @"__iree_flow_bert/encoder/layer_15/ffn_layer_0/output/dense/bias" : !util.ptr<tensor<128xf32>>
%352 = util.global.address @"__iree_flow_bert/encoder/layer_15/ffn_layer_0/output/dense/kernel" : !util.ptr<tensor<512x128xf32>>
%353 = util.global.address @"__iree_flow_bert/encoder/layer_15/ffn_layer_1/intermediate/dense/bias" : !util.ptr<tensor<512xf32>>
%354 = util.global.address @"__iree_flow_bert/encoder/layer_15/ffn_layer_1/intermediate/dense/kernel" : !util.ptr<tensor<128x512xf32>>
%355 = util.global.address @"__iree_flow_bert/encoder/layer_15/ffn_layer_1/output/FakeLayerNorm/beta" : !util.ptr<tensor<128xf32>>
%356 = util.global.address @"__iree_flow_bert/encoder/layer_15/ffn_layer_1/output/FakeLayerNorm/gamma" : !util.ptr<tensor<128xf32>>
%357 = util.global.address @"__iree_flow_bert/encoder/layer_15/ffn_layer_1/output/dense/bias" : !util.ptr<tensor<128xf32>>
%358 = util.global.address @"__iree_flow_bert/encoder/layer_15/ffn_layer_1/output/dense/kernel" : !util.ptr<tensor<512x128xf32>>
%359 = util.global.address @"__iree_flow_bert/encoder/layer_15/ffn_layer_2/intermediate/dense/bias" : !util.ptr<tensor<512xf32>>
%360 = util.global.address @"__iree_flow_bert/encoder/layer_15/ffn_layer_2/intermediate/dense/kernel" : !util.ptr<tensor<128x512xf32>>
%361 = util.global.address @"__iree_flow_bert/encoder/layer_15/ffn_layer_2/output/FakeLayerNorm/beta" : !util.ptr<tensor<128xf32>>
%362 = util.global.address @"__iree_flow_bert/encoder/layer_15/ffn_layer_2/output/FakeLayerNorm/gamma" : !util.ptr<tensor<128xf32>>
%363 = util.global.address @"__iree_flow_bert/encoder/layer_15/ffn_layer_2/output/dense/bias" : !util.ptr<tensor<128xf32>>
%364 = util.global.address @"__iree_flow_bert/encoder/layer_15/ffn_layer_2/output/dense/kernel" : !util.ptr<tensor<512x128xf32>>
%365 = util.global.address @"__iree_flow_bert/encoder/layer_15/intermediate/dense/bias" : !util.ptr<tensor<512xf32>>
%366 = util.global.address @"__iree_flow_bert/encoder/layer_15/intermediate/dense/kernel" : !util.ptr<tensor<128x512xf32>>
%367 = util.global.address @"__iree_flow_bert/encoder/layer_15/output/FakeLayerNorm/beta" : !util.ptr<tensor<128xf32>>
%368 = util.global.address @"__iree_flow_bert/encoder/layer_15/output/FakeLayerNorm/gamma" : !util.ptr<tensor<128xf32>>
%369 = util.global.address @"__iree_flow_bert/encoder/layer_15/output/bottleneck/FakeLayerNorm/beta" : !util.ptr<tensor<512xf32>>
%370 = util.global.address @"__iree_flow_bert/encoder/layer_15/output/bottleneck/FakeLayerNorm/gamma" : !util.ptr<tensor<512xf32>>
%371 = util.global.address @"__iree_flow_bert/encoder/layer_15/output/bottleneck/dense/bias" : !util.ptr<tensor<512xf32>>
%372 = util.global.address @"__iree_flow_bert/encoder/layer_15/output/bottleneck/dense/kernel" : !util.ptr<tensor<128x512xf32>>
%373 = util.global.address @"__iree_flow_bert/encoder/layer_15/output/dense/bias" : !util.ptr<tensor<128xf32>>
%374 = util.global.address @"__iree_flow_bert/encoder/layer_15/output/dense/kernel" : !util.ptr<tensor<512x128xf32>>
%375 = util.global.address @"__iree_flow_bert/encoder/layer_16/attention/output/FakeLayerNorm/beta" : !util.ptr<tensor<128xf32>>
%376 = util.global.address @"__iree_flow_bert/encoder/layer_16/attention/output/FakeLayerNorm/gamma" : !util.ptr<tensor<128xf32>>
%377 = util.global.address @"__iree_flow_bert/encoder/layer_16/attention/output/dense/bias" : !util.ptr<tensor<128xf32>>
%378 = util.global.address @"__iree_flow_bert/encoder/layer_16/attention/output/dense/kernel" : !util.ptr<tensor<128x128xf32>>
%379 = util.global.address @"__iree_flow_bert/encoder/layer_16/attention/self/key/bias" : !util.ptr<tensor<128xf32>>
%380 = util.global.address @"__iree_flow_bert/encoder/layer_16/attention/self/key/kernel" : !util.ptr<tensor<128x128xf32>>
%381 = util.global.address @"__iree_flow_bert/encoder/layer_16/attention/self/query/bias" : !util.ptr<tensor<128xf32>>
%382 = util.global.address @"__iree_flow_bert/encoder/layer_16/attention/self/query/kernel" : !util.ptr<tensor<128x128xf32>>
%383 = util.global.address @"__iree_flow_bert/encoder/layer_16/attention/self/value/bias" : !util.ptr<tensor<128xf32>>
%384 = util.global.address @"__iree_flow_bert/encoder/layer_16/attention/self/value/kernel" : !util.ptr<tensor<512x128xf32>>
%385 = util.global.address @"__iree_flow_bert/encoder/layer_16/bottleneck/attention/FakeLayerNorm/beta" : !util.ptr<tensor<128xf32>>
%386 = util.global.address @"__iree_flow_bert/encoder/layer_16/bottleneck/attention/FakeLayerNorm/gamma" : !util.ptr<tensor<128xf32>>
%387 = util.global.address @"__iree_flow_bert/encoder/layer_16/bottleneck/attention/dense/bias" : !util.ptr<tensor<128xf32>>
%388 = util.global.address @"__iree_flow_bert/encoder/layer_16/bottleneck/attention/dense/kernel" : !util.ptr<tensor<512x128xf32>>
%389 = util.global.address @"__iree_flow_bert/encoder/layer_16/bottleneck/input/FakeLayerNorm/beta" : !util.ptr<tensor<128xf32>>
%390 = util.global.address @"__iree_flow_bert/encoder/layer_16/bottleneck/input/FakeLayerNorm/gamma" : !util.ptr<tensor<128xf32>>
%391 = util.global.address @"__iree_flow_bert/encoder/layer_16/bottleneck/input/dense/bias" : !util.ptr<tensor<128xf32>>
%392 = util.global.address @"__iree_flow_bert/encoder/layer_16/bottleneck/input/dense/kernel" : !util.ptr<tensor<512x128xf32>>
%393 = util.global.address @"__iree_flow_bert/encoder/layer_16/ffn_layer_0/intermediate/dense/bias" : !util.ptr<tensor<512xf32>>
%394 = util.global.address @"__iree_flow_bert/encoder/layer_16/ffn_layer_0/intermediate/dense/kernel" : !util.ptr<tensor<128x512xf32>>
%395 = util.global.address @"__iree_flow_bert/encoder/layer_16/ffn_layer_0/output/FakeLayerNorm/beta" : !util.ptr<tensor<128xf32>>
%396 = util.global.address @"__iree_flow_bert/encoder/layer_16/ffn_layer_0/output/FakeLayerNorm/gamma" : !util.ptr<tensor<128xf32>>
%397 = util.global.address @"__iree_flow_bert/encoder/layer_16/ffn_layer_0/output/dense/bias" : !util.ptr<tensor<128xf32>>
%398 = util.global.address @"__iree_flow_bert/encoder/layer_16/ffn_layer_0/output/dense/kernel" : !util.ptr<tensor<512x128xf32>>
%399 = util.global.address @"__iree_flow_bert/encoder/layer_16/ffn_layer_1/intermediate/dense/bias" : !util.ptr<tensor<512xf32>>
%400 = util.global.address @"__iree_flow_bert/encoder/layer_16/ffn_layer_1/intermediate/dense/kernel" : !util.ptr<tensor<128x512xf32>>
%401 = util.global.address @"__iree_flow_bert/encoder/layer_16/ffn_layer_1/output/FakeLayerNorm/beta" : !util.ptr<tensor<128xf32>>
%402 = util.global.address @"__iree_flow_bert/encoder/layer_16/ffn_layer_1/output/FakeLayerNorm/gamma" : !util.ptr<tensor<128xf32>>
%403 = util.global.address @"__iree_flow_bert/encoder/layer_16/ffn_layer_1/output/dense/bias" : !util.ptr<tensor<128xf32>>
%404 = util.global.address @"__iree_flow_bert/encoder/layer_16/ffn_layer_1/output/dense/kernel" : !util.ptr<tensor<512x128xf32>>
%405 = util.global.address @"__iree_flow_bert/encoder/layer_16/ffn_layer_2/intermediate/dense/bias" : !util.ptr<tensor<512xf32>>
%406 = util.global.address @"__iree_flow_bert/encoder/layer_16/ffn_layer_2/intermediate/dense/kernel" : !util.ptr<tensor<128x512xf32>>
%407 = util.global.address @"__iree_flow_bert/encoder/layer_16/ffn_layer_2/output/FakeLayerNorm/beta" : !util.ptr<tensor<128xf32>>
%408 = util.global.address @"__iree_flow_bert/encoder/layer_16/ffn_layer_2/output/FakeLayerNorm/gamma" : !util.ptr<tensor<128xf32>>
%409 = util.global.address @"__iree_flow_bert/encoder/layer_16/ffn_layer_2/output/dense/bias" : !util.ptr<tensor<128xf32>>
%410 = util.global.address @"__iree_flow_bert/encoder/layer_16/ffn_layer_2/output/dense/kernel" : !util.ptr<tensor<512x128xf32>>
%411 = util.global.address @"__iree_flow_bert/encoder/layer_16/intermediate/dense/bias" : !util.ptr<tensor<512xf32>>
%412 = util.global.address @"__iree_flow_bert/encoder/layer_16/intermediate/dense/kernel" : !util.ptr<tensor<128x512xf32>>
%413 = util.global.address @"__iree_flow_bert/encoder/layer_16/output/FakeLayerNorm/beta" : !util.ptr<tensor<128xf32>>
%414 = util.global.address @"__iree_flow_bert/encoder/layer_16/output/FakeLayerNorm/gamma" : !util.ptr<tensor<128xf32>>
%415 = util.global.address @"__iree_flow_bert/encoder/layer_16/output/bottleneck/FakeLayerNorm/beta" : !util.ptr<tensor<512xf32>>
%416 = util.global.address @"__iree_flow_bert/encoder/layer_16/output/bottleneck/FakeLayerNorm/gamma" : !util.ptr<tensor<512xf32>>
%417 = util.global.address @"__iree_flow_bert/encoder/layer_16/output/bottleneck/dense/bias" : !util.ptr<tensor<512xf32>>
%418 = util.global.address @"__iree_flow_bert/encoder/layer_16/output/bottleneck/dense/kernel" : !util.ptr<tensor<128x512xf32>>
%419 = util.global.address @"__iree_flow_bert/encoder/layer_16/output/dense/bias" : !util.ptr<tensor<128xf32>>
%420 = util.global.address @"__iree_flow_bert/encoder/layer_16/output/dense/kernel" : !util.ptr<tensor<512x128xf32>>
%421 = util.global.address @"__iree_flow_bert/encoder/layer_17/attention/output/FakeLayerNorm/beta" : !util.ptr<tensor<128xf32>>
%422 = util.global.address @"__iree_flow_bert/encoder/layer_17/attention/output/FakeLayerNorm/gamma" : !util.ptr<tensor<128xf32>>
%423 = util.global.address @"__iree_flow_bert/encoder/layer_17/attention/output/dense/bias" : !util.ptr<tensor<128xf32>>
%424 = util.global.address @"__iree_flow_bert/encoder/layer_17/attention/output/dense/kernel" : !util.ptr<tensor<128x128xf32>>
%425 = util.global.address @"__iree_flow_bert/encoder/layer_17/attention/self/key/bias" : !util.ptr<tensor<128xf32>>
%426 = util.global.address @"__iree_flow_bert/encoder/layer_17/attention/self/key/kernel" : !util.ptr<tensor<128x128xf32>>
%427 = util.global.address @"__iree_flow_bert/encoder/layer_17/attention/self/query/bias" : !util.ptr<tensor<128xf32>>
%428 = util.global.address @"__iree_flow_bert/encoder/layer_17/attention/self/query/kernel" : !util.ptr<tensor<128x128xf32>>
%429 = util.global.address @"__iree_flow_bert/encoder/layer_17/attention/self/value/bias" : !util.ptr<tensor<128xf32>>
%430 = util.global.address @"__iree_flow_bert/encoder/layer_17/attention/self/value/kernel" : !util.ptr<tensor<512x128xf32>>
%431 = util.global.address @"__iree_flow_bert/encoder/layer_17/bottleneck/attention/FakeLayerNorm/beta" : !util.ptr<tensor<128xf32>>
%432 = util.global.address @"__iree_flow_bert/encoder/layer_17/bottleneck/attention/FakeLayerNorm/gamma" : !util.ptr<tensor<128xf32>>
%433 = util.global.address @"__iree_flow_bert/encoder/layer_17/bottleneck/attention/dense/bias" : !util.ptr<tensor<128xf32>>
%434 = util.global.address @"__iree_flow_bert/encoder/layer_17/bottleneck/attention/dense/kernel" : !util.ptr<tensor<512x128xf32>>
%435 = util.global.address @"__iree_flow_bert/encoder/layer_17/bottleneck/input/FakeLayerNorm/beta" : !util.ptr<tensor<128xf32>>
%436 = util.global.address @"__iree_flow_bert/encoder/layer_17/bottleneck/input/FakeLayerNorm/gamma" : !util.ptr<tensor<128xf32>>
%437 = util.global.address @"__iree_flow_bert/encoder/layer_17/bottleneck/input/dense/bias" : !util.ptr<tensor<128xf32>>
%438 = util.global.address @"__iree_flow_bert/encoder/layer_17/bottleneck/input/dense/kernel" : !util.ptr<tensor<512x128xf32>>
%439 = util.global.address @"__iree_flow_bert/encoder/layer_17/ffn_layer_0/intermediate/dense/bias" : !util.ptr<tensor<512xf32>>
%440 = util.global.address @"__iree_flow_bert/encoder/layer_17/ffn_layer_0/intermediate/dense/kernel" : !util.ptr<tensor<128x512xf32>>
%441 = util.global.address @"__iree_flow_bert/encoder/layer_17/ffn_layer_0/output/FakeLayerNorm/beta" : !util.ptr<tensor<128xf32>>
%442 = util.global.address @"__iree_flow_bert/encoder/layer_17/ffn_layer_0/output/FakeLayerNorm/gamma" : !util.ptr<tensor<128xf32>>
%443 = util.global.address @"__iree_flow_bert/encoder/layer_17/ffn_layer_0/output/dense/bias" : !util.ptr<tensor<128xf32>>
%444 = util.global.address @"__iree_flow_bert/encoder/layer_17/ffn_layer_0/output/dense/kernel" : !util.ptr<tensor<512x128xf32>>
%445 = util.global.address @"__iree_flow_bert/encoder/layer_17/ffn_layer_1/intermediate/dense/bias" : !util.ptr<tensor<512xf32>>
%446 = util.global.address @"__iree_flow_bert/encoder/layer_17/ffn_layer_1/intermediate/dense/kernel" : !util.ptr<tensor<128x512xf32>>
%447 = util.global.address @"__iree_flow_bert/encoder/layer_17/ffn_layer_1/output/FakeLayerNorm/beta" : !util.ptr<tensor<128xf32>>
%448 = util.global.address @"__iree_flow_bert/encoder/layer_17/ffn_layer_1/output/FakeLayerNorm/gamma" : !util.ptr<tensor<128xf32>>
%449 = util.global.address @"__iree_flow_bert/encoder/layer_17/ffn_layer_1/output/dense/bias" : !util.ptr<tensor<128xf32>>
%450 = util.global.address @"__iree_flow_bert/encoder/layer_17/ffn_layer_1/output/dense/kernel" : !util.ptr<tensor<512x128xf32>>
%451 = util.global.address @"__iree_flow_bert/encoder/layer_17/ffn_layer_2/intermediate/dense/bias" : !util.ptr<tensor<512xf32>>
%452 = util.global.address @"__iree_flow_bert/encoder/layer_17/ffn_layer_2/intermediate/dense/kernel" : !util.ptr<tensor<128x512xf32>>
%453 = util.global.address @"__iree_flow_bert/encoder/layer_17/ffn_layer_2/output/FakeLayerNorm/beta" : !util.ptr<tensor<128xf32>>
%454 = util.global.address @"__iree_flow_bert/encoder/layer_17/ffn_layer_2/output/FakeLayerNorm/gamma" : !util.ptr<tensor<128xf32>>
%455 = util.global.address @"__iree_flow_bert/encoder/layer_17/ffn_layer_2/output/dense/bias" : !util.ptr<tensor<128xf32>>
%456 = util.global.address @"__iree_flow_bert/encoder/layer_17/ffn_layer_2/output/dense/kernel" : !util.ptr<tensor<512x128xf32>>
%457 = util.global.address @"__iree_flow_bert/encoder/layer_17/intermediate/dense/bias" : !util.ptr<tensor<512xf32>>
%458 = util.global.address @"__iree_flow_bert/encoder/layer_17/intermediate/dense/kernel" : !util.ptr<tensor<128x512xf32>>
%459 = util.global.address @"__iree_flow_bert/encoder/layer_17/output/FakeLayerNorm/beta" : !util.ptr<tensor<128xf32>>
%460 = util.global.address @"__iree_flow_bert/encoder/layer_17/output/FakeLayerNorm/gamma" : !util.ptr<tensor<128xf32>>
%461 = util.global.address @"__iree_flow_bert/encoder/layer_17/output/bottleneck/FakeLayerNorm/beta" : !util.ptr<tensor<512xf32>>
%462 = util.global.address @"__iree_flow_bert/encoder/layer_17/output/bottleneck/FakeLayerNorm/gamma" : !util.ptr<tensor<512xf32>>
%463 = util.global.address @"__iree_flow_bert/encoder/layer_17/output/bottleneck/dense/bias" : !util.ptr<tensor<512xf32>>
%464 = util.global.address @"__iree_flow_bert/encoder/layer_17/output/bottleneck/dense/kernel" : !util.ptr<tensor<128x512xf32>>
%465 = util.global.address @"__iree_flow_bert/encoder/layer_17/output/dense/bias" : !util.ptr<tensor<128xf32>>
%466 = util.global.address @"__iree_flow_bert/encoder/layer_17/output/dense/kernel" : !util.ptr<tensor<512x128xf32>>
%467 = util.global.address @"__iree_flow_bert/encoder/layer_18/attention/output/FakeLayerNorm/beta" : !util.ptr<tensor<128xf32>>
%468 = util.global.address @"__iree_flow_bert/encoder/layer_18/attention/output/FakeLayerNorm/gamma" : !util.ptr<tensor<128xf32>>
%469 = util.global.address @"__iree_flow_bert/encoder/layer_18/attention/output/dense/bias" : !util.ptr<tensor<128xf32>>
%470 = util.global.address @"__iree_flow_bert/encoder/layer_18/attention/output/dense/kernel" : !util.ptr<tensor<128x128xf32>>
%471 = util.global.address @"__iree_flow_bert/encoder/layer_18/attention/self/key/bias" : !util.ptr<tensor<128xf32>>
%472 = util.global.address @"__iree_flow_bert/encoder/layer_18/attention/self/key/kernel" : !util.ptr<tensor<128x128xf32>>
%473 = util.global.address @"__iree_flow_bert/encoder/layer_18/attention/self/query/bias" : !util.ptr<tensor<128xf32>>
%474 = util.global.address @"__iree_flow_bert/encoder/layer_18/attention/self/query/kernel" : !util.ptr<tensor<128x128xf32>>
%475 = util.global.address @"__iree_flow_bert/encoder/layer_18/attention/self/value/bias" : !util.ptr<tensor<128xf32>>
%476 = util.global.address @"__iree_flow_bert/encoder/layer_18/attention/self/value/kernel" : !util.ptr<tensor<512x128xf32>>
%477 = util.global.address @"__iree_flow_bert/encoder/layer_18/bottleneck/attention/FakeLayerNorm/beta" : !util.ptr<tensor<128xf32>>
%478 = util.global.address @"__iree_flow_bert/encoder/layer_18/bottleneck/attention/FakeLayerNorm/gamma" : !util.ptr<tensor<128xf32>>
%479 = util.global.address @"__iree_flow_bert/encoder/layer_18/bottleneck/attention/dense/bias" : !util.ptr<tensor<128xf32>>
%480 = util.global.address @"__iree_flow_bert/encoder/layer_18/bottleneck/attention/dense/kernel" : !util.ptr<tensor<512x128xf32>>
%481 = util.global.address @"__iree_flow_bert/encoder/layer_18/bottleneck/input/FakeLayerNorm/beta" : !util.ptr<tensor<128xf32>>
%482 = util.global.address @"__iree_flow_bert/encoder/layer_18/bottleneck/input/FakeLayerNorm/gamma" : !util.ptr<tensor<128xf32>>
%483 = util.global.address @"__iree_flow_bert/encoder/layer_18/bottleneck/input/dense/bias" : !util.ptr<tensor<128xf32>>
%484 = util.global.address @"__iree_flow_bert/encoder/layer_18/bottleneck/input/dense/kernel" : !util.ptr<tensor<512x128xf32>>
%485 = util.global.address @"__iree_flow_bert/encoder/layer_18/ffn_layer_0/intermediate/dense/bias" : !util.ptr<tensor<512xf32>>
%486 = util.global.address @"__iree_flow_bert/encoder/layer_18/ffn_layer_0/intermediate/dense/kernel" : !util.ptr<tensor<128x512xf32>>
%487 = util.global.address @"__iree_flow_bert/encoder/layer_18/ffn_layer_0/output/FakeLayerNorm/beta" : !util.ptr<tensor<128xf32>>
%488 = util.global.address @"__iree_flow_bert/encoder/layer_18/ffn_layer_0/output/FakeLayerNorm/gamma" : !util.ptr<tensor<128xf32>>
%489 = util.global.address @"__iree_flow_bert/encoder/layer_18/ffn_layer_0/output/dense/bias" : !util.ptr<tensor<128xf32>>
%490 = util.global.address @"__iree_flow_bert/encoder/layer_18/ffn_layer_0/output/dense/kernel" : !util.ptr<tensor<512x128xf32>>
%491 = util.global.address @"__iree_flow_bert/encoder/layer_18/ffn_layer_1/intermediate/dense/bias" : !util.ptr<tensor<512xf32>>
%492 = util.global.address @"__iree_flow_bert/encoder/layer_18/ffn_layer_1/intermediate/dense/kernel" : !util.ptr<tensor<128x512xf32>>
%493 = util.global.address @"__iree_flow_bert/encoder/layer_18/ffn_layer_1/output/FakeLayerNorm/beta" : !util.ptr<tensor<128xf32>>
%494 = util.global.address @"__iree_flow_bert/encoder/layer_18/ffn_layer_1/output/FakeLayerNorm/gamma" : !util.ptr<tensor<128xf32>>
%495 = util.global.address @"__iree_flow_bert/encoder/layer_18/ffn_layer_1/output/dense/bias" : !util.ptr<tensor<128xf32>>
%496 = util.global.address @"__iree_flow_bert/encoder/layer_18/ffn_layer_1/output/dense/kernel" : !util.ptr<tensor<512x128xf32>>
%497 = util.global.address @"__iree_flow_bert/encoder/layer_18/ffn_layer_2/intermediate/dense/bias" : !util.ptr<tensor<512xf32>>
%498 = util.global.address @"__iree_flow_bert/encoder/layer_18/ffn_layer_2/intermediate/dense/kernel" : !util.ptr<tensor<128x512xf32>>
%499 = util.global.address @"__iree_flow_bert/encoder/layer_18/ffn_layer_2/output/FakeLayerNorm/beta" : !util.ptr<tensor<128xf32>>
%500 = util.global.address @"__iree_flow_bert/encoder/layer_18/ffn_layer_2/output/FakeLayerNorm/gamma" : !util.ptr<tensor<128xf32>>
%501 = util.global.address @"__iree_flow_bert/encoder/layer_18/ffn_layer_2/output/dense/bias" : !util.ptr<tensor<128xf32>>
%502 = util.global.address @"__iree_flow_bert/encoder/layer_18/ffn_layer_2/output/dense/kernel" : !util.ptr<tensor<512x128xf32>>
%503 = util.global.address @"__iree_flow_bert/encoder/layer_18/intermediate/dense/bias" : !util.ptr<tensor<512xf32>>
%504 = util.global.address @"__iree_flow_bert/encoder/layer_18/intermediate/dense/kernel" : !util.ptr<tensor<128x512xf32>>
%505 = util.global.address @"__iree_flow_bert/encoder/layer_18/output/FakeLayerNorm/beta" : !util.ptr<tensor<128xf32>>
%506 = util.global.address @"__iree_flow_bert/encoder/layer_18/output/FakeLayerNorm/gamma" : !util.ptr<tensor<128xf32>>
%507 = util.global.address @"__iree_flow_bert/encoder/layer_18/output/bottleneck/FakeLayerNorm/beta" : !util.ptr<tensor<512xf32>>
%508 = util.global.address @"__iree_flow_bert/encoder/layer_18/output/bottleneck/FakeLayerNorm/gamma" : !util.ptr<tensor<512xf32>>
%509 = util.global.address @"__iree_flow_bert/encoder/layer_18/output/bottleneck/dense/bias" : !util.ptr<tensor<512xf32>>
%510 = util.global.address @"__iree_flow_bert/encoder/layer_18/output/bottleneck/dense/kernel" : !util.ptr<tensor<128x512xf32>>
%511 = util.global.address @"__iree_flow_bert/encoder/layer_18/output/dense/bias" : !util.ptr<tensor<128xf32>>
%512 = util.global.address @"__iree_flow_bert/encoder/layer_18/output/dense/kernel" : !util.ptr<tensor<512x128xf32>>
%513 = util.global.address @"__iree_flow_bert/encoder/layer_19/attention/output/FakeLayerNorm/beta" : !util.ptr<tensor<128xf32>>
%514 = util.global.address @"__iree_flow_bert/encoder/layer_19/attention/output/FakeLayerNorm/gamma" : !util.ptr<tensor<128xf32>>
%515 = util.global.address @"__iree_flow_bert/encoder/layer_19/attention/output/dense/bias" : !util.ptr<tensor<128xf32>>
%516 = util.global.address @"__iree_flow_bert/encoder/layer_19/attention/output/dense/kernel" : !util.ptr<tensor<128x128xf32>>
%517 = util.global.address @"__iree_flow_bert/encoder/layer_19/attention/self/key/bias" : !util.ptr<tensor<128xf32>>
%518 = util.global.address @"__iree_flow_bert/encoder/layer_19/attention/self/key/kernel" : !util.ptr<tensor<128x128xf32>>
%519 = util.global.address @"__iree_flow_bert/encoder/layer_19/attention/self/query/bias" : !util.ptr<tensor<128xf32>>
%520 = util.global.address @"__iree_flow_bert/encoder/layer_19/attention/self/query/kernel" : !util.ptr<tensor<128x128xf32>>
%521 = util.global.address @"__iree_flow_bert/encoder/layer_19/attention/self/value/bias" : !util.ptr<tensor<128xf32>>
%522 = util.global.address @"__iree_flow_bert/encoder/layer_19/attention/self/value/kernel" : !util.ptr<tensor<512x128xf32>>
%523 = util.global.address @"__iree_flow_bert/encoder/layer_19/bottleneck/attention/FakeLayerNorm/beta" : !util.ptr<tensor<128xf32>>
%524 = util.global.address @"__iree_flow_bert/encoder/layer_19/bottleneck/attention/FakeLayerNorm/gamma" : !util.ptr<tensor<128xf32>>
%525 = util.global.address @"__iree_flow_bert/encoder/layer_19/bottleneck/attention/dense/bias" : !util.ptr<tensor<128xf32>>
%526 = util.global.address @"__iree_flow_bert/encoder/layer_19/bottleneck/attention/dense/kernel" : !util.ptr<tensor<512x128xf32>>
%527 = util.global.address @"__iree_flow_bert/encoder/layer_19/bottleneck/input/FakeLayerNorm/beta" : !util.ptr<tensor<128xf32>>
%528 = util.global.address @"__iree_flow_bert/encoder/layer_19/bottleneck/input/FakeLayerNorm/gamma" : !util.ptr<tensor<128xf32>>
%529 = util.global.address @"__iree_flow_bert/encoder/layer_19/bottleneck/input/dense/bias" : !util.ptr<tensor<128xf32>>
%530 = util.global.address @"__iree_flow_bert/encoder/layer_19/bottleneck/input/dense/kernel" : !util.ptr<tensor<512x128xf32>>
%531 = util.global.address @"__iree_flow_bert/encoder/layer_19/ffn_layer_0/intermediate/dense/bias" : !util.ptr<tensor<512xf32>>
%532 = util.global.address @"__iree_flow_bert/encoder/layer_19/ffn_layer_0/intermediate/dense/kernel" : !util.ptr<tensor<128x512xf32>>
%533 = util.global.address @"__iree_flow_bert/encoder/layer_19/ffn_layer_0/output/FakeLayerNorm/beta" : !util.ptr<tensor<128xf32>>
%534 = util.global.address @"__iree_flow_bert/encoder/layer_19/ffn_layer_0/output/FakeLayerNorm/gamma" : !util.ptr<tensor<128xf32>>
%535 = util.global.address @"__iree_flow_bert/encoder/layer_19/ffn_layer_0/output/dense/bias" : !util.ptr<tensor<128xf32>>
%536 = util.global.address @"__iree_flow_bert/encoder/layer_19/ffn_layer_0/output/dense/kernel" : !util.ptr<tensor<512x128xf32>>
%537 = util.global.address @"__iree_flow_bert/encoder/layer_19/ffn_layer_1/intermediate/dense/bias" : !util.ptr<tensor<512xf32>>
%538 = util.global.address @"__iree_flow_bert/encoder/layer_19/ffn_layer_1/intermediate/dense/kernel" : !util.ptr<tensor<128x512xf32>>
%539 = util.global.address @"__iree_flow_bert/encoder/layer_19/ffn_layer_1/output/FakeLayerNorm/beta" : !util.ptr<tensor<128xf32>>
%540 = util.global.address @"__iree_flow_bert/encoder/layer_19/ffn_layer_1/output/FakeLayerNorm/gamma" : !util.ptr<tensor<128xf32>>
%541 = util.global.address @"__iree_flow_bert/encoder/layer_19/ffn_layer_1/output/dense/bias" : !util.ptr<tensor<128xf32>>
%542 = util.global.address @"__iree_flow_bert/encoder/layer_19/ffn_layer_1/output/dense/kernel" : !util.ptr<tensor<512x128xf32>>
%543 = util.global.address @"__iree_flow_bert/encoder/layer_19/ffn_layer_2/intermediate/dense/bias" : !util.ptr<tensor<512xf32>>
%544 = util.global.address @"__iree_flow_bert/encoder/layer_19/ffn_layer_2/intermediate/dense/kernel" : !util.ptr<tensor<128x512xf32>>
%545 = util.global.address @"__iree_flow_bert/encoder/layer_19/ffn_layer_2/output/FakeLayerNorm/beta" : !util.ptr<tensor<128xf32>>
%546 = util.global.address @"__iree_flow_bert/encoder/layer_19/ffn_layer_2/output/FakeLayerNorm/gamma" : !util.ptr<tensor<128xf32>>
%547 = util.global.address @"__iree_flow_bert/encoder/layer_19/ffn_layer_2/output/dense/bias" : !util.ptr<tensor<128xf32>>
%548 = util.global.address @"__iree_flow_bert/encoder/layer_19/ffn_layer_2/output/dense/kernel" : !util.ptr<tensor<512x128xf32>>
%549 = util.global.address @"__iree_flow_bert/encoder/layer_19/intermediate/dense/bias" : !util.ptr<tensor<512xf32>>
%550 = util.global.address @"__iree_flow_bert/encoder/layer_19/intermediate/dense/kernel" : !util.ptr<tensor<128x512xf32>>
%551 = util.global.address @"__iree_flow_bert/encoder/layer_19/output/FakeLayerNorm/beta" : !util.ptr<tensor<128xf32>>
%552 = util.global.address @"__iree_flow_bert/encoder/layer_19/output/FakeLayerNorm/gamma" : !util.ptr<tensor<128xf32>>
%553 = util.global.address @"__iree_flow_bert/encoder/layer_19/output/bottleneck/FakeLayerNorm/beta" : !util.ptr<tensor<512xf32>>
%554 = util.global.address @"__iree_flow_bert/encoder/layer_19/output/bottleneck/FakeLayerNorm/gamma" : !util.ptr<tensor<512xf32>>
%555 = util.global.address @"__iree_flow_bert/encoder/layer_19/output/bottleneck/dense/bias" : !util.ptr<tensor<512xf32>>
%556 = util.global.address @"__iree_flow_bert/encoder/layer_19/output/bottleneck/dense/kernel" : !util.ptr<tensor<128x512xf32>>
%557 = util.global.address @"__iree_flow_bert/encoder/layer_19/output/dense/bias" : !util.ptr<tensor<128xf32>>
%558 = util.global.address @"__iree_flow_bert/encoder/layer_19/output/dense/kernel" : !util.ptr<tensor<512x128xf32>>
%559 = util.global.address @"__iree_flow_bert/encoder/layer_2/attention/output/FakeLayerNorm/beta" : !util.ptr<tensor<128xf32>>
%560 = util.global.address @"__iree_flow_bert/encoder/layer_2/attention/output/FakeLayerNorm/gamma" : !util.ptr<tensor<128xf32>>
%561 = util.global.address @"__iree_flow_bert/encoder/layer_2/attention/output/dense/bias" : !util.ptr<tensor<128xf32>>
%562 = util.global.address @"__iree_flow_bert/encoder/layer_2/attention/output/dense/kernel" : !util.ptr<tensor<128x128xf32>>
%563 = util.global.address @"__iree_flow_bert/encoder/layer_2/attention/self/key/bias" : !util.ptr<tensor<128xf32>>
%564 = util.global.address @"__iree_flow_bert/encoder/layer_2/attention/self/key/kernel" : !util.ptr<tensor<128x128xf32>>
%565 = util.global.address @"__iree_flow_bert/encoder/layer_2/attention/self/query/bias" : !util.ptr<tensor<128xf32>>
%566 = util.global.address @"__iree_flow_bert/encoder/layer_2/attention/self/query/kernel" : !util.ptr<tensor<128x128xf32>>
%567 = util.global.address @"__iree_flow_bert/encoder/layer_2/attention/self/value/bias" : !util.ptr<tensor<128xf32>>
%568 = util.global.address @"__iree_flow_bert/encoder/layer_2/attention/self/value/kernel" : !util.ptr<tensor<512x128xf32>>
%569 = util.global.address @"__iree_flow_bert/encoder/layer_2/bottleneck/attention/FakeLayerNorm/beta" : !util.ptr<tensor<128xf32>>
%570 = util.global.address @"__iree_flow_bert/encoder/layer_2/bottleneck/attention/FakeLayerNorm/gamma" : !util.ptr<tensor<128xf32>>
%571 = util.global.address @"__iree_flow_bert/encoder/layer_2/bottleneck/attention/dense/bias" : !util.ptr<tensor<128xf32>>
%572 = util.global.address @"__iree_flow_bert/encoder/layer_2/bottleneck/attention/dense/kernel" : !util.ptr<tensor<512x128xf32>>
%573 = util.global.address @"__iree_flow_bert/encoder/layer_2/bottleneck/input/FakeLayerNorm/beta" : !util.ptr<tensor<128xf32>>
%574 = util.global.address @"__iree_flow_bert/encoder/layer_2/bottleneck/input/FakeLayerNorm/gamma" : !util.ptr<tensor<128xf32>>
%575 = util.global.address @"__iree_flow_bert/encoder/layer_2/bottleneck/input/dense/bias" : !util.ptr<tensor<128xf32>>
%576 = util.global.address @"__iree_flow_bert/encoder/layer_2/bottleneck/input/dense/kernel" : !util.ptr<tensor<512x128xf32>>
%577 = util.global.address @"__iree_flow_bert/encoder/layer_2/ffn_layer_0/intermediate/dense/bias" : !util.ptr<tensor<512xf32>>
%578 = util.global.address @"__iree_flow_bert/encoder/layer_2/ffn_layer_0/intermediate/dense/kernel" : !util.ptr<tensor<128x512xf32>>
%579 = util.global.address @"__iree_flow_bert/encoder/layer_2/ffn_layer_0/output/FakeLayerNorm/beta" : !util.ptr<tensor<128xf32>>
%580 = util.global.address @"__iree_flow_bert/encoder/layer_2/ffn_layer_0/output/FakeLayerNorm/gamma" : !util.ptr<tensor<128xf32>>
%581 = util.global.address @"__iree_flow_bert/encoder/layer_2/ffn_layer_0/output/dense/bias" : !util.ptr<tensor<128xf32>>
%582 = util.global.address @"__iree_flow_bert/encoder/layer_2/ffn_layer_0/output/dense/kernel" : !util.ptr<tensor<512x128xf32>>
%583 = util.global.address @"__iree_flow_bert/encoder/layer_2/ffn_layer_1/intermediate/dense/bias" : !util.ptr<tensor<512xf32>>
%584 = util.global.address @"__iree_flow_bert/encoder/layer_2/ffn_layer_1/intermediate/dense/kernel" : !util.ptr<tensor<128x512xf32>>
%585 = util.global.address @"__iree_flow_bert/encoder/layer_2/ffn_layer_1/output/FakeLayerNorm/beta" : !util.ptr<tensor<128xf32>>
%586 = util.global.address @"__iree_flow_bert/encoder/layer_2/ffn_layer_1/output/FakeLayerNorm/gamma" : !util.ptr<tensor<128xf32>>
%587 = util.global.address @"__iree_flow_bert/encoder/layer_2/ffn_layer_1/output/dense/bias" : !util.ptr<tensor<128xf32>>
%588 = util.global.address @"__iree_flow_bert/encoder/layer_2/ffn_layer_1/output/dense/kernel" : !util.ptr<tensor<512x128xf32>>
%589 = util.global.address @"__iree_flow_bert/encoder/layer_2/ffn_layer_2/intermediate/dense/bias" : !util.ptr<tensor<512xf32>>
%590 = util.global.address @"__iree_flow_bert/encoder/layer_2/ffn_layer_2/intermediate/dense/kernel" : !util.ptr<tensor<128x512xf32>>
%591 = util.global.address @"__iree_flow_bert/encoder/layer_2/ffn_layer_2/output/FakeLayerNorm/beta" : !util.ptr<tensor<128xf32>>
%592 = util.global.address @"__iree_flow_bert/encoder/layer_2/ffn_layer_2/output/FakeLayerNorm/gamma" : !util.ptr<tensor<128xf32>>
%593 = util.global.address @"__iree_flow_bert/encoder/layer_2/ffn_layer_2/output/dense/bias" : !util.ptr<tensor<128xf32>>
%594 = util.global.address @"__iree_flow_bert/encoder/layer_2/ffn_layer_2/output/dense/kernel" : !util.ptr<tensor<512x128xf32>>
%595 = util.global.address @"__iree_flow_bert/encoder/layer_2/intermediate/dense/bias" : !util.ptr<tensor<512xf32>>
%596 = util.global.address @"__iree_flow_bert/encoder/layer_2/intermediate/dense/kernel" : !util.ptr<tensor<128x512xf32>>
%597 = util.global.address @"__iree_flow_bert/encoder/layer_2/output/FakeLayerNorm/beta" : !util.ptr<tensor<128xf32>>
%598 = util.global.address @"__iree_flow_bert/encoder/layer_2/output/FakeLayerNorm/gamma" : !util.ptr<tensor<128xf32>>
%599 = util.global.address @"__iree_flow_bert/encoder/layer_2/output/bottleneck/FakeLayerNorm/beta" : !util.ptr<tensor<512xf32>>
%600 = util.global.address @"__iree_flow_bert/encoder/layer_2/output/bottleneck/FakeLayerNorm/gamma" : !util.ptr<tensor<512xf32>>
%601 = util.global.address @"__iree_flow_bert/encoder/layer_2/output/bottleneck/dense/bias" : !util.ptr<tensor<512xf32>>
%602 = util.global.address @"__iree_flow_bert/encoder/layer_2/output/bottleneck/dense/kernel" : !util.ptr<tensor<128x512xf32>>
%603 = util.global.address @"__iree_flow_bert/encoder/layer_2/output/dense/bias" : !util.ptr<tensor<128xf32>>
%604 = util.global.address @"__iree_flow_bert/encoder/layer_2/output/dense/kernel" : !util.ptr<tensor<512x128xf32>>
%605 = util.global.address @"__iree_flow_bert/encoder/layer_20/attention/output/FakeLayerNorm/beta" : !util.ptr<tensor<128xf32>>
%606 = util.global.address @"__iree_flow_bert/encoder/layer_20/attention/output/FakeLayerNorm/gamma" : !util.ptr<tensor<128xf32>>
%607 = util.global.address @"__iree_flow_bert/encoder/layer_20/attention/output/dense/bias" : !util.ptr<tensor<128xf32>>
%608 = util.global.address @"__iree_flow_bert/encoder/layer_20/attention/output/dense/kernel" : !util.ptr<tensor<128x128xf32>>
%609 = util.global.address @"__iree_flow_bert/encoder/layer_20/attention/self/key/bias" : !util.ptr<tensor<128xf32>>
%610 = util.global.address @"__iree_flow_bert/encoder/layer_20/attention/self/key/kernel" : !util.ptr<tensor<128x128xf32>>
%611 = util.global.address @"__iree_flow_bert/encoder/layer_20/attention/self/query/bias" : !util.ptr<tensor<128xf32>>
%612 = util.global.address @"__iree_flow_bert/encoder/layer_20/attention/self/query/kernel" : !util.ptr<tensor<128x128xf32>>
%613 = util.global.address @"__iree_flow_bert/encoder/layer_20/attention/self/value/bias" : !util.ptr<tensor<128xf32>>
%614 = util.global.address @"__iree_flow_bert/encoder/layer_20/attention/self/value/kernel" : !util.ptr<tensor<512x128xf32>>
%615 = util.global.address @"__iree_flow_bert/encoder/layer_20/bottleneck/attention/FakeLayerNorm/beta" : !util.ptr<tensor<128xf32>>
%616 = util.global.address @"__iree_flow_bert/encoder/layer_20/bottleneck/attention/FakeLayerNorm/gamma" : !util.ptr<tensor<128xf32>>
%617 = util.global.address @"__iree_flow_bert/encoder/layer_20/bottleneck/attention/dense/bias" : !util.ptr<tensor<128xf32>>
%618 = util.global.address @"__iree_flow_bert/encoder/layer_20/bottleneck/attention/dense/kernel" : !util.ptr<tensor<512x128xf32>>
%619 = util.global.address @"__iree_flow_bert/encoder/layer_20/bottleneck/input/FakeLayerNorm/beta" : !util.ptr<tensor<128xf32>>
%620 = util.global.address @"__iree_flow_bert/encoder/layer_20/bottleneck/input/FakeLayerNorm/gamma" : !util.ptr<tensor<128xf32>>
%621 = util.global.address @"__iree_flow_bert/encoder/layer_20/bottleneck/input/dense/bias" : !util.ptr<tensor<128xf32>>
%622 = util.global.address @"__iree_flow_bert/encoder/layer_20/bottleneck/input/dense/kernel" : !util.ptr<tensor<512x128xf32>>
%623 = util.global.address @"__iree_flow_bert/encoder/layer_20/ffn_layer_0/intermediate/dense/bias" : !util.ptr<tensor<512xf32>>
%624 = util.global.address @"__iree_flow_bert/encoder/layer_20/ffn_layer_0/intermediate/dense/kernel" : !util.ptr<tensor<128x512xf32>>
%625 = util.global.address @"__iree_flow_bert/encoder/layer_20/ffn_layer_0/output/FakeLayerNorm/beta" : !util.ptr<tensor<128xf32>>
%626 = util.global.address @"__iree_flow_bert/encoder/layer_20/ffn_layer_0/output/FakeLayerNorm/gamma" : !util.ptr<tensor<128xf32>>
%627 = util.global.address @"__iree_flow_bert/encoder/layer_20/ffn_layer_0/output/dense/bias" : !util.ptr<tensor<128xf32>>
%628 = util.global.address @"__iree_flow_bert/encoder/layer_20/ffn_layer_0/output/dense/kernel" : !util.ptr<tensor<512x128xf32>>
%629 = util.global.address @"__iree_flow_bert/encoder/layer_20/ffn_layer_1/intermediate/dense/bias" : !util.ptr<tensor<512xf32>>
%630 = util.global.address @"__iree_flow_bert/encoder/layer_20/ffn_layer_1/intermediate/dense/kernel" : !util.ptr<tensor<128x512xf32>>
%631 = util.global.address @"__iree_flow_bert/encoder/layer_20/ffn_layer_1/output/FakeLayerNorm/beta" : !util.ptr<tensor<128xf32>>
%632 = util.global.address @"__iree_flow_bert/encoder/layer_20/ffn_layer_1/output/FakeLayerNorm/gamma" : !util.ptr<tensor<128xf32>>
%633 = util.global.address @"__iree_flow_bert/encoder/layer_20/ffn_layer_1/output/dense/bias" : !util.ptr<tensor<128xf32>>
%634 = util.global.address @"__iree_flow_bert/encoder/layer_20/ffn_layer_1/output/dense/kernel" : !util.ptr<tensor<512x128xf32>>
%635 = util.global.address @"__iree_flow_bert/encoder/layer_20/ffn_layer_2/intermediate/dense/bias" : !util.ptr<tensor<512xf32>>
%636 = util.global.address @"__iree_flow_bert/encoder/layer_20/ffn_layer_2/intermediate/dense/kernel" : !util.ptr<tensor<128x512xf32>>
%637 = util.global.address @"__iree_flow_bert/encoder/layer_20/ffn_layer_2/output/FakeLayerNorm/beta" : !util.ptr<tensor<128xf32>>
%638 = util.global.address @"__iree_flow_bert/encoder/layer_20/ffn_layer_2/output/FakeLayerNorm/gamma" : !util.ptr<tensor<128xf32>>
%639 = util.global.address @"__iree_flow_bert/encoder/layer_20/ffn_layer_2/output/dense/bias" : !util.ptr<tensor<128xf32>>
%640 = util.global.address @"__iree_flow_bert/encoder/layer_20/ffn_layer_2/output/dense/kernel" : !util.ptr<tensor<512x128xf32>>
%641 = util.global.address @"__iree_flow_bert/encoder/layer_20/intermediate/dense/bias" : !util.ptr<tensor<512xf32>>
%642 = util.global.address @"__iree_flow_bert/encoder/layer_20/intermediate/dense/kernel" : !util.ptr<tensor<128x512xf32>>
%643 = util.global.address @"__iree_flow_bert/encoder/layer_20/output/FakeLayerNorm/beta" : !util.ptr<tensor<128xf32>>
%644 = util.global.address @"__iree_flow_bert/encoder/layer_20/output/FakeLayerNorm/gamma" : !util.ptr<tensor<128xf32>>
%645 = util.global.address @"__iree_flow_bert/encoder/layer_20/output/bottleneck/FakeLayerNorm/beta" : !util.ptr<tensor<512xf32>>
%646 = util.global.address @"__iree_flow_bert/encoder/layer_20/output/bottleneck/FakeLayerNorm/gamma" : !util.ptr<tensor<512xf32>>
%647 = util.global.address @"__iree_flow_bert/encoder/layer_20/output/bottleneck/dense/bias" : !util.ptr<tensor<512xf32>>
%648 = util.global.address @"__iree_flow_bert/encoder/layer_20/output/bottleneck/dense/kernel" : !util.ptr<tensor<128x512xf32>>
%649 = util.global.address @"__iree_flow_bert/encoder/layer_20/output/dense/bias" : !util.ptr<tensor<128xf32>>
%650 = util.global.address @"__iree_flow_bert/encoder/layer_20/output/dense/kernel" : !util.ptr<tensor<512x128xf32>>
%651 = util.global.address @"__iree_flow_bert/encoder/layer_21/attention/output/FakeLayerNorm/beta" : !util.ptr<tensor<128xf32>>
%652 = util.global.address @"__iree_flow_bert/encoder/layer_21/attention/output/FakeLayerNorm/gamma" : !util.ptr<tensor<128xf32>>
%653 = util.global.address @"__iree_flow_bert/encoder/layer_21/attention/output/dense/bias" : !util.ptr<tensor<128xf32>>
%654 = util.global.address @"__iree_flow_bert/encoder/layer_21/attention/output/dense/kernel" : !util.ptr<tensor<128x128xf32>>
%655 = util.global.address @"__iree_flow_bert/encoder/layer_21/attention/self/key/bias" : !util.ptr<tensor<128xf32>>
%656 = util.global.address @"__iree_flow_bert/encoder/layer_21/attention/self/key/kernel" : !util.ptr<tensor<128x128xf32>>
%657 = util.global.address @"__iree_flow_bert/encoder/layer_21/attention/self/query/bias" : !util.ptr<tensor<128xf32>>
%658 = util.global.address @"__iree_flow_bert/encoder/layer_21/attention/self/query/kernel" : !util.ptr<tensor<128x128xf32>>
%659 = util.global.address @"__iree_flow_bert/encoder/layer_21/attention/self/value/bias" : !util.ptr<tensor<128xf32>>
%660 = util.global.address @"__iree_flow_bert/encoder/layer_21/attention/self/value/kernel" : !util.ptr<tensor<512x128xf32>>
%661 = util.global.address @"__iree_flow_bert/encoder/layer_21/bottleneck/attention/FakeLayerNorm/beta" : !util.ptr<tensor<128xf32>>
%662 = util.global.address @"__iree_flow_bert/encoder/layer_21/bottleneck/attention/FakeLayerNorm/gamma" : !util.ptr<tensor<128xf32>>
%663 = util.global.address @"__iree_flow_bert/encoder/layer_21/bottleneck/attention/dense/bias" : !util.ptr<tensor<128xf32>>
%664 = util.global.address @"__iree_flow_bert/encoder/layer_21/bottleneck/attention/dense/kernel" : !util.ptr<tensor<512x128xf32>>
%665 = util.global.address @"__iree_flow_bert/encoder/layer_21/bottleneck/input/FakeLayerNorm/beta" : !util.ptr<tensor<128xf32>>
%666 = util.global.address @"__iree_flow_bert/encoder/layer_21/bottleneck/input/FakeLayerNorm/gamma" : !util.ptr<tensor<128xf32>>
%667 = util.global.address @"__iree_flow_bert/encoder/layer_21/bottleneck/input/dense/bias" : !util.ptr<tensor<128xf32>>
%668 = util.global.address @"__iree_flow_bert/encoder/layer_21/bottleneck/input/dense/kernel" : !util.ptr<tensor<512x128xf32>>
%669 = util.global.address @"__iree_flow_bert/encoder/layer_21/ffn_layer_0/intermediate/dense/bias" : !util.ptr<tensor<512xf32>>
%670 = util.global.address @"__iree_flow_bert/encoder/layer_21/ffn_layer_0/intermediate/dense/kernel" : !util.ptr<tensor<128x512xf32>>
%671 = util.global.address @"__iree_flow_bert/encoder/layer_21/ffn_layer_0/output/FakeLayerNorm/beta" : !util.ptr<tensor<128xf32>>
%672 = util.global.address @"__iree_flow_bert/encoder/layer_21/ffn_layer_0/output/FakeLayerNorm/gamma" : !util.ptr<tensor<128xf32>>
%673 = util.global.address @"__iree_flow_bert/encoder/layer_21/ffn_layer_0/output/dense/bias" : !util.ptr<tensor<128xf32>>
%674 = util.global.address @"__iree_flow_bert/encoder/layer_21/ffn_layer_0/output/dense/kernel" : !util.ptr<tensor<512x128xf32>>
%675 = util.global.address @"__iree_flow_bert/encoder/layer_21/ffn_layer_1/intermediate/dense/bias" : !util.ptr<tensor<512xf32>>
%676 = util.global.address @"__iree_flow_bert/encoder/layer_21/ffn_layer_1/intermediate/dense/kernel" : !util.ptr<tensor<128x512xf32>>
%677 = util.global.address @"__iree_flow_bert/encoder/layer_21/ffn_layer_1/output/FakeLayerNorm/beta" : !util.ptr<tensor<128xf32>>
%678 = util.global.address @"__iree_flow_bert/encoder/layer_21/ffn_layer_1/output/FakeLayerNorm/gamma" : !util.ptr<tensor<128xf32>>
%679 = util.global.address @"__iree_flow_bert/encoder/layer_21/ffn_layer_1/output/dense/bias" : !util.ptr<tensor<128xf32>>
%680 = util.global.address @"__iree_flow_bert/encoder/layer_21/ffn_layer_1/output/dense/kernel" : !util.ptr<tensor<512x128xf32>>
%681 = util.global.address @"__iree_flow_bert/encoder/layer_21/ffn_layer_2/intermediate/dense/bias" : !util.ptr<tensor<512xf32>>
%682 = util.global.address @"__iree_flow_bert/encoder/layer_21/ffn_layer_2/intermediate/dense/kernel" : !util.ptr<tensor<128x512xf32>>
%683 = util.global.address @"__iree_flow_bert/encoder/layer_21/ffn_layer_2/output/FakeLayerNorm/beta" : !util.ptr<tensor<128xf32>>
%684 = util.global.address @"__iree_flow_bert/encoder/layer_21/ffn_layer_2/output/FakeLayerNorm/gamma" : !util.ptr<tensor<128xf32>>
%685 = util.global.address @"__iree_flow_bert/encoder/layer_21/ffn_layer_2/output/dense/bias" : !util.ptr<tensor<128xf32>>
%686 = util.global.address @"__iree_flow_bert/encoder/layer_21/ffn_layer_2/output/dense/kernel" : !util.ptr<tensor<512x128xf32>>
%687 = util.global.address @"__iree_flow_bert/encoder/layer_21/intermediate/dense/bias" : !util.ptr<tensor<512xf32>>
%688 = util.global.address @"__iree_flow_bert/encoder/layer_21/intermediate/dense/kernel" : !util.ptr<tensor<128x512xf32>>
%689 = util.global.address @"__iree_flow_bert/encoder/layer_21/output/FakeLayerNorm/beta" : !util.ptr<tensor<128xf32>>
%690 = util.global.address @"__iree_flow_bert/encoder/layer_21/output/FakeLayerNorm/gamma" : !util.ptr<tensor<128xf32>>
%691 = util.global.address @"__iree_flow_bert/encoder/layer_21/output/bottleneck/FakeLayerNorm/beta" : !util.ptr<tensor<512xf32>>
%692 = util.global.address @"__iree_flow_bert/encoder/layer_21/output/bottleneck/FakeLayerNorm/gamma" : !util.ptr<tensor<512xf32>>
%693 = util.global.address @"__iree_flow_bert/encoder/layer_21/output/bottleneck/dense/bias" : !util.ptr<tensor<512xf32>>
%694 = util.global.address @"__iree_flow_bert/encoder/layer_21/output/bottleneck/dense/kernel" : !util.ptr<tensor<128x512xf32>>
%695 = util.global.address @"__iree_flow_bert/encoder/layer_21/output/dense/bias" : !util.ptr<tensor<128xf32>>
%696 = util.global.address @"__iree_flow_bert/encoder/layer_21/output/dense/kernel" : !util.ptr<tensor<512x128xf32>>
%697 = util.global.address @"__iree_flow_bert/encoder/layer_22/attention/output/FakeLayerNorm/beta" : !util.ptr<tensor<128xf32>>
%698 = util.global.address @"__iree_flow_bert/encoder/layer_22/attention/output/FakeLayerNorm/gamma" : !util.ptr<tensor<128xf32>>
%699 = util.global.address @"__iree_flow_bert/encoder/layer_22/attention/output/dense/bias" : !util.ptr<tensor<128xf32>>
%700 = util.global.address @"__iree_flow_bert/encoder/layer_22/attention/output/dense/kernel" : !util.ptr<tensor<128x128xf32>>
%701 = util.global.address @"__iree_flow_bert/encoder/layer_22/attention/self/key/bias" : !util.ptr<tensor<128xf32>>
%702 = util.global.address @"__iree_flow_bert/encoder/layer_22/attention/self/key/kernel" : !util.ptr<tensor<128x128xf32>>
%703 = util.global.address @"__iree_flow_bert/encoder/layer_22/attention/self/query/bias" : !util.ptr<tensor<128xf32>>
%704 = util.global.address @"__iree_flow_bert/encoder/layer_22/attention/self/query/kernel" : !util.ptr<tensor<128x128xf32>>
%705 = util.global.address @"__iree_flow_bert/encoder/layer_22/attention/self/value/bias" : !util.ptr<tensor<128xf32>>
%706 = util.global.address @"__iree_flow_bert/encoder/layer_22/attention/self/value/kernel" : !util.ptr<tensor<512x128xf32>>
%707 = util.global.address @"__iree_flow_bert/encoder/layer_22/bottleneck/attention/FakeLayerNorm/beta" : !util.ptr<tensor<128xf32>>
%708 = util.global.address @"__iree_flow_bert/encoder/layer_22/bottleneck/attention/FakeLayerNorm/gamma" : !util.ptr<tensor<128xf32>>
%709 = util.global.address @"__iree_flow_bert/encoder/layer_22/bottleneck/attention/dense/bias" : !util.ptr<tensor<128xf32>>
%710 = util.global.address @"__iree_flow_bert/encoder/layer_22/bottleneck/attention/dense/kernel" : !util.ptr<tensor<512x128xf32>>
%711 = util.global.address @"__iree_flow_bert/encoder/layer_22/bottleneck/input/FakeLayerNorm/beta" : !util.ptr<tensor<128xf32>>
%712 = util.global.address @"__iree_flow_bert/encoder/layer_22/bottleneck/input/FakeLayerNorm/gamma" : !util.ptr<tensor<128xf32>>
%713 = util.global.address @"__iree_flow_bert/encoder/layer_22/bottleneck/input/dense/bias" : !util.ptr<tensor<128xf32>>
%714 = util.global.address @"__iree_flow_bert/encoder/layer_22/bottleneck/input/dense/kernel" : !util.ptr<tensor<512x128xf32>>
%715 = util.global.address @"__iree_flow_bert/encoder/layer_22/ffn_layer_0/intermediate/dense/bias" : !util.ptr<tensor<512xf32>>
%716 = util.global.address @"__iree_flow_bert/encoder/layer_22/ffn_layer_0/intermediate/dense/kernel" : !util.ptr<tensor<128x512xf32>>
%717 = util.global.address @"__iree_flow_bert/encoder/layer_22/ffn_layer_0/output/FakeLayerNorm/beta" : !util.ptr<tensor<128xf32>>
%718 = util.global.address @"__iree_flow_bert/encoder/layer_22/ffn_layer_0/output/FakeLayerNorm/gamma" : !util.ptr<tensor<128xf32>>
%719 = util.global.address @"__iree_flow_bert/encoder/layer_22/ffn_layer_0/output/dense/bias" : !util.ptr<tensor<128xf32>>
%720 = util.global.address @"__iree_flow_bert/encoder/layer_22/ffn_layer_0/output/dense/kernel" : !util.ptr<tensor<512x128xf32>>
%721 = util.global.address @"__iree_flow_bert/encoder/layer_22/ffn_layer_1/intermediate/dense/bias" : !util.ptr<tensor<512xf32>>
%722 = util.global.address @"__iree_flow_bert/encoder/layer_22/ffn_layer_1/intermediate/dense/kernel" : !util.ptr<tensor<128x512xf32>>
%723 = util.global.address @"__iree_flow_bert/encoder/layer_22/ffn_layer_1/output/FakeLayerNorm/beta" : !util.ptr<tensor<128xf32>>
%724 = util.global.address @"__iree_flow_bert/encoder/layer_22/ffn_layer_1/output/FakeLayerNorm/gamma" : !util.ptr<tensor<128xf32>>
%725 = util.global.address @"__iree_flow_bert/encoder/layer_22/ffn_layer_1/output/dense/bias" : !util.ptr<tensor<128xf32>>
%726 = util.global.address @"__iree_flow_bert/encoder/layer_22/ffn_layer_1/output/dense/kernel" : !util.ptr<tensor<512x128xf32>>
%727 = util.global.address @"__iree_flow_bert/encoder/layer_22/ffn_layer_2/intermediate/dense/bias" : !util.ptr<tensor<512xf32>>
%728 = util.global.address @"__iree_flow_bert/encoder/layer_22/ffn_layer_2/intermediate/dense/kernel" : !util.ptr<tensor<128x512xf32>>
%729 = util.global.address @"__iree_flow_bert/encoder/layer_22/ffn_layer_2/output/FakeLayerNorm/beta" : !util.ptr<tensor<128xf32>>
%730 = util.global.address @"__iree_flow_bert/encoder/layer_22/ffn_layer_2/output/FakeLayerNorm/gamma" : !util.ptr<tensor<128xf32>>
%731 = util.global.address @"__iree_flow_bert/encoder/layer_22/ffn_layer_2/output/dense/bias" : !util.ptr<tensor<128xf32>>
%732 = util.global.address @"__iree_flow_bert/encoder/layer_22/ffn_layer_2/output/dense/kernel" : !util.ptr<tensor<512x128xf32>>
%733 = util.global.address @"__iree_flow_bert/encoder/layer_22/intermediate/dense/bias" : !util.ptr<tensor<512xf32>>
%734 = util.global.address @"__iree_flow_bert/encoder/layer_22/intermediate/dense/kernel" : !util.ptr<tensor<128x512xf32>>
%735 = util.global.address @"__iree_flow_bert/encoder/layer_22/output/FakeLayerNorm/beta" : !util.ptr<tensor<128xf32>>
%736 = util.global.address @"__iree_flow_bert/encoder/layer_22/output/FakeLayerNorm/gamma" : !util.ptr<tensor<128xf32>>
%737 = util.global.address @"__iree_flow_bert/encoder/layer_22/output/bottleneck/FakeLayerNorm/beta" : !util.ptr<tensor<512xf32>>
%738 = util.global.address @"__iree_flow_bert/encoder/layer_22/output/bottleneck/FakeLayerNorm/gamma" : !util.ptr<tensor<512xf32>>
%739 = util.global.address @"__iree_flow_bert/encoder/layer_22/output/bottleneck/dense/bias" : !util.ptr<tensor<512xf32>>
%740 = util.global.address @"__iree_flow_bert/encoder/layer_22/output/bottleneck/dense/kernel" : !util.ptr<tensor<128x512xf32>>
%741 = util.global.address @"__iree_flow_bert/encoder/layer_22/output/dense/bias" : !util.ptr<tensor<128xf32>>
%742 = util.global.address @"__iree_flow_bert/encoder/layer_22/output/dense/kernel" : !util.ptr<tensor<512x128xf32>>
%743 = util.global.address @"__iree_flow_bert/encoder/layer_23/attention/output/FakeLayerNorm/beta" : !util.ptr<tensor<128xf32>>
%744 = util.global.address @"__iree_flow_bert/encoder/layer_23/attention/output/FakeLayerNorm/gamma" : !util.ptr<tensor<128xf32>>
%745 = util.global.address @"__iree_flow_bert/encoder/layer_23/attention/output/dense/bias" : !util.ptr<tensor<128xf32>>
%746 = util.global.address @"__iree_flow_bert/encoder/layer_23/attention/output/dense/kernel" : !util.ptr<tensor<128x128xf32>>
%747 = util.global.address @"__iree_flow_bert/encoder/layer_23/attention/self/key/bias" : !util.ptr<tensor<128xf32>>
%748 = util.global.address @"__iree_flow_bert/encoder/layer_23/attention/self/key/kernel" : !util.ptr<tensor<128x128xf32>>
%749 = util.global.address @"__iree_flow_bert/encoder/layer_23/attention/self/query/bias" : !util.ptr<tensor<128xf32>>
%750 = util.global.address @"__iree_flow_bert/encoder/layer_23/attention/self/query/kernel" : !util.ptr<tensor<128x128xf32>>
%751 = util.global.address @"__iree_flow_bert/encoder/layer_23/attention/self/value/bias" : !util.ptr<tensor<128xf32>>
%752 = util.global.address @"__iree_flow_bert/encoder/layer_23/attention/self/value/kernel" : !util.ptr<tensor<512x128xf32>>
%753 = util.global.address @"__iree_flow_bert/encoder/layer_23/bottleneck/attention/FakeLayerNorm/beta" : !util.ptr<tensor<128xf32>>
%754 = util.global.address @"__iree_flow_bert/encoder/layer_23/bottleneck/attention/FakeLayerNorm/gamma" : !util.ptr<tensor<128xf32>>
%755 = util.global.address @"__iree_flow_bert/encoder/layer_23/bottleneck/attention/dense/bias" : !util.ptr<tensor<128xf32>>
%756 = util.global.address @"__iree_flow_bert/encoder/layer_23/bottleneck/attention/dense/kernel" : !util.ptr<tensor<512x128xf32>>
%757 = util.global.address @"__iree_flow_bert/encoder/layer_23/bottleneck/input/FakeLayerNorm/beta" : !util.ptr<tensor<128xf32>>
%758 = util.global.address @"__iree_flow_bert/encoder/layer_23/bottleneck/input/FakeLayerNorm/gamma" : !util.ptr<tensor<128xf32>>
%759 = util.global.address @"__iree_flow_bert/encoder/layer_23/bottleneck/input/dense/bias" : !util.ptr<tensor<128xf32>>
%760 = util.global.address @"__iree_flow_bert/encoder/layer_23/bottleneck/input/dense/kernel" : !util.ptr<tensor<512x128xf32>>
%761 = util.global.address @"__iree_flow_bert/encoder/layer_23/ffn_layer_0/intermediate/dense/bias" : !util.ptr<tensor<512xf32>>
%762 = util.global.address @"__iree_flow_bert/encoder/layer_23/ffn_layer_0/intermediate/dense/kernel" : !util.ptr<tensor<128x512xf32>>
%763 = util.global.address @"__iree_flow_bert/encoder/layer_23/ffn_layer_0/output/FakeLayerNorm/beta" : !util.ptr<tensor<128xf32>>
%764 = util.global.address @"__iree_flow_bert/encoder/layer_23/ffn_layer_0/output/FakeLayerNorm/gamma" : !util.ptr<tensor<128xf32>>
%765 = util.global.address @"__iree_flow_bert/encoder/layer_23/ffn_layer_0/output/dense/bias" : !util.ptr<tensor<128xf32>>
%766 = util.global.address @"__iree_flow_bert/encoder/layer_23/ffn_layer_0/output/dense/kernel" : !util.ptr<tensor<512x128xf32>>
%767 = util.global.address @"__iree_flow_bert/encoder/layer_23/ffn_layer_1/intermediate/dense/bias" : !util.ptr<tensor<512xf32>>
%768 = util.global.address @"__iree_flow_bert/encoder/layer_23/ffn_layer_1/intermediate/dense/kernel" : !util.ptr<tensor<128x512xf32>>
%769 = util.global.address @"__iree_flow_bert/encoder/layer_23/ffn_layer_1/output/FakeLayerNorm/beta" : !util.ptr<tensor<128xf32>>
%770 = util.global.address @"__iree_flow_bert/encoder/layer_23/ffn_layer_1/output/FakeLayerNorm/gamma" : !util.ptr<tensor<128xf32>>
%771 = util.global.address @"__iree_flow_bert/encoder/layer_23/ffn_layer_1/output/dense/bias" : !util.ptr<tensor<128xf32>>
%772 = util.global.address @"__iree_flow_bert/encoder/layer_23/ffn_layer_1/output/dense/kernel" : !util.ptr<tensor<512x128xf32>>
%773 = util.global.address @"__iree_flow_bert/encoder/layer_23/ffn_layer_2/intermediate/dense/bias" : !util.ptr<tensor<512xf32>>
%774 = util.global.address @"__iree_flow_bert/encoder/layer_23/ffn_layer_2/intermediate/dense/kernel" : !util.ptr<tensor<128x512xf32>>
%775 = util.global.address @"__iree_flow_bert/encoder/layer_23/ffn_layer_2/output/FakeLayerNorm/beta" : !util.ptr<tensor<128xf32>>
%776 = util.global.address @"__iree_flow_bert/encoder/layer_23/ffn_layer_2/output/FakeLayerNorm/gamma" : !util.ptr<tensor<128xf32>>
%777 = util.global.address @"__iree_flow_bert/encoder/layer_23/ffn_layer_2/output/dense/bias" : !util.ptr<tensor<128xf32>>
%778 = util.global.address @"__iree_flow_bert/encoder/layer_23/ffn_layer_2/output/dense/kernel" : !util.ptr<tensor<512x128xf32>>
%779 = util.global.address @"__iree_flow_bert/encoder/layer_23/intermediate/dense/bias" : !util.ptr<tensor<512xf32>>
%780 = util.global.address @"__iree_flow_bert/encoder/layer_23/intermediate/dense/kernel" : !util.ptr<tensor<128x512xf32>>
%781 = util.global.address @"__iree_flow_bert/encoder/layer_23/output/FakeLayerNorm/beta" : !util.ptr<tensor<128xf32>>
%782 = util.global.address @"__iree_flow_bert/encoder/layer_23/output/FakeLayerNorm/gamma" : !util.ptr<tensor<128xf32>>
%783 = util.global.address @"__iree_flow_bert/encoder/layer_23/output/bottleneck/FakeLayerNorm/beta" : !util.ptr<tensor<512xf32>>
%784 = util.global.address @"__iree_flow_bert/encoder/layer_23/output/bottleneck/FakeLayerNorm/gamma" : !util.ptr<tensor<512xf32>>
%785 = util.global.address @"__iree_flow_bert/encoder/layer_23/output/bottleneck/dense/bias" : !util.ptr<tensor<512xf32>>
%786 = util.global.address @"__iree_flow_bert/encoder/layer_23/output/bottleneck/dense/kernel" : !util.ptr<tensor<128x512xf32>>
%787 = util.global.address @"__iree_flow_bert/encoder/layer_23/output/dense/bias" : !util.ptr<tensor<128xf32>>
%788 = util.global.address @"__iree_flow_bert/encoder/layer_23/output/dense/kernel" : !util.ptr<tensor<512x128xf32>>
%789 = util.global.address @"__iree_flow_bert/encoder/layer_3/attention/output/FakeLayerNorm/beta" : !util.ptr<tensor<128xf32>>
%790 = util.global.address @"__iree_flow_bert/encoder/layer_3/attention/output/FakeLayerNorm/gamma" : !util.ptr<tensor<128xf32>>
%791 = util.global.address @"__iree_flow_bert/encoder/layer_3/attention/output/dense/bias" : !util.ptr<tensor<128xf32>>
%792 = util.global.address @"__iree_flow_bert/encoder/layer_3/attention/output/dense/kernel" : !util.ptr<tensor<128x128xf32>>
%793 = util.global.address @"__iree_flow_bert/encoder/layer_3/attention/self/key/bias" : !util.ptr<tensor<128xf32>>
%794 = util.global.address @"__iree_flow_bert/encoder/layer_3/attention/self/key/kernel" : !util.ptr<tensor<128x128xf32>>
%795 = util.global.address @"__iree_flow_bert/encoder/layer_3/attention/self/query/bias" : !util.ptr<tensor<128xf32>>
%796 = util.global.address @"__iree_flow_bert/encoder/layer_3/attention/self/query/kernel" : !util.ptr<tensor<128x128xf32>>
%797 = util.global.address @"__iree_flow_bert/encoder/layer_3/attention/self/value/bias" : !util.ptr<tensor<128xf32>>
%798 = util.global.address @"__iree_flow_bert/encoder/layer_3/attention/self/value/kernel" : !util.ptr<tensor<512x128xf32>>
%799 = util.global.address @"__iree_flow_bert/encoder/layer_3/bottleneck/attention/FakeLayerNorm/beta" : !util.ptr<tensor<128xf32>>
%800 = util.global.address @"__iree_flow_bert/encoder/layer_3/bottleneck/attention/FakeLayerNorm/gamma" : !util.ptr<tensor<128xf32>>
%801 = util.global.address @"__iree_flow_bert/encoder/layer_3/bottleneck/attention/dense/bias" : !util.ptr<tensor<128xf32>>
%802 = util.global.address @"__iree_flow_bert/encoder/layer_3/bottleneck/attention/dense/kernel" : !util.ptr<tensor<512x128xf32>>
%803 = util.global.address @"__iree_flow_bert/encoder/layer_3/bottleneck/input/FakeLayerNorm/beta" : !util.ptr<tensor<128xf32>>
%804 = util.global.address @"__iree_flow_bert/encoder/layer_3/bottleneck/input/FakeLayerNorm/gamma" : !util.ptr<tensor<128xf32>>
%805 = util.global.address @"__iree_flow_bert/encoder/layer_3/bottleneck/input/dense/bias" : !util.ptr<tensor<128xf32>>
%806 = util.global.address @"__iree_flow_bert/encoder/layer_3/bottleneck/input/dense/kernel" : !util.ptr<tensor<512x128xf32>>
%807 = util.global.address @"__iree_flow_bert/encoder/layer_3/ffn_layer_0/intermediate/dense/bias" : !util.ptr<tensor<512xf32>>
%808 = util.global.address @"__iree_flow_bert/encoder/layer_3/ffn_layer_0/intermediate/dense/kernel" : !util.ptr<tensor<128x512xf32>>
%809 = util.global.address @"__iree_flow_bert/encoder/layer_3/ffn_layer_0/output/FakeLayerNorm/beta" : !util.ptr<tensor<128xf32>>
%810 = util.global.address @"__iree_flow_bert/encoder/layer_3/ffn_layer_0/output/FakeLayerNorm/gamma" : !util.ptr<tensor<128xf32>>
%811 = util.global.address @"__iree_flow_bert/encoder/layer_3/ffn_layer_0/output/dense/bias" : !util.ptr<tensor<128xf32>>
%812 = util.global.address @"__iree_flow_bert/encoder/layer_3/ffn_layer_0/output/dense/kernel" : !util.ptr<tensor<512x128xf32>>
%813 = util.global.address @"__iree_flow_bert/encoder/layer_3/ffn_layer_1/intermediate/dense/bias" : !util.ptr<tensor<512xf32>>
%814 = util.global.address @"__iree_flow_bert/encoder/layer_3/ffn_layer_1/intermediate/dense/kernel" : !util.ptr<tensor<128x512xf32>>
%815 = util.global.address @"__iree_flow_bert/encoder/layer_3/ffn_layer_1/output/FakeLayerNorm/beta" : !util.ptr<tensor<128xf32>>
%816 = util.global.address @"__iree_flow_bert/encoder/layer_3/ffn_layer_1/output/FakeLayerNorm/gamma" : !util.ptr<tensor<128xf32>>
%817 = util.global.address @"__iree_flow_bert/encoder/layer_3/ffn_layer_1/output/dense/bias" : !util.ptr<tensor<128xf32>>
%818 = util.global.address @"__iree_flow_bert/encoder/layer_3/ffn_layer_1/output/dense/kernel" : !util.ptr<tensor<512x128xf32>>
%819 = util.global.address @"__iree_flow_bert/encoder/layer_3/ffn_layer_2/intermediate/dense/bias" : !util.ptr<tensor<512xf32>>
%820 = util.global.address @"__iree_flow_bert/encoder/layer_3/ffn_layer_2/intermediate/dense/kernel" : !util.ptr<tensor<128x512xf32>>
%821 = util.global.address @"__iree_flow_bert/encoder/layer_3/ffn_layer_2/output/FakeLayerNorm/beta" : !util.ptr<tensor<128xf32>>
%822 = util.global.address @"__iree_flow_bert/encoder/layer_3/ffn_layer_2/output/FakeLayerNorm/gamma" : !util.ptr<tensor<128xf32>>
%823 = util.global.address @"__iree_flow_bert/encoder/layer_3/ffn_layer_2/output/dense/bias" : !util.ptr<tensor<128xf32>>
%824 = util.global.address @"__iree_flow_bert/encoder/layer_3/ffn_layer_2/output/dense/kernel" : !util.ptr<tensor<512x128xf32>>
%825 = util.global.address @"__iree_flow_bert/encoder/layer_3/intermediate/dense/bias" : !util.ptr<tensor<512xf32>>
%826 = util.global.address @"__iree_flow_bert/encoder/layer_3/intermediate/dense/kernel" : !util.ptr<tensor<128x512xf32>>
%827 = util.global.address @"__iree_flow_bert/encoder/layer_3/output/FakeLayerNorm/beta" : !util.ptr<tensor<128xf32>>
%828 = util.global.address @"__iree_flow_bert/encoder/layer_3/output/FakeLayerNorm/gamma" : !util.ptr<tensor<128xf32>>
%829 = util.global.address @"__iree_flow_bert/encoder/layer_3/output/bottleneck/FakeLayerNorm/beta" : !util.ptr<tensor<512xf32>>
%830 = util.global.address @"__iree_flow_bert/encoder/layer_3/output/bottleneck/FakeLayerNorm/gamma" : !util.ptr<tensor<512xf32>>
%831 = util.global.address @"__iree_flow_bert/encoder/layer_3/output/bottleneck/dense/bias" : !util.ptr<tensor<512xf32>>
%832 = util.global.address @"__iree_flow_bert/encoder/layer_3/output/bottleneck/dense/kernel" : !util.ptr<tensor<128x512xf32>>
%833 = util.global.address @"__iree_flow_bert/encoder/layer_3/output/dense/bias" : !util.ptr<tensor<128xf32>>
%834 = util.global.address @"__iree_flow_bert/encoder/layer_3/output/dense/kernel" : !util.ptr<tensor<512x128xf32>>
%835 = util.global.address @"__iree_flow_bert/encoder/layer_4/attention/output/FakeLayerNorm/beta" : !util.ptr<tensor<128xf32>>
%836 = util.global.address @"__iree_flow_bert/encoder/layer_4/attention/output/FakeLayerNorm/gamma" : !util.ptr<tensor<128xf32>>
%837 = util.global.address @"__iree_flow_bert/encoder/layer_4/attention/output/dense/bias" : !util.ptr<tensor<128xf32>>
%838 = util.global.address @"__iree_flow_bert/encoder/layer_4/attention/output/dense/kernel" : !util.ptr<tensor<128x128xf32>>
%839 = util.global.address @"__iree_flow_bert/encoder/layer_4/attention/self/key/bias" : !util.ptr<tensor<128xf32>>
%840 = util.global.address @"__iree_flow_bert/encoder/layer_4/attention/self/key/kernel" : !util.ptr<tensor<128x128xf32>>
%841 = util.global.address @"__iree_flow_bert/encoder/layer_4/attention/self/query/bias" : !util.ptr<tensor<128xf32>>
%842 = util.global.address @"__iree_flow_bert/encoder/layer_4/attention/self/query/kernel" : !util.ptr<tensor<128x128xf32>>
%843 = util.global.address @"__iree_flow_bert/encoder/layer_4/attention/self/value/bias" : !util.ptr<tensor<128xf32>>
%844 = util.global.address @"__iree_flow_bert/encoder/layer_4/attention/self/value/kernel" : !util.ptr<tensor<512x128xf32>>
%845 = util.global.address @"__iree_flow_bert/encoder/layer_4/bottleneck/attention/FakeLayerNorm/beta" : !util.ptr<tensor<128xf32>>
%846 = util.global.address @"__iree_flow_bert/encoder/layer_4/bottleneck/attention/FakeLayerNorm/gamma" : !util.ptr<tensor<128xf32>>
%847 = util.global.address @"__iree_flow_bert/encoder/layer_4/bottleneck/attention/dense/bias" : !util.ptr<tensor<128xf32>>
%848 = util.global.address @"__iree_flow_bert/encoder/layer_4/bottleneck/attention/dense/kernel" : !util.ptr<tensor<512x128xf32>>
%849 = util.global.address @"__iree_flow_bert/encoder/layer_4/bottleneck/input/FakeLayerNorm/beta" : !util.ptr<tensor<128xf32>>
%850 = util.global.address @"__iree_flow_bert/encoder/layer_4/bottleneck/input/FakeLayerNorm/gamma" : !util.ptr<tensor<128xf32>>
%851 = util.global.address @"__iree_flow_bert/encoder/layer_4/bottleneck/input/dense/bias" : !util.ptr<tensor<128xf32>>
%852 = util.global.address @"__iree_flow_bert/encoder/layer_4/bottleneck/input/dense/kernel" : !util.ptr<tensor<512x128xf32>>
%853 = util.global.address @"__iree_flow_bert/encoder/layer_4/ffn_layer_0/intermediate/dense/bias" : !util.ptr<tensor<512xf32>>
%854 = util.global.address @"__iree_flow_bert/encoder/layer_4/ffn_layer_0/intermediate/dense/kernel" : !util.ptr<tensor<128x512xf32>>
%855 = util.global.address @"__iree_flow_bert/encoder/layer_4/ffn_layer_0/output/FakeLayerNorm/beta" : !util.ptr<tensor<128xf32>>
%856 = util.global.address @"__iree_flow_bert/encoder/layer_4/ffn_layer_0/output/FakeLayerNorm/gamma" : !util.ptr<tensor<128xf32>>
%857 = util.global.address @"__iree_flow_bert/encoder/layer_4/ffn_layer_0/output/dense/bias" : !util.ptr<tensor<128xf32>>
%858 = util.global.address @"__iree_flow_bert/encoder/layer_4/ffn_layer_0/output/dense/kernel" : !util.ptr<tensor<512x128xf32>>
%859 = util.global.address @"__iree_flow_bert/encoder/layer_4/ffn_layer_1/intermediate/dense/bias" : !util.ptr<tensor<512xf32>>
%860 = util.global.address @"__iree_flow_bert/encoder/layer_4/ffn_layer_1/intermediate/dense/kernel" : !util.ptr<tensor<128x512xf32>>
%861 = util.global.address @"__iree_flow_bert/encoder/layer_4/ffn_layer_1/output/FakeLayerNorm/beta" : !util.ptr<tensor<128xf32>>
%862 = util.global.address @"__iree_flow_bert/encoder/layer_4/ffn_layer_1/output/FakeLayerNorm/gamma" : !util.ptr<tensor<128xf32>>
%863 = util.global.address @"__iree_flow_bert/encoder/layer_4/ffn_layer_1/output/dense/bias" : !util.ptr<tensor<128xf32>>
%864 = util.global.address @"__iree_flow_bert/encoder/layer_4/ffn_layer_1/output/dense/kernel" : !util.ptr<tensor<512x128xf32>>
%865 = util.global.address @"__iree_flow_bert/encoder/layer_4/ffn_layer_2/intermediate/dense/bias" : !util.ptr<tensor<512xf32>>
%866 = util.global.address @"__iree_flow_bert/encoder/layer_4/ffn_layer_2/intermediate/dense/kernel" : !util.ptr<tensor<128x512xf32>>
%867 = util.global.address @"__iree_flow_bert/encoder/layer_4/ffn_layer_2/output/FakeLayerNorm/beta" : !util.ptr<tensor<128xf32>>
%868 = util.global.address @"__iree_flow_bert/encoder/layer_4/ffn_layer_2/output/FakeLayerNorm/gamma" : !util.ptr<tensor<128xf32>>
%869 = util.global.address @"__iree_flow_bert/encoder/layer_4/ffn_layer_2/output/dense/bias" : !util.ptr<tensor<128xf32>>
%870 = util.global.address @"__iree_flow_bert/encoder/layer_4/ffn_layer_2/output/dense/kernel" : !util.ptr<tensor<512x128xf32>>
%871 = util.global.address @"__iree_flow_bert/encoder/layer_4/intermediate/dense/bias" : !util.ptr<tensor<512xf32>>
%872 = util.global.address @"__iree_flow_bert/encoder/layer_4/intermediate/dense/kernel" : !util.ptr<tensor<128x512xf32>>
%873 = util.global.address @"__iree_flow_bert/encoder/layer_4/output/FakeLayerNorm/beta" : !util.ptr<tensor<128xf32>>
%874 = util.global.address @"__iree_flow_bert/encoder/layer_4/output/FakeLayerNorm/gamma" : !util.ptr<tensor<128xf32>>
%875 = util.global.address @"__iree_flow_bert/encoder/layer_4/output/bottleneck/FakeLayerNorm/beta" : !util.ptr<tensor<512xf32>>
%876 = util.global.address @"__iree_flow_bert/encoder/layer_4/output/bottleneck/FakeLayerNorm/gamma" : !util.ptr<tensor<512xf32>>
%877 = util.global.address @"__iree_flow_bert/encoder/layer_4/output/bottleneck/dense/bias" : !util.ptr<tensor<512xf32>>
%878 = util.global.address @"__iree_flow_bert/encoder/layer_4/output/bottleneck/dense/kernel" : !util.ptr<tensor<128x512xf32>>
%879 = util.global.address @"__iree_flow_bert/encoder/layer_4/output/dense/bias" : !util.ptr<tensor<128xf32>>
%880 = util.global.address @"__iree_flow_bert/encoder/layer_4/output/dense/kernel" : !util.ptr<tensor<512x128xf32>>
%881 = util.global.address @"__iree_flow_bert/encoder/layer_5/attention/output/FakeLayerNorm/beta" : !util.ptr<tensor<128xf32>>
%882 = util.global.address @"__iree_flow_bert/encoder/layer_5/attention/output/FakeLayerNorm/gamma" : !util.ptr<tensor<128xf32>>
%883 = util.global.address @"__iree_flow_bert/encoder/layer_5/attention/output/dense/bias" : !util.ptr<tensor<128xf32>>
%884 = util.global.address @"__iree_flow_bert/encoder/layer_5/attention/output/dense/kernel" : !util.ptr<tensor<128x128xf32>>
%885 = util.global.address @"__iree_flow_bert/encoder/layer_5/attention/self/key/bias" : !util.ptr<tensor<128xf32>>
%886 = util.global.address @"__iree_flow_bert/encoder/layer_5/attention/self/key/kernel" : !util.ptr<tensor<128x128xf32>>
%887 = util.global.address @"__iree_flow_bert/encoder/layer_5/attention/self/query/bias" : !util.ptr<tensor<128xf32>>
%888 = util.global.address @"__iree_flow_bert/encoder/layer_5/attention/self/query/kernel" : !util.ptr<tensor<128x128xf32>>
%889 = util.global.address @"__iree_flow_bert/encoder/layer_5/attention/self/value/bias" : !util.ptr<tensor<128xf32>>
%890 = util.global.address @"__iree_flow_bert/encoder/layer_5/attention/self/value/kernel" : !util.ptr<tensor<512x128xf32>>
%891 = util.global.address @"__iree_flow_bert/encoder/layer_5/bottleneck/attention/FakeLayerNorm/beta" : !util.ptr<tensor<128xf32>>
%892 = util.global.address @"__iree_flow_bert/encoder/layer_5/bottleneck/attention/FakeLayerNorm/gamma" : !util.ptr<tensor<128xf32>>
%893 = util.global.address @"__iree_flow_bert/encoder/layer_5/bottleneck/attention/dense/bias" : !util.ptr<tensor<128xf32>>
%894 = util.global.address @"__iree_flow_bert/encoder/layer_5/bottleneck/attention/dense/kernel" : !util.ptr<tensor<512x128xf32>>
%895 = util.global.address @"__iree_flow_bert/encoder/layer_5/bottleneck/input/FakeLayerNorm/beta" : !util.ptr<tensor<128xf32>>
%896 = util.global.address @"__iree_flow_bert/encoder/layer_5/bottleneck/input/FakeLayerNorm/gamma" : !util.ptr<tensor<128xf32>>
%897 = util.global.address @"__iree_flow_bert/encoder/layer_5/bottleneck/input/dense/bias" : !util.ptr<tensor<128xf32>>
%898 = util.global.address @"__iree_flow_bert/encoder/layer_5/bottleneck/input/dense/kernel" : !util.ptr<tensor<512x128xf32>>
%899 = util.global.address @"__iree_flow_bert/encoder/layer_5/ffn_layer_0/intermediate/dense/bias" : !util.ptr<tensor<512xf32>>
%900 = util.global.address @"__iree_flow_bert/encoder/layer_5/ffn_layer_0/intermediate/dense/kernel" : !util.ptr<tensor<128x512xf32>>
%901 = util.global.address @"__iree_flow_bert/encoder/layer_5/ffn_layer_0/output/FakeLayerNorm/beta" : !util.ptr<tensor<128xf32>>
%902 = util.global.address @"__iree_flow_bert/encoder/layer_5/ffn_layer_0/output/FakeLayerNorm/gamma" : !util.ptr<tensor<128xf32>>
%903 = util.global.address @"__iree_flow_bert/encoder/layer_5/ffn_layer_0/output/dense/bias" : !util.ptr<tensor<128xf32>>
%904 = util.global.address @"__iree_flow_bert/encoder/layer_5/ffn_layer_0/output/dense/kernel" : !util.ptr<tensor<512x128xf32>>
%905 = util.global.address @"__iree_flow_bert/encoder/layer_5/ffn_layer_1/intermediate/dense/bias" : !util.ptr<tensor<512xf32>>
%906 = util.global.address @"__iree_flow_bert/encoder/layer_5/ffn_layer_1/intermediate/dense/kernel" : !util.ptr<tensor<128x512xf32>>
%907 = util.global.address @"__iree_flow_bert/encoder/layer_5/ffn_layer_1/output/FakeLayerNorm/beta" : !util.ptr<tensor<128xf32>>
%908 = util.global.address @"__iree_flow_bert/encoder/layer_5/ffn_layer_1/output/FakeLayerNorm/gamma" : !util.ptr<tensor<128xf32>>
%909 = util.global.address @"__iree_flow_bert/encoder/layer_5/ffn_layer_1/output/dense/bias" : !util.ptr<tensor<128xf32>>
%910 = util.global.address @"__iree_flow_bert/encoder/layer_5/ffn_layer_1/output/dense/kernel" : !util.ptr<tensor<512x128xf32>>
%911 = util.global.address @"__iree_flow_bert/encoder/layer_5/ffn_layer_2/intermediate/dense/bias" : !util.ptr<tensor<512xf32>>
%912 = util.global.address @"__iree_flow_bert/encoder/layer_5/ffn_layer_2/intermediate/dense/kernel" : !util.ptr<tensor<128x512xf32>>
%913 = util.global.address @"__iree_flow_bert/encoder/layer_5/ffn_layer_2/output/FakeLayerNorm/beta" : !util.ptr<tensor<128xf32>>
%914 = util.global.address @"__iree_flow_bert/encoder/layer_5/ffn_layer_2/output/FakeLayerNorm/gamma" : !util.ptr<tensor<128xf32>>
%915 = util.global.address @"__iree_flow_bert/encoder/layer_5/ffn_layer_2/output/dense/bias" : !util.ptr<tensor<128xf32>>
%916 = util.global.address @"__iree_flow_bert/encoder/layer_5/ffn_layer_2/output/dense/kernel" : !util.ptr<tensor<512x128xf32>>
%917 = util.global.address @"__iree_flow_bert/encoder/layer_5/intermediate/dense/bias" : !util.ptr<tensor<512xf32>>
%918 = util.global.address @"__iree_flow_bert/encoder/layer_5/intermediate/dense/kernel" : !util.ptr<tensor<128x512xf32>>
%919 = util.global.address @"__iree_flow_bert/encoder/layer_5/output/FakeLayerNorm/beta" : !util.ptr<tensor<128xf32>>
%920 = util.global.address @"__iree_flow_bert/encoder/layer_5/output/FakeLayerNorm/gamma" : !util.ptr<tensor<128xf32>>
%921 = util.global.address @"__iree_flow_bert/encoder/layer_5/output/bottleneck/FakeLayerNorm/beta" : !util.ptr<tensor<512xf32>>
%922 = util.global.address @"__iree_flow_bert/encoder/layer_5/output/bottleneck/FakeLayerNorm/gamma" : !util.ptr<tensor<512xf32>>
%923 = util.global.address @"__iree_flow_bert/encoder/layer_5/output/bottleneck/dense/bias" : !util.ptr<tensor<512xf32>>
%924 = util.global.address @"__iree_flow_bert/encoder/layer_5/output/bottleneck/dense/kernel" : !util.ptr<tensor<128x512xf32>>
%925 = util.global.address @"__iree_flow_bert/encoder/layer_5/output/dense/bias" : !util.ptr<tensor<128xf32>>
%926 = util.global.address @"__iree_flow_bert/encoder/layer_5/output/dense/kernel" : !util.ptr<tensor<512x128xf32>>
%927 = util.global.address @"__iree_flow_bert/encoder/layer_6/attention/output/FakeLayerNorm/beta" : !util.ptr<tensor<128xf32>>
%928 = util.global.address @"__iree_flow_bert/encoder/layer_6/attention/output/FakeLayerNorm/gamma" : !util.ptr<tensor<128xf32>>
%929 = util.global.address @"__iree_flow_bert/encoder/layer_6/attention/output/dense/bias" : !util.ptr<tensor<128xf32>>
%930 = util.global.address @"__iree_flow_bert/encoder/layer_6/attention/output/dense/kernel" : !util.ptr<tensor<128x128xf32>>
%931 = util.global.address @"__iree_flow_bert/encoder/layer_6/attention/self/key/bias" : !util.ptr<tensor<128xf32>>
%932 = util.global.address @"__iree_flow_bert/encoder/layer_6/attention/self/key/kernel" : !util.ptr<tensor<128x128xf32>>
%933 = util.global.address @"__iree_flow_bert/encoder/layer_6/attention/self/query/bias" : !util.ptr<tensor<128xf32>>
%934 = util.global.address @"__iree_flow_bert/encoder/layer_6/attention/self/query/kernel" : !util.ptr<tensor<128x128xf32>>
%935 = util.global.address @"__iree_flow_bert/encoder/layer_6/attention/self/value/bias" : !util.ptr<tensor<128xf32>>
%936 = util.global.address @"__iree_flow_bert/encoder/layer_6/attention/self/value/kernel" : !util.ptr<tensor<512x128xf32>>
%937 = util.global.address @"__iree_flow_bert/encoder/layer_6/bottleneck/attention/FakeLayerNorm/beta" : !util.ptr<tensor<128xf32>>
%938 = util.global.address @"__iree_flow_bert/encoder/layer_6/bottleneck/attention/FakeLayerNorm/gamma" : !util.ptr<tensor<128xf32>>
%939 = util.global.address @"__iree_flow_bert/encoder/layer_6/bottleneck/attention/dense/bias" : !util.ptr<tensor<128xf32>>
%940 = util.global.address @"__iree_flow_bert/encoder/layer_6/bottleneck/attention/dense/kernel" : !util.ptr<tensor<512x128xf32>>
%941 = util.global.address @"__iree_flow_bert/encoder/layer_6/bottleneck/input/FakeLayerNorm/beta" : !util.ptr<tensor<128xf32>>
%942 = util.global.address @"__iree_flow_bert/encoder/layer_6/bottleneck/input/FakeLayerNorm/gamma" : !util.ptr<tensor<128xf32>>
%943 = util.global.address @"__iree_flow_bert/encoder/layer_6/bottleneck/input/dense/bias" : !util.ptr<tensor<128xf32>>
%944 = util.global.address @"__iree_flow_bert/encoder/layer_6/bottleneck/input/dense/kernel" : !util.ptr<tensor<512x128xf32>>
%945 = util.global.address @"__iree_flow_bert/encoder/layer_6/ffn_layer_0/intermediate/dense/bias" : !util.ptr<tensor<512xf32>>
%946 = util.global.address @"__iree_flow_bert/encoder/layer_6/ffn_layer_0/intermediate/dense/kernel" : !util.ptr<tensor<128x512xf32>>
%947 = util.global.address @"__iree_flow_bert/encoder/layer_6/ffn_layer_0/output/FakeLayerNorm/beta" : !util.ptr<tensor<128xf32>>
%948 = util.global.address @"__iree_flow_bert/encoder/layer_6/ffn_layer_0/output/FakeLayerNorm/gamma" : !util.ptr<tensor<128xf32>>
%949 = util.global.address @"__iree_flow_bert/encoder/layer_6/ffn_layer_0/output/dense/bias" : !util.ptr<tensor<128xf32>>
%950 = util.global.address @"__iree_flow_bert/encoder/layer_6/ffn_layer_0/output/dense/kernel" : !util.ptr<tensor<512x128xf32>>
%951 = util.global.address @"__iree_flow_bert/encoder/layer_6/ffn_layer_1/intermediate/dense/bias" : !util.ptr<tensor<512xf32>>
%952 = util.global.address @"__iree_flow_bert/encoder/layer_6/ffn_layer_1/intermediate/dense/kernel" : !util.ptr<tensor<128x512xf32>>
%953 = util.global.address @"__iree_flow_bert/encoder/layer_6/ffn_layer_1/output/FakeLayerNorm/beta" : !util.ptr<tensor<128xf32>>
%954 = util.global.address @"__iree_flow_bert/encoder/layer_6/ffn_layer_1/output/FakeLayerNorm/gamma" : !util.ptr<tensor<128xf32>>
%955 = util.global.address @"__iree_flow_bert/encoder/layer_6/ffn_layer_1/output/dense/bias" : !util.ptr<tensor<128xf32>>
%956 = util.global.address @"__iree_flow_bert/encoder/layer_6/ffn_layer_1/output/dense/kernel" : !util.ptr<tensor<512x128xf32>>
%957 = util.global.address @"__iree_flow_bert/encoder/layer_6/ffn_layer_2/intermediate/dense/bias" : !util.ptr<tensor<512xf32>>
%958 = util.global.address @"__iree_flow_bert/encoder/layer_6/ffn_layer_2/intermediate/dense/kernel" : !util.ptr<tensor<128x512xf32>>
%959 = util.global.address @"__iree_flow_bert/encoder/layer_6/ffn_layer_2/output/FakeLayerNorm/beta" : !util.ptr<tensor<128xf32>>
%960 = util.global.address @"__iree_flow_bert/encoder/layer_6/ffn_layer_2/output/FakeLayerNorm/gamma" : !util.ptr<tensor<128xf32>>
%961 = util.global.address @"__iree_flow_bert/encoder/layer_6/ffn_layer_2/output/dense/bias" : !util.ptr<tensor<128xf32>>
%962 = util.global.address @"__iree_flow_bert/encoder/layer_6/ffn_layer_2/output/dense/kernel" : !util.ptr<tensor<512x128xf32>>
%963 = util.global.address @"__iree_flow_bert/encoder/layer_6/intermediate/dense/bias" : !util.ptr<tensor<512xf32>>
%964 = util.global.address @"__iree_flow_bert/encoder/layer_6/intermediate/dense/kernel" : !util.ptr<tensor<128x512xf32>>
%965 = util.global.address @"__iree_flow_bert/encoder/layer_6/output/FakeLayerNorm/beta" : !util.ptr<tensor<128xf32>>
%966 = util.global.address @"__iree_flow_bert/encoder/layer_6/output/FakeLayerNorm/gamma" : !util.ptr<tensor<128xf32>>
%967 = util.global.address @"__iree_flow_bert/encoder/layer_6/output/bottleneck/FakeLayerNorm/beta" : !util.ptr<tensor<512xf32>>
%968 = util.global.address @"__iree_flow_bert/encoder/layer_6/output/bottleneck/FakeLayerNorm/gamma" : !util.ptr<tensor<512xf32>>
%969 = util.global.address @"__iree_flow_bert/encoder/layer_6/output/bottleneck/dense/bias" : !util.ptr<tensor<512xf32>>
%970 = util.global.address @"__iree_flow_bert/encoder/layer_6/output/bottleneck/dense/kernel" : !util.ptr<tensor<128x512xf32>>
%971 = util.global.address @"__iree_flow_bert/encoder/layer_6/output/dense/bias" : !util.ptr<tensor<128xf32>>
%972 = util.global.address @"__iree_flow_bert/encoder/layer_6/output/dense/kernel" : !util.ptr<tensor<512x128xf32>>
%973 = util.global.address @"__iree_flow_bert/encoder/layer_7/attention/output/FakeLayerNorm/beta" : !util.ptr<tensor<128xf32>>
%974 = util.global.address @"__iree_flow_bert/encoder/layer_7/attention/output/FakeLayerNorm/gamma" : !util.ptr<tensor<128xf32>>
%975 = util.global.address @"__iree_flow_bert/encoder/layer_7/attention/output/dense/bias" : !util.ptr<tensor<128xf32>>
%976 = util.global.address @"__iree_flow_bert/encoder/layer_7/attention/output/dense/kernel" : !util.ptr<tensor<128x128xf32>>
%977 = util.global.address @"__iree_flow_bert/encoder/layer_7/attention/self/key/bias" : !util.ptr<tensor<128xf32>>
%978 = util.global.address @"__iree_flow_bert/encoder/layer_7/attention/self/key/kernel" : !util.ptr<tensor<128x128xf32>>
%979 = util.global.address @"__iree_flow_bert/encoder/layer_7/attention/self/query/bias" : !util.ptr<tensor<128xf32>>
%980 = util.global.address @"__iree_flow_bert/encoder/layer_7/attention/self/query/kernel" : !util.ptr<tensor<128x128xf32>>
%981 = util.global.address @"__iree_flow_bert/encoder/layer_7/attention/self/value/bias" : !util.ptr<tensor<128xf32>>
%982 = util.global.address @"__iree_flow_bert/encoder/layer_7/attention/self/value/kernel" : !util.ptr<tensor<512x128xf32>>
%983 = util.global.address @"__iree_flow_bert/encoder/layer_7/bottleneck/attention/FakeLayerNorm/beta" : !util.ptr<tensor<128xf32>>
%984 = util.global.address @"__iree_flow_bert/encoder/layer_7/bottleneck/attention/FakeLayerNorm/gamma" : !util.ptr<tensor<128xf32>>
%985 = util.global.address @"__iree_flow_bert/encoder/layer_7/bottleneck/attention/dense/bias" : !util.ptr<tensor<128xf32>>
%986 = util.global.address @"__iree_flow_bert/encoder/layer_7/bottleneck/attention/dense/kernel" : !util.ptr<tensor<512x128xf32>>
%987 = util.global.address @"__iree_flow_bert/encoder/layer_7/bottleneck/input/FakeLayerNorm/beta" : !util.ptr<tensor<128xf32>>
%988 = util.global.address @"__iree_flow_bert/encoder/layer_7/bottleneck/input/FakeLayerNorm/gamma" : !util.ptr<tensor<128xf32>>
%989 = util.global.address @"__iree_flow_bert/encoder/layer_7/bottleneck/input/dense/bias" : !util.ptr<tensor<128xf32>>
%990 = util.global.address @"__iree_flow_bert/encoder/layer_7/bottleneck/input/dense/kernel" : !util.ptr<tensor<512x128xf32>>
%991 = util.global.address @"__iree_flow_bert/encoder/layer_7/ffn_layer_0/intermediate/dense/bias" : !util.ptr<tensor<512xf32>>
%992 = util.global.address @"__iree_flow_bert/encoder/layer_7/ffn_layer_0/intermediate/dense/kernel" : !util.ptr<tensor<128x512xf32>>
%993 = util.global.address @"__iree_flow_bert/encoder/layer_7/ffn_layer_0/output/FakeLayerNorm/beta" : !util.ptr<tensor<128xf32>>
%994 = util.global.address @"__iree_flow_bert/encoder/layer_7/ffn_layer_0/output/FakeLayerNorm/gamma" : !util.ptr<tensor<128xf32>>
%995 = util.global.address @"__iree_flow_bert/encoder/layer_7/ffn_layer_0/output/dense/bias" : !util.ptr<tensor<128xf32>>
%996 = util.global.address @"__iree_flow_bert/encoder/layer_7/ffn_layer_0/output/dense/kernel" : !util.ptr<tensor<512x128xf32>>
%997 = util.global.address @"__iree_flow_bert/encoder/layer_7/ffn_layer_1/intermediate/dense/bias" : !util.ptr<tensor<512xf32>>
%998 = util.global.address @"__iree_flow_bert/encoder/layer_7/ffn_layer_1/intermediate/dense/kernel" : !util.ptr<tensor<128x512xf32>>
%999 = util.global.address @"__iree_flow_bert/encoder/layer_7/ffn_layer_1/output/FakeLayerNorm/beta" : !util.ptr<tensor<128xf32>>
%1000 = util.global.address @"__iree_flow_bert/encoder/layer_7/ffn_layer_1/output/FakeLayerNorm/gamma" : !util.ptr<tensor<128xf32>>
%1001 = util.global.address @"__iree_flow_bert/encoder/layer_7/ffn_layer_1/output/dense/bias" : !util.ptr<tensor<128xf32>>
%1002 = util.global.address @"__iree_flow_bert/encoder/layer_7/ffn_layer_1/output/dense/kernel" : !util.ptr<tensor<512x128xf32>>
%1003 = util.global.address @"__iree_flow_bert/encoder/layer_7/ffn_layer_2/intermediate/dense/bias" : !util.ptr<tensor<512xf32>>
%1004 = util.global.address @"__iree_flow_bert/encoder/layer_7/ffn_layer_2/intermediate/dense/kernel" : !util.ptr<tensor<128x512xf32>>
%1005 = util.global.address @"__iree_flow_bert/encoder/layer_7/ffn_layer_2/output/FakeLayerNorm/beta" : !util.ptr<tensor<128xf32>>
%1006 = util.global.address @"__iree_flow_bert/encoder/layer_7/ffn_layer_2/output/FakeLayerNorm/gamma" : !util.ptr<tensor<128xf32>>
%1007 = util.global.address @"__iree_flow_bert/encoder/layer_7/ffn_layer_2/output/dense/bias" : !util.ptr<tensor<128xf32>>
%1008 = util.global.address @"__iree_flow_bert/encoder/layer_7/ffn_layer_2/output/dense/kernel" : !util.ptr<tensor<512x128xf32>>
%1009 = util.global.address @"__iree_flow_bert/encoder/layer_7/intermediate/dense/bias" : !util.ptr<tensor<512xf32>>
%1010 = util.global.address @"__iree_flow_bert/encoder/layer_7/intermediate/dense/kernel" : !util.ptr<tensor<128x512xf32>>
%1011 = util.global.address @"__iree_flow_bert/encoder/layer_7/output/FakeLayerNorm/beta" : !util.ptr<tensor<128xf32>>
%1012 = util.global.address @"__iree_flow_bert/encoder/layer_7/output/FakeLayerNorm/gamma" : !util.ptr<tensor<128xf32>>
%1013 = util.global.address @"__iree_flow_bert/encoder/layer_7/output/bottleneck/FakeLayerNorm/beta" : !util.ptr<tensor<512xf32>>
%1014 = util.global.address @"__iree_flow_bert/encoder/layer_7/output/bottleneck/FakeLayerNorm/gamma" : !util.ptr<tensor<512xf32>>
%1015 = util.global.address @"__iree_flow_bert/encoder/layer_7/output/bottleneck/dense/bias" : !util.ptr<tensor<512xf32>>
%1016 = util.global.address @"__iree_flow_bert/encoder/layer_7/output/bottleneck/dense/kernel" : !util.ptr<tensor<128x512xf32>>
%1017 = util.global.address @"__iree_flow_bert/encoder/layer_7/output/dense/bias" : !util.ptr<tensor<128xf32>>
%1018 = util.global.address @"__iree_flow_bert/encoder/layer_7/output/dense/kernel" : !util.ptr<tensor<512x128xf32>>
%1019 = util.global.address @"__iree_flow_bert/encoder/layer_8/attention/output/FakeLayerNorm/beta" : !util.ptr<tensor<128xf32>>
%1020 = util.global.address @"__iree_flow_bert/encoder/layer_8/attention/output/FakeLayerNorm/gamma" : !util.ptr<tensor<128xf32>>
%1021 = util.global.address @"__iree_flow_bert/encoder/layer_8/attention/output/dense/bias" : !util.ptr<tensor<128xf32>>
%1022 = util.global.address @"__iree_flow_bert/encoder/layer_8/attention/output/dense/kernel" : !util.ptr<tensor<128x128xf32>>
%1023 = util.global.address @"__iree_flow_bert/encoder/layer_8/attention/self/key/bias" : !util.ptr<tensor<128xf32>>
%1024 = util.global.address @"__iree_flow_bert/encoder/layer_8/attention/self/key/kernel" : !util.ptr<tensor<128x128xf32>>
%1025 = util.global.address @"__iree_flow_bert/encoder/layer_8/attention/self/query/bias" : !util.ptr<tensor<128xf32>>
%1026 = util.global.address @"__iree_flow_bert/encoder/layer_8/attention/self/query/kernel" : !util.ptr<tensor<128x128xf32>>
%1027 = util.global.address @"__iree_flow_bert/encoder/layer_8/attention/self/value/bias" : !util.ptr<tensor<128xf32>>
%1028 = util.global.address @"__iree_flow_bert/encoder/layer_8/attention/self/value/kernel" : !util.ptr<tensor<512x128xf32>>
%1029 = util.global.address @"__iree_flow_bert/encoder/layer_8/bottleneck/attention/FakeLayerNorm/beta" : !util.ptr<tensor<128xf32>>
%1030 = util.global.address @"__iree_flow_bert/encoder/layer_8/bottleneck/attention/FakeLayerNorm/gamma" : !util.ptr<tensor<128xf32>>
%1031 = util.global.address @"__iree_flow_bert/encoder/layer_8/bottleneck/attention/dense/bias" : !util.ptr<tensor<128xf32>>
%1032 = util.global.address @"__iree_flow_bert/encoder/layer_8/bottleneck/attention/dense/kernel" : !util.ptr<tensor<512x128xf32>>
%1033 = util.global.address @"__iree_flow_bert/encoder/layer_8/bottleneck/input/FakeLayerNorm/beta" : !util.ptr<tensor<128xf32>>
%1034 = util.global.address @"__iree_flow_bert/encoder/layer_8/bottleneck/input/FakeLayerNorm/gamma" : !util.ptr<tensor<128xf32>>
%1035 = util.global.address @"__iree_flow_bert/encoder/layer_8/bottleneck/input/dense/bias" : !util.ptr<tensor<128xf32>>
%1036 = util.global.address @"__iree_flow_bert/encoder/layer_8/bottleneck/input/dense/kernel" : !util.ptr<tensor<512x128xf32>>
%1037 = util.global.address @"__iree_flow_bert/encoder/layer_8/ffn_layer_0/intermediate/dense/bias" : !util.ptr<tensor<512xf32>>
%1038 = util.global.address @"__iree_flow_bert/encoder/layer_8/ffn_layer_0/intermediate/dense/kernel" : !util.ptr<tensor<128x512xf32>>
%1039 = util.global.address @"__iree_flow_bert/encoder/layer_8/ffn_layer_0/output/FakeLayerNorm/beta" : !util.ptr<tensor<128xf32>>
%1040 = util.global.address @"__iree_flow_bert/encoder/layer_8/ffn_layer_0/output/FakeLayerNorm/gamma" : !util.ptr<tensor<128xf32>>
%1041 = util.global.address @"__iree_flow_bert/encoder/layer_8/ffn_layer_0/output/dense/bias" : !util.ptr<tensor<128xf32>>
%1042 = util.global.address @"__iree_flow_bert/encoder/layer_8/ffn_layer_0/output/dense/kernel" : !util.ptr<tensor<512x128xf32>>
%1043 = util.global.address @"__iree_flow_bert/encoder/layer_8/ffn_layer_1/intermediate/dense/bias" : !util.ptr<tensor<512xf32>>
%1044 = util.global.address @"__iree_flow_bert/encoder/layer_8/ffn_layer_1/intermediate/dense/kernel" : !util.ptr<tensor<128x512xf32>>
%1045 = util.global.address @"__iree_flow_bert/encoder/layer_8/ffn_layer_1/output/FakeLayerNorm/beta" : !util.ptr<tensor<128xf32>>
%1046 = util.global.address @"__iree_flow_bert/encoder/layer_8/ffn_layer_1/output/FakeLayerNorm/gamma" : !util.ptr<tensor<128xf32>>
%1047 = util.global.address @"__iree_flow_bert/encoder/layer_8/ffn_layer_1/output/dense/bias" : !util.ptr<tensor<128xf32>>
%1048 = util.global.address @"__iree_flow_bert/encoder/layer_8/ffn_layer_1/output/dense/kernel" : !util.ptr<tensor<512x128xf32>>
%1049 = util.global.address @"__iree_flow_bert/encoder/layer_8/ffn_layer_2/intermediate/dense/bias" : !util.ptr<tensor<512xf32>>
%1050 = util.global.address @"__iree_flow_bert/encoder/layer_8/ffn_layer_2/intermediate/dense/kernel" : !util.ptr<tensor<128x512xf32>>
%1051 = util.global.address @"__iree_flow_bert/encoder/layer_8/ffn_layer_2/output/FakeLayerNorm/beta" : !util.ptr<tensor<128xf32>>
%1052 = util.global.address @"__iree_flow_bert/encoder/layer_8/ffn_layer_2/output/FakeLayerNorm/gamma" : !util.ptr<tensor<128xf32>>
%1053 = util.global.address @"__iree_flow_bert/encoder/layer_8/ffn_layer_2/output/dense/bias" : !util.ptr<tensor<128xf32>>
%1054 = util.global.address @"__iree_flow_bert/encoder/layer_8/ffn_layer_2/output/dense/kernel" : !util.ptr<tensor<512x128xf32>>
%1055 = util.global.address @"__iree_flow_bert/encoder/layer_8/intermediate/dense/bias" : !util.ptr<tensor<512xf32>>
%1056 = util.global.address @"__iree_flow_bert/encoder/layer_8/intermediate/dense/kernel" : !util.ptr<tensor<128x512xf32>>
%1057 = util.global.address @"__iree_flow_bert/encoder/layer_8/output/FakeLayerNorm/beta" : !util.ptr<tensor<128xf32>>
%1058 = util.global.address @"__iree_flow_bert/encoder/layer_8/output/FakeLayerNorm/gamma" : !util.ptr<tensor<128xf32>>
%1059 = util.global.address @"__iree_flow_bert/encoder/layer_8/output/bottleneck/FakeLayerNorm/beta" : !util.ptr<tensor<512xf32>>
%1060 = util.global.address @"__iree_flow_bert/encoder/layer_8/output/bottleneck/FakeLayerNorm/gamma" : !util.ptr<tensor<512xf32>>
%1061 = util.global.address @"__iree_flow_bert/encoder/layer_8/output/bottleneck/dense/bias" : !util.ptr<tensor<512xf32>>
%1062 = util.global.address @"__iree_flow_bert/encoder/layer_8/output/bottleneck/dense/kernel" : !util.ptr<tensor<128x512xf32>>
%1063 = util.global.address @"__iree_flow_bert/encoder/layer_8/output/dense/bias" : !util.ptr<tensor<128xf32>>
%1064 = util.global.address @"__iree_flow_bert/encoder/layer_8/output/dense/kernel" : !util.ptr<tensor<512x128xf32>>
%1065 = util.global.address @"__iree_flow_bert/encoder/layer_9/attention/output/FakeLayerNorm/beta" : !util.ptr<tensor<128xf32>>
%1066 = util.global.address @"__iree_flow_bert/encoder/layer_9/attention/output/FakeLayerNorm/gamma" : !util.ptr<tensor<128xf32>>
%1067 = util.global.address @"__iree_flow_bert/encoder/layer_9/attention/output/dense/bias" : !util.ptr<tensor<128xf32>>
%1068 = util.global.address @"__iree_flow_bert/encoder/layer_9/attention/output/dense/kernel" : !util.ptr<tensor<128x128xf32>>
%1069 = util.global.address @"__iree_flow_bert/encoder/layer_9/attention/self/key/bias" : !util.ptr<tensor<128xf32>>
%1070 = util.global.address @"__iree_flow_bert/encoder/layer_9/attention/self/key/kernel" : !util.ptr<tensor<128x128xf32>>
%1071 = util.global.address @"__iree_flow_bert/encoder/layer_9/attention/self/query/bias" : !util.ptr<tensor<128xf32>>
%1072 = util.global.address @"__iree_flow_bert/encoder/layer_9/attention/self/query/kernel" : !util.ptr<tensor<128x128xf32>>
%1073 = util.global.address @"__iree_flow_bert/encoder/layer_9/attention/self/value/bias" : !util.ptr<tensor<128xf32>>
%1074 = util.global.address @"__iree_flow_bert/encoder/layer_9/attention/self/value/kernel" : !util.ptr<tensor<512x128xf32>>
%1075 = util.global.address @"__iree_flow_bert/encoder/layer_9/bottleneck/attention/FakeLayerNorm/beta" : !util.ptr<tensor<128xf32>>
%1076 = util.global.address @"__iree_flow_bert/encoder/layer_9/bottleneck/attention/FakeLayerNorm/gamma" : !util.ptr<tensor<128xf32>>
%1077 = util.global.address @"__iree_flow_bert/encoder/layer_9/bottleneck/attention/dense/bias" : !util.ptr<tensor<128xf32>>
%1078 = util.global.address @"__iree_flow_bert/encoder/layer_9/bottleneck/attention/dense/kernel" : !util.ptr<tensor<512x128xf32>>
%1079 = util.global.address @"__iree_flow_bert/encoder/layer_9/bottleneck/input/FakeLayerNorm/beta" : !util.ptr<tensor<128xf32>>
%1080 = util.global.address @"__iree_flow_bert/encoder/layer_9/bottleneck/input/FakeLayerNorm/gamma" : !util.ptr<tensor<128xf32>>
%1081 = util.global.address @"__iree_flow_bert/encoder/layer_9/bottleneck/input/dense/bias" : !util.ptr<tensor<128xf32>>
%1082 = util.global.address @"__iree_flow_bert/encoder/layer_9/bottleneck/input/dense/kernel" : !util.ptr<tensor<512x128xf32>>
%1083 = util.global.address @"__iree_flow_bert/encoder/layer_9/ffn_layer_0/intermediate/dense/bias" : !util.ptr<tensor<512xf32>>
%1084 = util.global.address @"__iree_flow_bert/encoder/layer_9/ffn_layer_0/intermediate/dense/kernel" : !util.ptr<tensor<128x512xf32>>
%1085 = util.global.address @"__iree_flow_bert/encoder/layer_9/ffn_layer_0/output/FakeLayerNorm/beta" : !util.ptr<tensor<128xf32>>
%1086 = util.global.address @"__iree_flow_bert/encoder/layer_9/ffn_layer_0/output/FakeLayerNorm/gamma" : !util.ptr<tensor<128xf32>>
%1087 = util.global.address @"__iree_flow_bert/encoder/layer_9/ffn_layer_0/output/dense/bias" : !util.ptr<tensor<128xf32>>
%1088 = util.global.address @"__iree_flow_bert/encoder/layer_9/ffn_layer_0/output/dense/kernel" : !util.ptr<tensor<512x128xf32>>
%1089 = util.global.address @"__iree_flow_bert/encoder/layer_9/ffn_layer_1/intermediate/dense/bias" : !util.ptr<tensor<512xf32>>
%1090 = util.global.address @"__iree_flow_bert/encoder/layer_9/ffn_layer_1/intermediate/dense/kernel" : !util.ptr<tensor<128x512xf32>>
%1091 = util.global.address @"__iree_flow_bert/encoder/layer_9/ffn_layer_1/output/FakeLayerNorm/beta" : !util.ptr<tensor<128xf32>>
%1092 = util.global.address @"__iree_flow_bert/encoder/layer_9/ffn_layer_1/output/FakeLayerNorm/gamma" : !util.ptr<tensor<128xf32>>
%1093 = util.global.address @"__iree_flow_bert/encoder/layer_9/ffn_layer_1/output/dense/bias" : !util.ptr<tensor<128xf32>>
%1094 = util.global.address @"__iree_flow_bert/encoder/layer_9/ffn_layer_1/output/dense/kernel" : !util.ptr<tensor<512x128xf32>>
%1095 = util.global.address @"__iree_flow_bert/encoder/layer_9/ffn_layer_2/intermediate/dense/bias" : !util.ptr<tensor<512xf32>>
%1096 = util.global.address @"__iree_flow_bert/encoder/layer_9/ffn_layer_2/intermediate/dense/kernel" : !util.ptr<tensor<128x512xf32>>
%1097 = util.global.address @"__iree_flow_bert/encoder/layer_9/ffn_layer_2/output/FakeLayerNorm/beta" : !util.ptr<tensor<128xf32>>
%1098 = util.global.address @"__iree_flow_bert/encoder/layer_9/ffn_layer_2/output/FakeLayerNorm/gamma" : !util.ptr<tensor<128xf32>>
%1099 = util.global.address @"__iree_flow_bert/encoder/layer_9/ffn_layer_2/output/dense/bias" : !util.ptr<tensor<128xf32>>
%1100 = util.global.address @"__iree_flow_bert/encoder/layer_9/ffn_layer_2/output/dense/kernel" : !util.ptr<tensor<512x128xf32>>
%1101 = util.global.address @"__iree_flow_bert/encoder/layer_9/intermediate/dense/bias" : !util.ptr<tensor<512xf32>>
%1102 = util.global.address @"__iree_flow_bert/encoder/layer_9/intermediate/dense/kernel" : !util.ptr<tensor<128x512xf32>>
%1103 = util.global.address @"__iree_flow_bert/encoder/layer_9/output/FakeLayerNorm/beta" : !util.ptr<tensor<128xf32>>
%1104 = util.global.address @"__iree_flow_bert/encoder/layer_9/output/FakeLayerNorm/gamma" : !util.ptr<tensor<128xf32>>
%1105 = util.global.address @"__iree_flow_bert/encoder/layer_9/output/bottleneck/FakeLayerNorm/beta" : !util.ptr<tensor<512xf32>>
%1106 = util.global.address @"__iree_flow_bert/encoder/layer_9/output/bottleneck/FakeLayerNorm/gamma" : !util.ptr<tensor<512xf32>>
%1107 = util.global.address @"__iree_flow_bert/encoder/layer_9/output/bottleneck/dense/bias" : !util.ptr<tensor<512xf32>>
%1108 = util.global.address @"__iree_flow_bert/encoder/layer_9/output/bottleneck/dense/kernel" : !util.ptr<tensor<128x512xf32>>
%1109 = util.global.address @"__iree_flow_bert/encoder/layer_9/output/dense/bias" : !util.ptr<tensor<128xf32>>
%1110 = util.global.address @"__iree_flow_bert/encoder/layer_9/output/dense/kernel" : !util.ptr<tensor<512x128xf32>>
%1111 = util.global.address @"__iree_flow_cls/squad/output_bias" : !util.ptr<tensor<2xf32>>
%1112 = util.global.address @"__iree_flow_cls/squad/output_weights" : !util.ptr<tensor<2x512xf32>>
%1113 = mhlo.constant dense<-1.000000e+04> : tensor<1x1x384x384xf32>
%1114 = mhlo.constant dense<0.176776692> : tensor<1x4x384x384xf32>
%1115 = mhlo.constant dense<1.000000e+04> : tensor<1x1x384x384xf32>
%1116 = mhlo.constant dense<1.000000e+00> : tensor<1x384x384xf32>
%1117 = mhlo.constant dense<0xFF800000> : tensor<f32>
%1118 = mhlo.constant dense<0.000000e+00> : tensor<f32>
%1119 = mhlo.constant dense<0.000000e+00> : tensor<1x384x512xf32>
%1120 = util.global.load.indirect %0 : !util.ptr<tensor<512xf32>> -> tensor<512xf32>
%1121 = util.global.load.indirect %1 : !util.ptr<tensor<512xf32>> -> tensor<512xf32>
%1122 = util.global.load.indirect %2 : !util.ptr<tensor<512xf32>> -> tensor<512xf32>
%1123 = util.global.load.indirect %3 : !util.ptr<tensor<384x512xf32>> -> tensor<384x512xf32>
%1124 = util.global.load.indirect %4 : !util.ptr<tensor<512x512xf32>> -> tensor<512x512xf32>
%1125 = "mhlo.slice"(%1124) {limit_indices = dense<[384, 512]> : tensor<2xi64>, start_indices = dense<0> : tensor<2xi64>, strides = dense<1> : tensor<2xi64>} : (tensor<512x512xf32>) -> tensor<384x512xf32>
%1126 = "mhlo.reshape"(%1125) : (tensor<384x512xf32>) -> tensor<1x384x512xf32>
%1127 = util.global.load.indirect %5 : !util.ptr<tensor<2x512xf32>> -> tensor<2x512xf32>
%1128 = util.global.load.indirect %6 : !util.ptr<tensor<30522x128xf32>> -> tensor<30522x128xf32>
%1129 = util.global.load.indirect %7 : !util.ptr<tensor<128xf32>> -> tensor<128xf32>
%1130 = util.global.load.indirect %8 : !util.ptr<tensor<128xf32>> -> tensor<128xf32>
%1131 = util.global.load.indirect %9 : !util.ptr<tensor<128xf32>> -> tensor<128xf32>
%1132 = util.global.load.indirect %10 : !util.ptr<tensor<128x128xf32>> -> tensor<128x128xf32>
%1133 = util.global.load.indirect %11 : !util.ptr<tensor<128xf32>> -> tensor<128xf32>
%1134 = util.global.load.indirect %12 : !util.ptr<tensor<128x128xf32>> -> tensor<128x128xf32>
%1135 = util.global.load.indirect %13 : !util.ptr<tensor<128xf32>> -> tensor<128xf32>
%1136 = util.global.load.indirect %14 : !util.ptr<tensor<128x128xf32>> -> tensor<128x128xf32>
%1137 = util.global.load.indirect %15 : !util.ptr<tensor<128xf32>> -> tensor<128xf32>
%1138 = util.global.load.indirect %16 : !util.ptr<tensor<512x128xf32>> -> tensor<512x128xf32>
%1139 = util.global.load.indirect %17 : !util.ptr<tensor<128xf32>> -> tensor<128xf32>
%1140 = util.global.load.indirect %18 : !util.ptr<tensor<128xf32>> -> tensor<128xf32>
%1141 = util.global.load.indirect %19 : !util.ptr<tensor<128xf32>> -> tensor<128xf32>
%1142 = util.global.load.indirect %20 : !util.ptr<tensor<512x128xf32>> -> tensor<512x128xf32>
%1143 = util.global.load.indirect %21 : !util.ptr<tensor<128xf32>> -> tensor<128xf32>
%1144 = util.global.load.indirect %22 : !util.ptr<tensor<128xf32>> -> tensor<128xf32>
%1145 = util.global.load.indirect %23 : !util.ptr<tensor<128xf32>> -> tensor<128xf32>
%1146 = util.global.load.indirect %24 : !util.ptr<tensor<512x128xf32>> -> tensor<512x128xf32>
%1147 = util.global.load.indirect %25 : !util.ptr<tensor<512xf32>> -> tensor<512xf32>
%1148 = util.global.load.indirect %26 : !util.ptr<tensor<128x512xf32>> -> tensor<128x512xf32>
%1149 = util.global.load.indirect %27 : !util.ptr<tensor<128xf32>> -> tensor<128xf32>
%1150 = util.global.load.indirect %28 : !util.ptr<tensor<128xf32>> -> tensor<128xf32>
%1151 = util.global.load.indirect %29 : !util.ptr<tensor<128xf32>> -> tensor<128xf32>
%1152 = util.global.load.indirect %30 : !util.ptr<tensor<512x128xf32>> -> tensor<512x128xf32>
%1153 = util.global.load.indirect %31 : !util.ptr<tensor<512xf32>> -> tensor<512xf32>
%1154 = util.global.load.indirect %32 : !util.ptr<tensor<128x512xf32>> -> tensor<128x512xf32>
%1155 = util.global.load.indirect %33 : !util.ptr<tensor<128xf32>> -> tensor<128xf32>
%1156 = util.global.load.indirect %34 : !util.ptr<tensor<128xf32>> -> tensor<128xf32>
%1157 = util.global.load.indirect %35 : !util.ptr<tensor<128xf32>> -> tensor<128xf32>
%1158 = util.global.load.indirect %36 : !util.ptr<tensor<512x128xf32>> -> tensor<512x128xf32>
%1159 = util.global.load.indirect %37 : !util.ptr<tensor<512xf32>> -> tensor<512xf32>
%1160 = util.global.load.indirect %38 : !util.ptr<tensor<128x512xf32>> -> tensor<128x512xf32>
%1161 = util.global.load.indirect %39 : !util.ptr<tensor<128xf32>> -> tensor<128xf32>
%1162 = util.global.load.indirect %40 : !util.ptr<tensor<128xf32>> -> tensor<128xf32>
%1163 = util.global.load.indirect %41 : !util.ptr<tensor<128xf32>> -> tensor<128xf32>
%1164 = util.global.load.indirect %42 : !util.ptr<tensor<512x128xf32>> -> tensor<512x128xf32>
%1165 = util.global.load.indirect %43 : !util.ptr<tensor<512xf32>> -> tensor<512xf32>
%1166 = util.global.load.indirect %44 : !util.ptr<tensor<128x512xf32>> -> tensor<128x512xf32>
%1167 = util.global.load.indirect %45 : !util.ptr<tensor<128xf32>> -> tensor<128xf32>
%1168 = util.global.load.indirect %46 : !util.ptr<tensor<128xf32>> -> tensor<128xf32>
%1169 = util.global.load.indirect %47 : !util.ptr<tensor<512xf32>> -> tensor<512xf32>
%1170 = util.global.load.indirect %48 : !util.ptr<tensor<512xf32>> -> tensor<512xf32>
%1171 = util.global.load.indirect %49 : !util.ptr<tensor<512xf32>> -> tensor<512xf32>
%1172 = util.global.load.indirect %50 : !util.ptr<tensor<128x512xf32>> -> tensor<128x512xf32>
%1173 = util.global.load.indirect %51 : !util.ptr<tensor<128xf32>> -> tensor<128xf32>
%1174 = util.global.load.indirect %52 : !util.ptr<tensor<512x128xf32>> -> tensor<512x128xf32>
%1175 = util.global.load.indirect %53 : !util.ptr<tensor<128xf32>> -> tensor<128xf32>
%1176 = util.global.load.indirect %54 : !util.ptr<tensor<128xf32>> -> tensor<128xf32>
%1177 = util.global.load.indirect %55 : !util.ptr<tensor<128xf32>> -> tensor<128xf32>
%1178 = util.global.load.indirect %56 : !util.ptr<tensor<128x128xf32>> -> tensor<128x128xf32>
%1179 = util.global.load.indirect %57 : !util.ptr<tensor<128xf32>> -> tensor<128xf32>
%1180 = util.global.load.indirect %58 : !util.ptr<tensor<128x128xf32>> -> tensor<128x128xf32>
%1181 = util.global.load.indirect %59 : !util.ptr<tensor<128xf32>> -> tensor<128xf32>
%1182 = util.global.load.indirect %60 : !util.ptr<tensor<128x128xf32>> -> tensor<128x128xf32>
%1183 = util.global.load.indirect %61 : !util.ptr<tensor<128xf32>> -> tensor<128xf32>
%1184 = util.global.load.indirect %62 : !util.ptr<tensor<512x128xf32>> -> tensor<512x128xf32>
%1185 = util.global.load.indirect %63 : !util.ptr<tensor<128xf32>> -> tensor<128xf32>
%1186 = util.global.load.indirect %64 : !util.ptr<tensor<128xf32>> -> tensor<128xf32>
%1187 = util.global.load.indirect %65 : !util.ptr<tensor<128xf32>> -> tensor<128xf32>
%1188 = util.global.load.indirect %66 : !util.ptr<tensor<512x128xf32>> -> tensor<512x128xf32>
%1189 = util.global.load.indirect %67 : !util.ptr<tensor<128xf32>> -> tensor<128xf32>
%1190 = util.global.load.indirect %68 : !util.ptr<tensor<128xf32>> -> tensor<128xf32>
%1191 = util.global.load.indirect %69 : !util.ptr<tensor<128xf32>> -> tensor<128xf32>
%1192 = util.global.load.indirect %70 : !util.ptr<tensor<512x128xf32>> -> tensor<512x128xf32>
%1193 = util.global.load.indirect %71 : !util.ptr<tensor<512xf32>> -> tensor<512xf32>
%1194 = util.global.load.indirect %72 : !util.ptr<tensor<128x512xf32>> -> tensor<128x512xf32>
%1195 = util.global.load.indirect %73 : !util.ptr<tensor<128xf32>> -> tensor<128xf32>
%1196 = util.global.load.indirect %74 : !util.ptr<tensor<128xf32>> -> tensor<128xf32>
%1197 = util.global.load.indirect %75 : !util.ptr<tensor<128xf32>> -> tensor<128xf32>
%1198 = util.global.load.indirect %76 : !util.ptr<tensor<512x128xf32>> -> tensor<512x128xf32>
%1199 = util.global.load.indirect %77 : !util.ptr<tensor<512xf32>> -> tensor<512xf32>
%1200 = util.global.load.indirect %78 : !util.ptr<tensor<128x512xf32>> -> tensor<128x512xf32>
%1201 = util.global.load.indirect %79 : !util.ptr<tensor<128xf32>> -> tensor<128xf32>
%1202 = util.global.load.indirect %80 : !util.ptr<tensor<128xf32>> -> tensor<128xf32>
%1203 = util.global.load.indirect %81 : !util.ptr<tensor<128xf32>> -> tensor<128xf32>
%1204 = util.global.load.indirect %82 : !util.ptr<tensor<512x128xf32>> -> tensor<512x128xf32>
%1205 = util.global.load.indirect %83 : !util.ptr<tensor<512xf32>> -> tensor<512xf32>
%1206 = util.global.load.indirect %84 : !util.ptr<tensor<128x512xf32>> -> tensor<128x512xf32>
%1207 = util.global.load.indirect %85 : !util.ptr<tensor<128xf32>> -> tensor<128xf32>
%1208 = util.global.load.indirect %86 : !util.ptr<tensor<128xf32>> -> tensor<128xf32>
%1209 = util.global.load.indirect %87 : !util.ptr<tensor<128xf32>> -> tensor<128xf32>
%1210 = util.global.load.indirect %88 : !util.ptr<tensor<512x128xf32>> -> tensor<512x128xf32>
%1211 = util.global.load.indirect %89 : !util.ptr<tensor<512xf32>> -> tensor<512xf32>
%1212 = util.global.load.indirect %90 : !util.ptr<tensor<128x512xf32>> -> tensor<128x512xf32>
%1213 = util.global.load.indirect %91 : !util.ptr<tensor<128xf32>> -> tensor<128xf32>
%1214 = util.global.load.indirect %92 : !util.ptr<tensor<128xf32>> -> tensor<128xf32>
%1215 = util.global.load.indirect %93 : !util.ptr<tensor<512xf32>> -> tensor<512xf32>
%1216 = util.global.load.indirect %94 : !util.ptr<tensor<512xf32>> -> tensor<512xf32>
%1217 = util.global.load.indirect %95 : !util.ptr<tensor<512xf32>> -> tensor<512xf32>
%1218 = util.global.load.indirect %96 : !util.ptr<tensor<128x512xf32>> -> tensor<128x512xf32>
%1219 = util.global.load.indirect %97 : !util.ptr<tensor<128xf32>> -> tensor<128xf32>
%1220 = util.global.load.indirect %98 : !util.ptr<tensor<512x128xf32>> -> tensor<512x128xf32>
%1221 = util.global.load.indirect %99 : !util.ptr<tensor<128xf32>> -> tensor<128xf32>
%1222 = util.global.load.indirect %100 : !util.ptr<tensor<128xf32>> -> tensor<128xf32>
%1223 = util.global.load.indirect %101 : !util.ptr<tensor<128xf32>> -> tensor<128xf32>
%1224 = util.global.load.indirect %102 : !util.ptr<tensor<128x128xf32>> -> tensor<128x128xf32>
%1225 = util.global.load.indirect %103 : !util.ptr<tensor<128xf32>> -> tensor<128xf32>
%1226 = util.global.load.indirect %104 : !util.ptr<tensor<128x128xf32>> -> tensor<128x128xf32>
%1227 = util.global.load.indirect %105 : !util.ptr<tensor<128xf32>> -> tensor<128xf32>
%1228 = util.global.load.indirect %106 : !util.ptr<tensor<128x128xf32>> -> tensor<128x128xf32>
%1229 = util.global.load.indirect %107 : !util.ptr<tensor<128xf32>> -> tensor<128xf32>
%1230 = util.global.load.indirect %108 : !util.ptr<tensor<512x128xf32>> -> tensor<512x128xf32>
%1231 = util.global.load.indirect %109 : !util.ptr<tensor<128xf32>> -> tensor<128xf32>
%1232 = util.global.load.indirect %110 : !util.ptr<tensor<128xf32>> -> tensor<128xf32>
%1233 = util.global.load.indirect %111 : !util.ptr<tensor<128xf32>> -> tensor<128xf32>
%1234 = util.global.load.indirect %112 : !util.ptr<tensor<512x128xf32>> -> tensor<512x128xf32>
%1235 = util.global.load.indirect %113 : !util.ptr<tensor<128xf32>> -> tensor<128xf32>
%1236 = util.global.load.indirect %114 : !util.ptr<tensor<128xf32>> -> tensor<128xf32>
%1237 = util.global.load.indirect %115 : !util.ptr<tensor<128xf32>> -> tensor<128xf32>
%1238 = util.global.load.indirect %116 : !util.ptr<tensor<512x128xf32>> -> tensor<512x128xf32>
%1239 = util.global.load.indirect %117 : !util.ptr<tensor<512xf32>> -> tensor<512xf32>
%1240 = util.global.load.indirect %118 : !util.ptr<tensor<128x512xf32>> -> tensor<128x512xf32>
%1241 = util.global.load.indirect %119 : !util.ptr<tensor<128xf32>> -> tensor<128xf32>
%1242 = util.global.load.indirect %120 : !util.ptr<tensor<128xf32>> -> tensor<128xf32>
%1243 = util.global.load.indirect %121 : !util.ptr<tensor<128xf32>> -> tensor<128xf32>
%1244 = util.global.load.indirect %122 : !util.ptr<tensor<512x128xf32>> -> tensor<512x128xf32>
%1245 = util.global.load.indirect %123 : !util.ptr<tensor<512xf32>> -> tensor<512xf32>
%1246 = util.global.load.indirect %124 : !util.ptr<tensor<128x512xf32>> -> tensor<128x512xf32>
%1247 = util.global.load.indirect %125 : !util.ptr<tensor<128xf32>> -> tensor<128xf32>
%1248 = util.global.load.indirect %126 : !util.ptr<tensor<128xf32>> -> tensor<128xf32>
%1249 = util.global.load.indirect %127 : !util.ptr<tensor<128xf32>> -> tensor<128xf32>
%1250 = util.global.load.indirect %128 : !util.ptr<tensor<512x128xf32>> -> tensor<512x128xf32>
%1251 = util.global.load.indirect %129 : !util.ptr<tensor<512xf32>> -> tensor<512xf32>
%1252 = util.global.load.indirect %130 : !util.ptr<tensor<128x512xf32>> -> tensor<128x512xf32>
%1253 = util.global.load.indirect %131 : !util.ptr<tensor<128xf32>> -> tensor<128xf32>
%1254 = util.global.load.indirect %132 : !util.ptr<tensor<128xf32>> -> tensor<128xf32>
%1255 = util.global.load.indirect %133 : !util.ptr<tensor<128xf32>> -> tensor<128xf32>
%1256 = util.global.load.indirect %134 : !util.ptr<tensor<512x128xf32>> -> tensor<512x128xf32>
%1257 = util.global.load.indirect %135 : !util.ptr<tensor<512xf32>> -> tensor<512xf32>
%1258 = util.global.load.indirect %136 : !util.ptr<tensor<128x512xf32>> -> tensor<128x512xf32>
%1259 = util.global.load.indirect %137 : !util.ptr<tensor<128xf32>> -> tensor<128xf32>
%1260 = util.global.load.indirect %138 : !util.ptr<tensor<128xf32>> -> tensor<128xf32>
%1261 = util.global.load.indirect %139 : !util.ptr<tensor<512xf32>> -> tensor<512xf32>
%1262 = util.global.load.indirect %140 : !util.ptr<tensor<512xf32>> -> tensor<512xf32>
%1263 = util.global.load.indirect %141 : !util.ptr<tensor<512xf32>> -> tensor<512xf32>
%1264 = util.global.load.indirect %142 : !util.ptr<tensor<128x512xf32>> -> tensor<128x512xf32>
%1265 = util.global.load.indirect %143 : !util.ptr<tensor<128xf32>> -> tensor<128xf32>
%1266 = util.global.load.indirect %144 : !util.ptr<tensor<512x128xf32>> -> tensor<512x128xf32>
%1267 = util.global.load.indirect %145 : !util.ptr<tensor<128xf32>> -> tensor<128xf32>
%1268 = util.global.load.indirect %146 : !util.ptr<tensor<128xf32>> -> tensor<128xf32>
%1269 = util.global.load.indirect %147 : !util.ptr<tensor<128xf32>> -> tensor<128xf32>
%1270 = util.global.load.indirect %148 : !util.ptr<tensor<128x128xf32>> -> tensor<128x128xf32>
%1271 = util.global.load.indirect %149 : !util.ptr<tensor<128xf32>> -> tensor<128xf32>
%1272 = util.global.load.indirect %150 : !util.ptr<tensor<128x128xf32>> -> tensor<128x128xf32>
%1273 = util.global.load.indirect %151 : !util.ptr<tensor<128xf32>> -> tensor<128xf32>
%1274 = util.global.load.indirect %152 : !util.ptr<tensor<128x128xf32>> -> tensor<128x128xf32>
%1275 = util.global.load.indirect %153 : !util.ptr<tensor<128xf32>> -> tensor<128xf32>
%1276 = util.global.load.indirect %154 : !util.ptr<tensor<512x128xf32>> -> tensor<512x128xf32>
%1277 = util.global.load.indirect %155 : !util.ptr<tensor<128xf32>> -> tensor<128xf32>
%1278 = util.global.load.indirect %156 : !util.ptr<tensor<128xf32>> -> tensor<128xf32>
%1279 = util.global.load.indirect %157 : !util.ptr<tensor<128xf32>> -> tensor<128xf32>
%1280 = util.global.load.indirect %158 : !util.ptr<tensor<512x128xf32>> -> tensor<512x128xf32>
%1281 = util.global.load.indirect %159 : !util.ptr<tensor<128xf32>> -> tensor<128xf32>
%1282 = util.global.load.indirect %160 : !util.ptr<tensor<128xf32>> -> tensor<128xf32>
%1283 = util.global.load.indirect %161 : !util.ptr<tensor<128xf32>> -> tensor<128xf32>
%1284 = util.global.load.indirect %162 : !util.ptr<tensor<512x128xf32>> -> tensor<512x128xf32>
%1285 = util.global.load.indirect %163 : !util.ptr<tensor<512xf32>> -> tensor<512xf32>
%1286 = util.global.load.indirect %164 : !util.ptr<tensor<128x512xf32>> -> tensor<128x512xf32>
%1287 = util.global.load.indirect %165 : !util.ptr<tensor<128xf32>> -> tensor<128xf32>
%1288 = util.global.load.indirect %166 : !util.ptr<tensor<128xf32>> -> tensor<128xf32>
%1289 = util.global.load.indirect %167 : !util.ptr<tensor<128xf32>> -> tensor<128xf32>
%1290 = util.global.load.indirect %168 : !util.ptr<tensor<512x128xf32>> -> tensor<512x128xf32>
%1291 = util.global.load.indirect %169 : !util.ptr<tensor<512xf32>> -> tensor<512xf32>
%1292 = util.global.load.indirect %170 : !util.ptr<tensor<128x512xf32>> -> tensor<128x512xf32>
%1293 = util.global.load.indirect %171 : !util.ptr<tensor<128xf32>> -> tensor<128xf32>
%1294 = util.global.load.indirect %172 : !util.ptr<tensor<128xf32>> -> tensor<128xf32>
%1295 = util.global.load.indirect %173 : !util.ptr<tensor<128xf32>> -> tensor<128xf32>
%1296 = util.global.load.indirect %174 : !util.ptr<tensor<512x128xf32>> -> tensor<512x128xf32>
%1297 = util.global.load.indirect %175 : !util.ptr<tensor<512xf32>> -> tensor<512xf32>
%1298 = util.global.load.indirect %176 : !util.ptr<tensor<128x512xf32>> -> tensor<128x512xf32>
%1299 = util.global.load.indirect %177 : !util.ptr<tensor<128xf32>> -> tensor<128xf32>
%1300 = util.global.load.indirect %178 : !util.ptr<tensor<128xf32>> -> tensor<128xf32>
%1301 = util.global.load.indirect %179 : !util.ptr<tensor<128xf32>> -> tensor<128xf32>
%1302 = util.global.load.indirect %180 : !util.ptr<tensor<512x128xf32>> -> tensor<512x128xf32>
%1303 = util.global.load.indirect %181 : !util.ptr<tensor<512xf32>> -> tensor<512xf32>
%1304 = util.global.load.indirect %182 : !util.ptr<tensor<128x512xf32>> -> tensor<128x512xf32>
%1305 = util.global.load.indirect %183 : !util.ptr<tensor<128xf32>> -> tensor<128xf32>
%1306 = util.global.load.indirect %184 : !util.ptr<tensor<128xf32>> -> tensor<128xf32>
%1307 = util.global.load.indirect %185 : !util.ptr<tensor<512xf32>> -> tensor<512xf32>
%1308 = util.global.load.indirect %186 : !util.ptr<tensor<512xf32>> -> tensor<512xf32>
%1309 = util.global.load.indirect %187 : !util.ptr<tensor<512xf32>> -> tensor<512xf32>
%1310 = util.global.load.indirect %188 : !util.ptr<tensor<128x512xf32>> -> tensor<128x512xf32>
%1311 = util.global.load.indirect %189 : !util.ptr<tensor<128xf32>> -> tensor<128xf32>
%1312 = util.global.load.indirect %190 : !util.ptr<tensor<512x128xf32>> -> tensor<512x128xf32>
%1313 = util.global.load.indirect %191 : !util.ptr<tensor<128xf32>> -> tensor<128xf32>
%1314 = util.global.load.indirect %192 : !util.ptr<tensor<128xf32>> -> tensor<128xf32>
%1315 = util.global.load.indirect %193 : !util.ptr<tensor<128xf32>> -> tensor<128xf32>
%1316 = util.global.load.indirect %194 : !util.ptr<tensor<128x128xf32>> -> tensor<128x128xf32>
%1317 = util.global.load.indirect %195 : !util.ptr<tensor<128xf32>> -> tensor<128xf32>
%1318 = util.global.load.indirect %196 : !util.ptr<tensor<128x128xf32>> -> tensor<128x128xf32>
%1319 = util.global.load.indirect %197 : !util.ptr<tensor<128xf32>> -> tensor<128xf32>
%1320 = util.global.load.indirect %198 : !util.ptr<tensor<128x128xf32>> -> tensor<128x128xf32>
%1321 = util.global.load.indirect %199 : !util.ptr<tensor<128xf32>> -> tensor<128xf32>
%1322 = util.global.load.indirect %200 : !util.ptr<tensor<512x128xf32>> -> tensor<512x128xf32>
%1323 = util.global.load.indirect %201 : !util.ptr<tensor<128xf32>> -> tensor<128xf32>
%1324 = util.global.load.indirect %202 : !util.ptr<tensor<128xf32>> -> tensor<128xf32>
%1325 = util.global.load.indirect %203 : !util.ptr<tensor<128xf32>> -> tensor<128xf32>
%1326 = util.global.load.indirect %204 : !util.ptr<tensor<512x128xf32>> -> tensor<512x128xf32>
%1327 = util.global.load.indirect %205 : !util.ptr<tensor<128xf32>> -> tensor<128xf32>
%1328 = util.global.load.indirect %206 : !util.ptr<tensor<128xf32>> -> tensor<128xf32>
%1329 = util.global.load.indirect %207 : !util.ptr<tensor<128xf32>> -> tensor<128xf32>
%1330 = util.global.load.indirect %208 : !util.ptr<tensor<512x128xf32>> -> tensor<512x128xf32>
%1331 = util.global.load.indirect %209 : !util.ptr<tensor<512xf32>> -> tensor<512xf32>
%1332 = util.global.load.indirect %210 : !util.ptr<tensor<128x512xf32>> -> tensor<128x512xf32>
%1333 = util.global.load.indirect %211 : !util.ptr<tensor<128xf32>> -> tensor<128xf32>
%1334 = util.global.load.indirect %212 : !util.ptr<tensor<128xf32>> -> tensor<128xf32>
%1335 = util.global.load.indirect %213 : !util.ptr<tensor<128xf32>> -> tensor<128xf32>
%1336 = util.global.load.indirect %214 : !util.ptr<tensor<512x128xf32>> -> tensor<512x128xf32>
%1337 = util.global.load.indirect %215 : !util.ptr<tensor<512xf32>> -> tensor<512xf32>
%1338 = util.global.load.indirect %216 : !util.ptr<tensor<128x512xf32>> -> tensor<128x512xf32>
%1339 = util.global.load.indirect %217 : !util.ptr<tensor<128xf32>> -> tensor<128xf32>
%1340 = util.global.load.indirect %218 : !util.ptr<tensor<128xf32>> -> tensor<128xf32>
%1341 = util.global.load.indirect %219 : !util.ptr<tensor<128xf32>> -> tensor<128xf32>
%1342 = util.global.load.indirect %220 : !util.ptr<tensor<512x128xf32>> -> tensor<512x128xf32>
%1343 = util.global.load.indirect %221 : !util.ptr<tensor<512xf32>> -> tensor<512xf32>
%1344 = util.global.load.indirect %222 : !util.ptr<tensor<128x512xf32>> -> tensor<128x512xf32>
%1345 = util.global.load.indirect %223 : !util.ptr<tensor<128xf32>> -> tensor<128xf32>
%1346 = util.global.load.indirect %224 : !util.ptr<tensor<128xf32>> -> tensor<128xf32>
%1347 = util.global.load.indirect %225 : !util.ptr<tensor<128xf32>> -> tensor<128xf32>
%1348 = util.global.load.indirect %226 : !util.ptr<tensor<512x128xf32>> -> tensor<512x128xf32>
%1349 = util.global.load.indirect %227 : !util.ptr<tensor<512xf32>> -> tensor<512xf32>
%1350 = util.global.load.indirect %228 : !util.ptr<tensor<128x512xf32>> -> tensor<128x512xf32>
%1351 = util.global.load.indirect %229 : !util.ptr<tensor<128xf32>> -> tensor<128xf32>
%1352 = util.global.load.indirect %230 : !util.ptr<tensor<128xf32>> -> tensor<128xf32>
%1353 = util.global.load.indirect %231 : !util.ptr<tensor<512xf32>> -> tensor<512xf32>
%1354 = util.global.load.indirect %232 : !util.ptr<tensor<512xf32>> -> tensor<512xf32>
%1355 = util.global.load.indirect %233 : !util.ptr<tensor<512xf32>> -> tensor<512xf32>
%1356 = util.global.load.indirect %234 : !util.ptr<tensor<128x512xf32>> -> tensor<128x512xf32>
%1357 = util.global.load.indirect %235 : !util.ptr<tensor<128xf32>> -> tensor<128xf32>
%1358 = util.global.load.indirect %236 : !util.ptr<tensor<512x128xf32>> -> tensor<512x128xf32>
%1359 = util.global.load.indirect %237 : !util.ptr<tensor<128xf32>> -> tensor<128xf32>
%1360 = util.global.load.indirect %238 : !util.ptr<tensor<128xf32>> -> tensor<128xf32>
%1361 = util.global.load.indirect %239 : !util.ptr<tensor<128xf32>> -> tensor<128xf32>
%1362 = util.global.load.indirect %240 : !util.ptr<tensor<128x128xf32>> -> tensor<128x128xf32>
%1363 = util.global.load.indirect %241 : !util.ptr<tensor<128xf32>> -> tensor<128xf32>
%1364 = util.global.load.indirect %242 : !util.ptr<tensor<128x128xf32>> -> tensor<128x128xf32>
%1365 = util.global.load.indirect %243 : !util.ptr<tensor<128xf32>> -> tensor<128xf32>
%1366 = util.global.load.indirect %244 : !util.ptr<tensor<128x128xf32>> -> tensor<128x128xf32>
%1367 = util.global.load.indirect %245 : !util.ptr<tensor<128xf32>> -> tensor<128xf32>
%1368 = util.global.load.indirect %246 : !util.ptr<tensor<512x128xf32>> -> tensor<512x128xf32>
%1369 = util.global.load.indirect %247 : !util.ptr<tensor<128xf32>> -> tensor<128xf32>
%1370 = util.global.load.indirect %248 : !util.ptr<tensor<128xf32>> -> tensor<128xf32>
%1371 = util.global.load.indirect %249 : !util.ptr<tensor<128xf32>> -> tensor<128xf32>
%1372 = util.global.load.indirect %250 : !util.ptr<tensor<512x128xf32>> -> tensor<512x128xf32>
%1373 = util.global.load.indirect %251 : !util.ptr<tensor<128xf32>> -> tensor<128xf32>
%1374 = util.global.load.indirect %252 : !util.ptr<tensor<128xf32>> -> tensor<128xf32>
%1375 = util.global.load.indirect %253 : !util.ptr<tensor<128xf32>> -> tensor<128xf32>
%1376 = util.global.load.indirect %254 : !util.ptr<tensor<512x128xf32>> -> tensor<512x128xf32>
%1377 = util.global.load.indirect %255 : !util.ptr<tensor<512xf32>> -> tensor<512xf32>
%1378 = util.global.load.indirect %256 : !util.ptr<tensor<128x512xf32>> -> tensor<128x512xf32>
%1379 = util.global.load.indirect %257 : !util.ptr<tensor<128xf32>> -> tensor<128xf32>
%1380 = util.global.load.indirect %258 : !util.ptr<tensor<128xf32>> -> tensor<128xf32>
%1381 = util.global.load.indirect %259 : !util.ptr<tensor<128xf32>> -> tensor<128xf32>
%1382 = util.global.load.indirect %260 : !util.ptr<tensor<512x128xf32>> -> tensor<512x128xf32>
%1383 = util.global.load.indirect %261 : !util.ptr<tensor<512xf32>> -> tensor<512xf32>
%1384 = util.global.load.indirect %262 : !util.ptr<tensor<128x512xf32>> -> tensor<128x512xf32>
%1385 = util.global.load.indirect %263 : !util.ptr<tensor<128xf32>> -> tensor<128xf32>
%1386 = util.global.load.indirect %264 : !util.ptr<tensor<128xf32>> -> tensor<128xf32>
%1387 = util.global.load.indirect %265 : !util.ptr<tensor<128xf32>> -> tensor<128xf32>
%1388 = util.global.load.indirect %266 : !util.ptr<tensor<512x128xf32>> -> tensor<512x128xf32>
%1389 = util.global.load.indirect %267 : !util.ptr<tensor<512xf32>> -> tensor<512xf32>
%1390 = util.global.load.indirect %268 : !util.ptr<tensor<128x512xf32>> -> tensor<128x512xf32>
%1391 = util.global.load.indirect %269 : !util.ptr<tensor<128xf32>> -> tensor<128xf32>
%1392 = util.global.load.indirect %270 : !util.ptr<tensor<128xf32>> -> tensor<128xf32>
%1393 = util.global.load.indirect %271 : !util.ptr<tensor<128xf32>> -> tensor<128xf32>
%1394 = util.global.load.indirect %272 : !util.ptr<tensor<512x128xf32>> -> tensor<512x128xf32>
%1395 = util.global.load.indirect %273 : !util.ptr<tensor<512xf32>> -> tensor<512xf32>
%1396 = util.global.load.indirect %274 : !util.ptr<tensor<128x512xf32>> -> tensor<128x512xf32>
%1397 = util.global.load.indirect %275 : !util.ptr<tensor<128xf32>> -> tensor<128xf32>
%1398 = util.global.load.indirect %276 : !util.ptr<tensor<128xf32>> -> tensor<128xf32>
%1399 = util.global.load.indirect %277 : !util.ptr<tensor<512xf32>> -> tensor<512xf32>
%1400 = util.global.load.indirect %278 : !util.ptr<tensor<512xf32>> -> tensor<512xf32>
%1401 = util.global.load.indirect %279 : !util.ptr<tensor<512xf32>> -> tensor<512xf32>
%1402 = util.global.load.indirect %280 : !util.ptr<tensor<128x512xf32>> -> tensor<128x512xf32>
%1403 = util.global.load.indirect %281 : !util.ptr<tensor<128xf32>> -> tensor<128xf32>
%1404 = util.global.load.indirect %282 : !util.ptr<tensor<512x128xf32>> -> tensor<512x128xf32>
%1405 = util.global.load.indirect %283 : !util.ptr<tensor<128xf32>> -> tensor<128xf32>
%1406 = util.global.load.indirect %284 : !util.ptr<tensor<128xf32>> -> tensor<128xf32>
%1407 = util.global.load.indirect %285 : !util.ptr<tensor<128xf32>> -> tensor<128xf32>
%1408 = util.global.load.indirect %286 : !util.ptr<tensor<128x128xf32>> -> tensor<128x128xf32>
%1409 = util.global.load.indirect %287 : !util.ptr<tensor<128xf32>> -> tensor<128xf32>
%1410 = util.global.load.indirect %288 : !util.ptr<tensor<128x128xf32>> -> tensor<128x128xf32>
%1411 = util.global.load.indirect %289 : !util.ptr<tensor<128xf32>> -> tensor<128xf32>
%1412 = util.global.load.indirect %290 : !util.ptr<tensor<128x128xf32>> -> tensor<128x128xf32>
%1413 = util.global.load.indirect %291 : !util.ptr<tensor<128xf32>> -> tensor<128xf32>
%1414 = util.global.load.indirect %292 : !util.ptr<tensor<512x128xf32>> -> tensor<512x128xf32>
%1415 = util.global.load.indirect %293 : !util.ptr<tensor<128xf32>> -> tensor<128xf32>
%1416 = util.global.load.indirect %294 : !util.ptr<tensor<128xf32>> -> tensor<128xf32>
%1417 = util.global.load.indirect %295 : !util.ptr<tensor<128xf32>> -> tensor<128xf32>
%1418 = util.global.load.indirect %296 : !util.ptr<tensor<512x128xf32>> -> tensor<512x128xf32>
%1419 = util.global.load.indirect %297 : !util.ptr<tensor<128xf32>> -> tensor<128xf32>
%1420 = util.global.load.indirect %298 : !util.ptr<tensor<128xf32>> -> tensor<128xf32>
%1421 = util.global.load.indirect %299 : !util.ptr<tensor<128xf32>> -> tensor<128xf32>
%1422 = util.global.load.indirect %300 : !util.ptr<tensor<512x128xf32>> -> tensor<512x128xf32>
%1423 = util.global.load.indirect %301 : !util.ptr<tensor<512xf32>> -> tensor<512xf32>
%1424 = util.global.load.indirect %302 : !util.ptr<tensor<128x512xf32>> -> tensor<128x512xf32>
%1425 = util.global.load.indirect %303 : !util.ptr<tensor<128xf32>> -> tensor<128xf32>
%1426 = util.global.load.indirect %304 : !util.ptr<tensor<128xf32>> -> tensor<128xf32>
%1427 = util.global.load.indirect %305 : !util.ptr<tensor<128xf32>> -> tensor<128xf32>
%1428 = util.global.load.indirect %306 : !util.ptr<tensor<512x128xf32>> -> tensor<512x128xf32>
%1429 = util.global.load.indirect %307 : !util.ptr<tensor<512xf32>> -> tensor<512xf32>
%1430 = util.global.load.indirect %308 : !util.ptr<tensor<128x512xf32>> -> tensor<128x512xf32>
%1431 = util.global.load.indirect %309 : !util.ptr<tensor<128xf32>> -> tensor<128xf32>
%1432 = util.global.load.indirect %310 : !util.ptr<tensor<128xf32>> -> tensor<128xf32>
%1433 = util.global.load.indirect %311 : !util.ptr<tensor<128xf32>> -> tensor<128xf32>
%1434 = util.global.load.indirect %312 : !util.ptr<tensor<512x128xf32>> -> tensor<512x128xf32>
%1435 = util.global.load.indirect %313 : !util.ptr<tensor<512xf32>> -> tensor<512xf32>
%1436 = util.global.load.indirect %314 : !util.ptr<tensor<128x512xf32>> -> tensor<128x512xf32>
%1437 = util.global.load.indirect %315 : !util.ptr<tensor<128xf32>> -> tensor<128xf32>
%1438 = util.global.load.indirect %316 : !util.ptr<tensor<128xf32>> -> tensor<128xf32>
%1439 = util.global.load.indirect %317 : !util.ptr<tensor<128xf32>> -> tensor<128xf32>
%1440 = util.global.load.indirect %318 : !util.ptr<tensor<512x128xf32>> -> tensor<512x128xf32>
%1441 = util.global.load.indirect %319 : !util.ptr<tensor<512xf32>> -> tensor<512xf32>
%1442 = util.global.load.indirect %320 : !util.ptr<tensor<128x512xf32>> -> tensor<128x512xf32>
%1443 = util.global.load.indirect %321 : !util.ptr<tensor<128xf32>> -> tensor<128xf32>
%1444 = util.global.load.indirect %322 : !util.ptr<tensor<128xf32>> -> tensor<128xf32>
%1445 = util.global.load.indirect %323 : !util.ptr<tensor<512xf32>> -> tensor<512xf32>
%1446 = util.global.load.indirect %324 : !util.ptr<tensor<512xf32>> -> tensor<512xf32>
%1447 = util.global.load.indirect %325 : !util.ptr<tensor<512xf32>> -> tensor<512xf32>
%1448 = util.global.load.indirect %326 : !util.ptr<tensor<128x512xf32>> -> tensor<128x512xf32>
%1449 = util.global.load.indirect %327 : !util.ptr<tensor<128xf32>> -> tensor<128xf32>
%1450 = util.global.load.indirect %328 : !util.ptr<tensor<512x128xf32>> -> tensor<512x128xf32>
%1451 = util.global.load.indirect %329 : !util.ptr<tensor<128xf32>> -> tensor<128xf32>
%1452 = util.global.load.indirect %330 : !util.ptr<tensor<128xf32>> -> tensor<128xf32>
%1453 = util.global.load.indirect %331 : !util.ptr<tensor<128xf32>> -> tensor<128xf32>
%1454 = util.global.load.indirect %332 : !util.ptr<tensor<128x128xf32>> -> tensor<128x128xf32>
%1455 = util.global.load.indirect %333 : !util.ptr<tensor<128xf32>> -> tensor<128xf32>
%1456 = util.global.load.indirect %334 : !util.ptr<tensor<128x128xf32>> -> tensor<128x128xf32>
%1457 = util.global.load.indirect %335 : !util.ptr<tensor<128xf32>> -> tensor<128xf32>
%1458 = util.global.load.indirect %336 : !util.ptr<tensor<128x128xf32>> -> tensor<128x128xf32>
%1459 = util.global.load.indirect %337 : !util.ptr<tensor<128xf32>> -> tensor<128xf32>
%1460 = util.global.load.indirect %338 : !util.ptr<tensor<512x128xf32>> -> tensor<512x128xf32>
%1461 = util.global.load.indirect %339 : !util.ptr<tensor<128xf32>> -> tensor<128xf32>
%1462 = util.global.load.indirect %340 : !util.ptr<tensor<128xf32>> -> tensor<128xf32>
%1463 = util.global.load.indirect %341 : !util.ptr<tensor<128xf32>> -> tensor<128xf32>
%1464 = util.global.load.indirect %342 : !util.ptr<tensor<512x128xf32>> -> tensor<512x128xf32>
%1465 = util.global.load.indirect %343 : !util.ptr<tensor<128xf32>> -> tensor<128xf32>
%1466 = util.global.load.indirect %344 : !util.ptr<tensor<128xf32>> -> tensor<128xf32>
%1467 = util.global.load.indirect %345 : !util.ptr<tensor<128xf32>> -> tensor<128xf32>
%1468 = util.global.load.indirect %346 : !util.ptr<tensor<512x128xf32>> -> tensor<512x128xf32>
%1469 = util.global.load.indirect %347 : !util.ptr<tensor<512xf32>> -> tensor<512xf32>
%1470 = util.global.load.indirect %348 : !util.ptr<tensor<128x512xf32>> -> tensor<128x512xf32>
%1471 = util.global.load.indirect %349 : !util.ptr<tensor<128xf32>> -> tensor<128xf32>
%1472 = util.global.load.indirect %350 : !util.ptr<tensor<128xf32>> -> tensor<128xf32>
%1473 = util.global.load.indirect %351 : !util.ptr<tensor<128xf32>> -> tensor<128xf32>
%1474 = util.global.load.indirect %352 : !util.ptr<tensor<512x128xf32>> -> tensor<512x128xf32>
%1475 = util.global.load.indirect %353 : !util.ptr<tensor<512xf32>> -> tensor<512xf32>
%1476 = util.global.load.indirect %354 : !util.ptr<tensor<128x512xf32>> -> tensor<128x512xf32>
%1477 = util.global.load.indirect %355 : !util.ptr<tensor<128xf32>> -> tensor<128xf32>
%1478 = util.global.load.indirect %356 : !util.ptr<tensor<128xf32>> -> tensor<128xf32>
%1479 = util.global.load.indirect %357 : !util.ptr<tensor<128xf32>> -> tensor<128xf32>
%1480 = util.global.load.indirect %358 : !util.ptr<tensor<512x128xf32>> -> tensor<512x128xf32>
%1481 = util.global.load.indirect %359 : !util.ptr<tensor<512xf32>> -> tensor<512xf32>
%1482 = util.global.load.indirect %360 : !util.ptr<tensor<128x512xf32>> -> tensor<128x512xf32>
%1483 = util.global.load.indirect %361 : !util.ptr<tensor<128xf32>> -> tensor<128xf32>
%1484 = util.global.load.indirect %362 : !util.ptr<tensor<128xf32>> -> tensor<128xf32>
%1485 = util.global.load.indirect %363 : !util.ptr<tensor<128xf32>> -> tensor<128xf32>
%1486 = util.global.load.indirect %364 : !util.ptr<tensor<512x128xf32>> -> tensor<512x128xf32>
%1487 = util.global.load.indirect %365 : !util.ptr<tensor<512xf32>> -> tensor<512xf32>
%1488 = util.global.load.indirect %366 : !util.ptr<tensor<128x512xf32>> -> tensor<128x512xf32>
%1489 = util.global.load.indirect %367 : !util.ptr<tensor<128xf32>> -> tensor<128xf32>
%1490 = util.global.load.indirect %368 : !util.ptr<tensor<128xf32>> -> tensor<128xf32>
%1491 = util.global.load.indirect %369 : !util.ptr<tensor<512xf32>> -> tensor<512xf32>
%1492 = util.global.load.indirect %370 : !util.ptr<tensor<512xf32>> -> tensor<512xf32>
%1493 = util.global.load.indirect %371 : !util.ptr<tensor<512xf32>> -> tensor<512xf32>
%1494 = util.global.load.indirect %372 : !util.ptr<tensor<128x512xf32>> -> tensor<128x512xf32>
%1495 = util.global.load.indirect %373 : !util.ptr<tensor<128xf32>> -> tensor<128xf32>
%1496 = util.global.load.indirect %374 : !util.ptr<tensor<512x128xf32>> -> tensor<512x128xf32>
%1497 = util.global.load.indirect %375 : !util.ptr<tensor<128xf32>> -> tensor<128xf32>
%1498 = util.global.load.indirect %376 : !util.ptr<tensor<128xf32>> -> tensor<128xf32>
%1499 = util.global.load.indirect %377 : !util.ptr<tensor<128xf32>> -> tensor<128xf32>
%1500 = util.global.load.indirect %378 : !util.ptr<tensor<128x128xf32>> -> tensor<128x128xf32>
%1501 = util.global.load.indirect %379 : !util.ptr<tensor<128xf32>> -> tensor<128xf32>
%1502 = util.global.load.indirect %380 : !util.ptr<tensor<128x128xf32>> -> tensor<128x128xf32>
%1503 = util.global.load.indirect %381 : !util.ptr<tensor<128xf32>> -> tensor<128xf32>
%1504 = util.global.load.indirect %382 : !util.ptr<tensor<128x128xf32>> -> tensor<128x128xf32>
%1505 = util.global.load.indirect %383 : !util.ptr<tensor<128xf32>> -> tensor<128xf32>
%1506 = util.global.load.indirect %384 : !util.ptr<tensor<512x128xf32>> -> tensor<512x128xf32>
%1507 = util.global.load.indirect %385 : !util.ptr<tensor<128xf32>> -> tensor<128xf32>
%1508 = util.global.load.indirect %386 : !util.ptr<tensor<128xf32>> -> tensor<128xf32>
%1509 = util.global.load.indirect %387 : !util.ptr<tensor<128xf32>> -> tensor<128xf32>
%1510 = util.global.load.indirect %388 : !util.ptr<tensor<512x128xf32>> -> tensor<512x128xf32>
%1511 = util.global.load.indirect %389 : !util.ptr<tensor<128xf32>> -> tensor<128xf32>
%1512 = util.global.load.indirect %390 : !util.ptr<tensor<128xf32>> -> tensor<128xf32>
%1513 = util.global.load.indirect %391 : !util.ptr<tensor<128xf32>> -> tensor<128xf32>
%1514 = util.global.load.indirect %392 : !util.ptr<tensor<512x128xf32>> -> tensor<512x128xf32>
%1515 = util.global.load.indirect %393 : !util.ptr<tensor<512xf32>> -> tensor<512xf32>
%1516 = util.global.load.indirect %394 : !util.ptr<tensor<128x512xf32>> -> tensor<128x512xf32>
%1517 = util.global.load.indirect %395 : !util.ptr<tensor<128xf32>> -> tensor<128xf32>
%1518 = util.global.load.indirect %396 : !util.ptr<tensor<128xf32>> -> tensor<128xf32>
%1519 = util.global.load.indirect %397 : !util.ptr<tensor<128xf32>> -> tensor<128xf32>
%1520 = util.global.load.indirect %398 : !util.ptr<tensor<512x128xf32>> -> tensor<512x128xf32>
%1521 = util.global.load.indirect %399 : !util.ptr<tensor<512xf32>> -> tensor<512xf32>
%1522 = util.global.load.indirect %400 : !util.ptr<tensor<128x512xf32>> -> tensor<128x512xf32>
%1523 = util.global.load.indirect %401 : !util.ptr<tensor<128xf32>> -> tensor<128xf32>
%1524 = util.global.load.indirect %402 : !util.ptr<tensor<128xf32>> -> tensor<128xf32>
%1525 = util.global.load.indirect %403 : !util.ptr<tensor<128xf32>> -> tensor<128xf32>
%1526 = util.global.load.indirect %404 : !util.ptr<tensor<512x128xf32>> -> tensor<512x128xf32>
%1527 = util.global.load.indirect %405 : !util.ptr<tensor<512xf32>> -> tensor<512xf32>
%1528 = util.global.load.indirect %406 : !util.ptr<tensor<128x512xf32>> -> tensor<128x512xf32>
%1529 = util.global.load.indirect %407 : !util.ptr<tensor<128xf32>> -> tensor<128xf32>
%1530 = util.global.load.indirect %408 : !util.ptr<tensor<128xf32>> -> tensor<128xf32>
%1531 = util.global.load.indirect %409 : !util.ptr<tensor<128xf32>> -> tensor<128xf32>
%1532 = util.global.load.indirect %410 : !util.ptr<tensor<512x128xf32>> -> tensor<512x128xf32>
%1533 = util.global.load.indirect %411 : !util.ptr<tensor<512xf32>> -> tensor<512xf32>
%1534 = util.global.load.indirect %412 : !util.ptr<tensor<128x512xf32>> -> tensor<128x512xf32>
%1535 = util.global.load.indirect %413 : !util.ptr<tensor<128xf32>> -> tensor<128xf32>
%1536 = util.global.load.indirect %414 : !util.ptr<tensor<128xf32>> -> tensor<128xf32>
%1537 = util.global.load.indirect %415 : !util.ptr<tensor<512xf32>> -> tensor<512xf32>
%1538 = util.global.load.indirect %416 : !util.ptr<tensor<512xf32>> -> tensor<512xf32>
%1539 = util.global.load.indirect %417 : !util.ptr<tensor<512xf32>> -> tensor<512xf32>
%1540 = util.global.load.indirect %418 : !util.ptr<tensor<128x512xf32>> -> tensor<128x512xf32>
%1541 = util.global.load.indirect %419 : !util.ptr<tensor<128xf32>> -> tensor<128xf32>
%1542 = util.global.load.indirect %420 : !util.ptr<tensor<512x128xf32>> -> tensor<512x128xf32>
%1543 = util.global.load.indirect %421 : !util.ptr<tensor<128xf32>> -> tensor<128xf32>
%1544 = util.global.load.indirect %422 : !util.ptr<tensor<128xf32>> -> tensor<128xf32>
%1545 = util.global.load.indirect %423 : !util.ptr<tensor<128xf32>> -> tensor<128xf32>
%1546 = util.global.load.indirect %424 : !util.ptr<tensor<128x128xf32>> -> tensor<128x128xf32>
%1547 = util.global.load.indirect %425 : !util.ptr<tensor<128xf32>> -> tensor<128xf32>
%1548 = util.global.load.indirect %426 : !util.ptr<tensor<128x128xf32>> -> tensor<128x128xf32>
%1549 = util.global.load.indirect %427 : !util.ptr<tensor<128xf32>> -> tensor<128xf32>
%1550 = util.global.load.indirect %428 : !util.ptr<tensor<128x128xf32>> -> tensor<128x128xf32>
%1551 = util.global.load.indirect %429 : !util.ptr<tensor<128xf32>> -> tensor<128xf32>
%1552 = util.global.load.indirect %430 : !util.ptr<tensor<512x128xf32>> -> tensor<512x128xf32>
%1553 = util.global.load.indirect %431 : !util.ptr<tensor<128xf32>> -> tensor<128xf32>
%1554 = util.global.load.indirect %432 : !util.ptr<tensor<128xf32>> -> tensor<128xf32>
%1555 = util.global.load.indirect %433 : !util.ptr<tensor<128xf32>> -> tensor<128xf32>
%1556 = util.global.load.indirect %434 : !util.ptr<tensor<512x128xf32>> -> tensor<512x128xf32>
%1557 = util.global.load.indirect %435 : !util.ptr<tensor<128xf32>> -> tensor<128xf32>
%1558 = util.global.load.indirect %436 : !util.ptr<tensor<128xf32>> -> tensor<128xf32>
%1559 = util.global.load.indirect %437 : !util.ptr<tensor<128xf32>> -> tensor<128xf32>
%1560 = util.global.load.indirect %438 : !util.ptr<tensor<512x128xf32>> -> tensor<512x128xf32>
%1561 = util.global.load.indirect %439 : !util.ptr<tensor<512xf32>> -> tensor<512xf32>
%1562 = util.global.load.indirect %440 : !util.ptr<tensor<128x512xf32>> -> tensor<128x512xf32>
%1563 = util.global.load.indirect %441 : !util.ptr<tensor<128xf32>> -> tensor<128xf32>
%1564 = util.global.load.indirect %442 : !util.ptr<tensor<128xf32>> -> tensor<128xf32>
%1565 = util.global.load.indirect %443 : !util.ptr<tensor<128xf32>> -> tensor<128xf32>
%1566 = util.global.load.indirect %444 : !util.ptr<tensor<512x128xf32>> -> tensor<512x128xf32>
%1567 = util.global.load.indirect %445 : !util.ptr<tensor<512xf32>> -> tensor<512xf32>
%1568 = util.global.load.indirect %446 : !util.ptr<tensor<128x512xf32>> -> tensor<128x512xf32>
%1569 = util.global.load.indirect %447 : !util.ptr<tensor<128xf32>> -> tensor<128xf32>
%1570 = util.global.load.indirect %448 : !util.ptr<tensor<128xf32>> -> tensor<128xf32>
%1571 = util.global.load.indirect %449 : !util.ptr<tensor<128xf32>> -> tensor<128xf32>
%1572 = util.global.load.indirect %450 : !util.ptr<tensor<512x128xf32>> -> tensor<512x128xf32>
%1573 = util.global.load.indirect %451 : !util.ptr<tensor<512xf32>> -> tensor<512xf32>
%1574 = util.global.load.indirect %452 : !util.ptr<tensor<128x512xf32>> -> tensor<128x512xf32>
%1575 = util.global.load.indirect %453 : !util.ptr<tensor<128xf32>> -> tensor<128xf32>
%1576 = util.global.load.indirect %454 : !util.ptr<tensor<128xf32>> -> tensor<128xf32>
%1577 = util.global.load.indirect %455 : !util.ptr<tensor<128xf32>> -> tensor<128xf32>
%1578 = util.global.load.indirect %456 : !util.ptr<tensor<512x128xf32>> -> tensor<512x128xf32>
%1579 = util.global.load.indirect %457 : !util.ptr<tensor<512xf32>> -> tensor<512xf32>
%1580 = util.global.load.indirect %458 : !util.ptr<tensor<128x512xf32>> -> tensor<128x512xf32>
%1581 = util.global.load.indirect %459 : !util.ptr<tensor<128xf32>> -> tensor<128xf32>
%1582 = util.global.load.indirect %460 : !util.ptr<tensor<128xf32>> -> tensor<128xf32>
%1583 = util.global.load.indirect %461 : !util.ptr<tensor<512xf32>> -> tensor<512xf32>
%1584 = util.global.load.indirect %462 : !util.ptr<tensor<512xf32>> -> tensor<512xf32>
%1585 = util.global.load.indirect %463 : !util.ptr<tensor<512xf32>> -> tensor<512xf32>
%1586 = util.global.load.indirect %464 : !util.ptr<tensor<128x512xf32>> -> tensor<128x512xf32>
%1587 = util.global.load.indirect %465 : !util.ptr<tensor<128xf32>> -> tensor<128xf32>
%1588 = util.global.load.indirect %466 : !util.ptr<tensor<512x128xf32>> -> tensor<512x128xf32>
%1589 = util.global.load.indirect %467 : !util.ptr<tensor<128xf32>> -> tensor<128xf32>
%1590 = util.global.load.indirect %468 : !util.ptr<tensor<128xf32>> -> tensor<128xf32>
%1591 = util.global.load.indirect %469 : !util.ptr<tensor<128xf32>> -> tensor<128xf32>
%1592 = util.global.load.indirect %470 : !util.ptr<tensor<128x128xf32>> -> tensor<128x128xf32>
%1593 = util.global.load.indirect %471 : !util.ptr<tensor<128xf32>> -> tensor<128xf32>
%1594 = util.global.load.indirect %472 : !util.ptr<tensor<128x128xf32>> -> tensor<128x128xf32>
%1595 = util.global.load.indirect %473 : !util.ptr<tensor<128xf32>> -> tensor<128xf32>
%1596 = util.global.load.indirect %474 : !util.ptr<tensor<128x128xf32>> -> tensor<128x128xf32>
%1597 = util.global.load.indirect %475 : !util.ptr<tensor<128xf32>> -> tensor<128xf32>
%1598 = util.global.load.indirect %476 : !util.ptr<tensor<512x128xf32>> -> tensor<512x128xf32>
%1599 = util.global.load.indirect %477 : !util.ptr<tensor<128xf32>> -> tensor<128xf32>
%1600 = util.global.load.indirect %478 : !util.ptr<tensor<128xf32>> -> tensor<128xf32>
%1601 = util.global.load.indirect %479 : !util.ptr<tensor<128xf32>> -> tensor<128xf32>
%1602 = util.global.load.indirect %480 : !util.ptr<tensor<512x128xf32>> -> tensor<512x128xf32>
%1603 = util.global.load.indirect %481 : !util.ptr<tensor<128xf32>> -> tensor<128xf32>
%1604 = util.global.load.indirect %482 : !util.ptr<tensor<128xf32>> -> tensor<128xf32>
%1605 = util.global.load.indirect %483 : !util.ptr<tensor<128xf32>> -> tensor<128xf32>
%1606 = util.global.load.indirect %484 : !util.ptr<tensor<512x128xf32>> -> tensor<512x128xf32>
%1607 = util.global.load.indirect %485 : !util.ptr<tensor<512xf32>> -> tensor<512xf32>
%1608 = util.global.load.indirect %486 : !util.ptr<tensor<128x512xf32>> -> tensor<128x512xf32>
%1609 = util.global.load.indirect %487 : !util.ptr<tensor<128xf32>> -> tensor<128xf32>
%1610 = util.global.load.indirect %488 : !util.ptr<tensor<128xf32>> -> tensor<128xf32>
%1611 = util.global.load.indirect %489 : !util.ptr<tensor<128xf32>> -> tensor<128xf32>
%1612 = util.global.load.indirect %490 : !util.ptr<tensor<512x128xf32>> -> tensor<512x128xf32>
%1613 = util.global.load.indirect %491 : !util.ptr<tensor<512xf32>> -> tensor<512xf32>
%1614 = util.global.load.indirect %492 : !util.ptr<tensor<128x512xf32>> -> tensor<128x512xf32>
%1615 = util.global.load.indirect %493 : !util.ptr<tensor<128xf32>> -> tensor<128xf32>
%1616 = util.global.load.indirect %494 : !util.ptr<tensor<128xf32>> -> tensor<128xf32>
%1617 = util.global.load.indirect %495 : !util.ptr<tensor<128xf32>> -> tensor<128xf32>
%1618 = util.global.load.indirect %496 : !util.ptr<tensor<512x128xf32>> -> tensor<512x128xf32>
%1619 = util.global.load.indirect %497 : !util.ptr<tensor<512xf32>> -> tensor<512xf32>
%1620 = util.global.load.indirect %498 : !util.ptr<tensor<128x512xf32>> -> tensor<128x512xf32>
%1621 = util.global.load.indirect %499 : !util.ptr<tensor<128xf32>> -> tensor<128xf32>
%1622 = util.global.load.indirect %500 : !util.ptr<tensor<128xf32>> -> tensor<128xf32>
%1623 = util.global.load.indirect %501 : !util.ptr<tensor<128xf32>> -> tensor<128xf32>
%1624 = util.global.load.indirect %502 : !util.ptr<tensor<512x128xf32>> -> tensor<512x128xf32>
%1625 = util.global.load.indirect %503 : !util.ptr<tensor<512xf32>> -> tensor<512xf32>
%1626 = util.global.load.indirect %504 : !util.ptr<tensor<128x512xf32>> -> tensor<128x512xf32>
%1627 = util.global.load.indirect %505 : !util.ptr<tensor<128xf32>> -> tensor<128xf32>
%1628 = util.global.load.indirect %506 : !util.ptr<tensor<128xf32>> -> tensor<128xf32>
%1629 = util.global.load.indirect %507 : !util.ptr<tensor<512xf32>> -> tensor<512xf32>
%1630 = util.global.load.indirect %508 : !util.ptr<tensor<512xf32>> -> tensor<512xf32>
%1631 = util.global.load.indirect %509 : !util.ptr<tensor<512xf32>> -> tensor<512xf32>
%1632 = util.global.load.indirect %510 : !util.ptr<tensor<128x512xf32>> -> tensor<128x512xf32>
%1633 = util.global.load.indirect %511 : !util.ptr<tensor<128xf32>> -> tensor<128xf32>
%1634 = util.global.load.indirect %512 : !util.ptr<tensor<512x128xf32>> -> tensor<512x128xf32>
%1635 = util.global.load.indirect %513 : !util.ptr<tensor<128xf32>> -> tensor<128xf32>
%1636 = util.global.load.indirect %514 : !util.ptr<tensor<128xf32>> -> tensor<128xf32>
%1637 = util.global.load.indirect %515 : !util.ptr<tensor<128xf32>> -> tensor<128xf32>
%1638 = util.global.load.indirect %516 : !util.ptr<tensor<128x128xf32>> -> tensor<128x128xf32>
%1639 = util.global.load.indirect %517 : !util.ptr<tensor<128xf32>> -> tensor<128xf32>
%1640 = util.global.load.indirect %518 : !util.ptr<tensor<128x128xf32>> -> tensor<128x128xf32>
%1641 = util.global.load.indirect %519 : !util.ptr<tensor<128xf32>> -> tensor<128xf32>
%1642 = util.global.load.indirect %520 : !util.ptr<tensor<128x128xf32>> -> tensor<128x128xf32>
%1643 = util.global.load.indirect %521 : !util.ptr<tensor<128xf32>> -> tensor<128xf32>
%1644 = util.global.load.indirect %522 : !util.ptr<tensor<512x128xf32>> -> tensor<512x128xf32>
%1645 = util.global.load.indirect %523 : !util.ptr<tensor<128xf32>> -> tensor<128xf32>
%1646 = util.global.load.indirect %524 : !util.ptr<tensor<128xf32>> -> tensor<128xf32>
%1647 = util.global.load.indirect %525 : !util.ptr<tensor<128xf32>> -> tensor<128xf32>
%1648 = util.global.load.indirect %526 : !util.ptr<tensor<512x128xf32>> -> tensor<512x128xf32>
%1649 = util.global.load.indirect %527 : !util.ptr<tensor<128xf32>> -> tensor<128xf32>
%1650 = util.global.load.indirect %528 : !util.ptr<tensor<128xf32>> -> tensor<128xf32>
%1651 = util.global.load.indirect %529 : !util.ptr<tensor<128xf32>> -> tensor<128xf32>
%1652 = util.global.load.indirect %530 : !util.ptr<tensor<512x128xf32>> -> tensor<512x128xf32>
%1653 = util.global.load.indirect %531 : !util.ptr<tensor<512xf32>> -> tensor<512xf32>
%1654 = util.global.load.indirect %532 : !util.ptr<tensor<128x512xf32>> -> tensor<128x512xf32>
%1655 = util.global.load.indirect %533 : !util.ptr<tensor<128xf32>> -> tensor<128xf32>
%1656 = util.global.load.indirect %534 : !util.ptr<tensor<128xf32>> -> tensor<128xf32>
%1657 = util.global.load.indirect %535 : !util.ptr<tensor<128xf32>> -> tensor<128xf32>
%1658 = util.global.load.indirect %536 : !util.ptr<tensor<512x128xf32>> -> tensor<512x128xf32>
%1659 = util.global.load.indirect %537 : !util.ptr<tensor<512xf32>> -> tensor<512xf32>
%1660 = util.global.load.indirect %538 : !util.ptr<tensor<128x512xf32>> -> tensor<128x512xf32>
%1661 = util.global.load.indirect %539 : !util.ptr<tensor<128xf32>> -> tensor<128xf32>
%1662 = util.global.load.indirect %540 : !util.ptr<tensor<128xf32>> -> tensor<128xf32>
%1663 = util.global.load.indirect %541 : !util.ptr<tensor<128xf32>> -> tensor<128xf32>
%1664 = util.global.load.indirect %542 : !util.ptr<tensor<512x128xf32>> -> tensor<512x128xf32>
%1665 = util.global.load.indirect %543 : !util.ptr<tensor<512xf32>> -> tensor<512xf32>
%1666 = util.global.load.indirect %544 : !util.ptr<tensor<128x512xf32>> -> tensor<128x512xf32>
%1667 = util.global.load.indirect %545 : !util.ptr<tensor<128xf32>> -> tensor<128xf32>
%1668 = util.global.load.indirect %546 : !util.ptr<tensor<128xf32>> -> tensor<128xf32>
%1669 = util.global.load.indirect %547 : !util.ptr<tensor<128xf32>> -> tensor<128xf32>
%1670 = util.global.load.indirect %548 : !util.ptr<tensor<512x128xf32>> -> tensor<512x128xf32>
%1671 = util.global.load.indirect %549 : !util.ptr<tensor<512xf32>> -> tensor<512xf32>
%1672 = util.global.load.indirect %550 : !util.ptr<tensor<128x512xf32>> -> tensor<128x512xf32>
%1673 = util.global.load.indirect %551 : !util.ptr<tensor<128xf32>> -> tensor<128xf32>
%1674 = util.global.load.indirect %552 : !util.ptr<tensor<128xf32>> -> tensor<128xf32>
%1675 = util.global.load.indirect %553 : !util.ptr<tensor<512xf32>> -> tensor<512xf32>
%1676 = util.global.load.indirect %554 : !util.ptr<tensor<512xf32>> -> tensor<512xf32>
%1677 = util.global.load.indirect %555 : !util.ptr<tensor<512xf32>> -> tensor<512xf32>
%1678 = util.global.load.indirect %556 : !util.ptr<tensor<128x512xf32>> -> tensor<128x512xf32>
%1679 = util.global.load.indirect %557 : !util.ptr<tensor<128xf32>> -> tensor<128xf32>
%1680 = util.global.load.indirect %558 : !util.ptr<tensor<512x128xf32>> -> tensor<512x128xf32>
%1681 = util.global.load.indirect %559 : !util.ptr<tensor<128xf32>> -> tensor<128xf32>
%1682 = util.global.load.indirect %560 : !util.ptr<tensor<128xf32>> -> tensor<128xf32>
%1683 = util.global.load.indirect %561 : !util.ptr<tensor<128xf32>> -> tensor<128xf32>
%1684 = util.global.load.indirect %562 : !util.ptr<tensor<128x128xf32>> -> tensor<128x128xf32>
%1685 = util.global.load.indirect %563 : !util.ptr<tensor<128xf32>> -> tensor<128xf32>
%1686 = util.global.load.indirect %564 : !util.ptr<tensor<128x128xf32>> -> tensor<128x128xf32>
%1687 = util.global.load.indirect %565 : !util.ptr<tensor<128xf32>> -> tensor<128xf32>
%1688 = util.global.load.indirect %566 : !util.ptr<tensor<128x128xf32>> -> tensor<128x128xf32>
%1689 = util.global.load.indirect %567 : !util.ptr<tensor<128xf32>> -> tensor<128xf32>
%1690 = util.global.load.indirect %568 : !util.ptr<tensor<512x128xf32>> -> tensor<512x128xf32>
%1691 = util.global.load.indirect %569 : !util.ptr<tensor<128xf32>> -> tensor<128xf32>
%1692 = util.global.load.indirect %570 : !util.ptr<tensor<128xf32>> -> tensor<128xf32>
%1693 = util.global.load.indirect %571 : !util.ptr<tensor<128xf32>> -> tensor<128xf32>
%1694 = util.global.load.indirect %572 : !util.ptr<tensor<512x128xf32>> -> tensor<512x128xf32>
%1695 = util.global.load.indirect %573 : !util.ptr<tensor<128xf32>> -> tensor<128xf32>
%1696 = util.global.load.indirect %574 : !util.ptr<tensor<128xf32>> -> tensor<128xf32>
%1697 = util.global.load.indirect %575 : !util.ptr<tensor<128xf32>> -> tensor<128xf32>
%1698 = util.global.load.indirect %576 : !util.ptr<tensor<512x128xf32>> -> tensor<512x128xf32>
%1699 = util.global.load.indirect %577 : !util.ptr<tensor<512xf32>> -> tensor<512xf32>
%1700 = util.global.load.indirect %578 : !util.ptr<tensor<128x512xf32>> -> tensor<128x512xf32>
%1701 = util.global.load.indirect %579 : !util.ptr<tensor<128xf32>> -> tensor<128xf32>
%1702 = util.global.load.indirect %580 : !util.ptr<tensor<128xf32>> -> tensor<128xf32>
%1703 = util.global.load.indirect %581 : !util.ptr<tensor<128xf32>> -> tensor<128xf32>
%1704 = util.global.load.indirect %582 : !util.ptr<tensor<512x128xf32>> -> tensor<512x128xf32>
%1705 = util.global.load.indirect %583 : !util.ptr<tensor<512xf32>> -> tensor<512xf32>
%1706 = util.global.load.indirect %584 : !util.ptr<tensor<128x512xf32>> -> tensor<128x512xf32>
%1707 = util.global.load.indirect %585 : !util.ptr<tensor<128xf32>> -> tensor<128xf32>
%1708 = util.global.load.indirect %586 : !util.ptr<tensor<128xf32>> -> tensor<128xf32>
%1709 = util.global.load.indirect %587 : !util.ptr<tensor<128xf32>> -> tensor<128xf32>
%1710 = util.global.load.indirect %588 : !util.ptr<tensor<512x128xf32>> -> tensor<512x128xf32>
%1711 = util.global.load.indirect %589 : !util.ptr<tensor<512xf32>> -> tensor<512xf32>
%1712 = util.global.load.indirect %590 : !util.ptr<tensor<128x512xf32>> -> tensor<128x512xf32>
%1713 = util.global.load.indirect %591 : !util.ptr<tensor<128xf32>> -> tensor<128xf32>
%1714 = util.global.load.indirect %592 : !util.ptr<tensor<128xf32>> -> tensor<128xf32>
%1715 = util.global.load.indirect %593 : !util.ptr<tensor<128xf32>> -> tensor<128xf32>
%1716 = util.global.load.indirect %594 : !util.ptr<tensor<512x128xf32>> -> tensor<512x128xf32>
%1717 = util.global.load.indirect %595 : !util.ptr<tensor<512xf32>> -> tensor<512xf32>
%1718 = util.global.load.indirect %596 : !util.ptr<tensor<128x512xf32>> -> tensor<128x512xf32>
%1719 = util.global.load.indirect %597 : !util.ptr<tensor<128xf32>> -> tensor<128xf32>
%1720 = util.global.load.indirect %598 : !util.ptr<tensor<128xf32>> -> tensor<128xf32>
%1721 = util.global.load.indirect %599 : !util.ptr<tensor<512xf32>> -> tensor<512xf32>
%1722 = util.global.load.indirect %600 : !util.ptr<tensor<512xf32>> -> tensor<512xf32>
%1723 = util.global.load.indirect %601 : !util.ptr<tensor<512xf32>> -> tensor<512xf32>
%1724 = util.global.load.indirect %602 : !util.ptr<tensor<128x512xf32>> -> tensor<128x512xf32>
%1725 = util.global.load.indirect %603 : !util.ptr<tensor<128xf32>> -> tensor<128xf32>
%1726 = util.global.load.indirect %604 : !util.ptr<tensor<512x128xf32>> -> tensor<512x128xf32>
%1727 = util.global.load.indirect %605 : !util.ptr<tensor<128xf32>> -> tensor<128xf32>
%1728 = util.global.load.indirect %606 : !util.ptr<tensor<128xf32>> -> tensor<128xf32>
%1729 = util.global.load.indirect %607 : !util.ptr<tensor<128xf32>> -> tensor<128xf32>
%1730 = util.global.load.indirect %608 : !util.ptr<tensor<128x128xf32>> -> tensor<128x128xf32>
%1731 = util.global.load.indirect %609 : !util.ptr<tensor<128xf32>> -> tensor<128xf32>
%1732 = util.global.load.indirect %610 : !util.ptr<tensor<128x128xf32>> -> tensor<128x128xf32>
%1733 = util.global.load.indirect %611 : !util.ptr<tensor<128xf32>> -> tensor<128xf32>
%1734 = util.global.load.indirect %612 : !util.ptr<tensor<128x128xf32>> -> tensor<128x128xf32>
%1735 = util.global.load.indirect %613 : !util.ptr<tensor<128xf32>> -> tensor<128xf32>
%1736 = util.global.load.indirect %614 : !util.ptr<tensor<512x128xf32>> -> tensor<512x128xf32>
%1737 = util.global.load.indirect %615 : !util.ptr<tensor<128xf32>> -> tensor<128xf32>
%1738 = util.global.load.indirect %616 : !util.ptr<tensor<128xf32>> -> tensor<128xf32>
%1739 = util.global.load.indirect %617 : !util.ptr<tensor<128xf32>> -> tensor<128xf32>
%1740 = util.global.load.indirect %618 : !util.ptr<tensor<512x128xf32>> -> tensor<512x128xf32>
%1741 = util.global.load.indirect %619 : !util.ptr<tensor<128xf32>> -> tensor<128xf32>
%1742 = util.global.load.indirect %620 : !util.ptr<tensor<128xf32>> -> tensor<128xf32>
%1743 = util.global.load.indirect %621 : !util.ptr<tensor<128xf32>> -> tensor<128xf32>
%1744 = util.global.load.indirect %622 : !util.ptr<tensor<512x128xf32>> -> tensor<512x128xf32>
%1745 = util.global.load.indirect %623 : !util.ptr<tensor<512xf32>> -> tensor<512xf32>
%1746 = util.global.load.indirect %624 : !util.ptr<tensor<128x512xf32>> -> tensor<128x512xf32>
%1747 = util.global.load.indirect %625 : !util.ptr<tensor<128xf32>> -> tensor<128xf32>
%1748 = util.global.load.indirect %626 : !util.ptr<tensor<128xf32>> -> tensor<128xf32>
%1749 = util.global.load.indirect %627 : !util.ptr<tensor<128xf32>> -> tensor<128xf32>
%1750 = util.global.load.indirect %628 : !util.ptr<tensor<512x128xf32>> -> tensor<512x128xf32>
%1751 = util.global.load.indirect %629 : !util.ptr<tensor<512xf32>> -> tensor<512xf32>
%1752 = util.global.load.indirect %630 : !util.ptr<tensor<128x512xf32>> -> tensor<128x512xf32>
%1753 = util.global.load.indirect %631 : !util.ptr<tensor<128xf32>> -> tensor<128xf32>
%1754 = util.global.load.indirect %632 : !util.ptr<tensor<128xf32>> -> tensor<128xf32>
%1755 = util.global.load.indirect %633 : !util.ptr<tensor<128xf32>> -> tensor<128xf32>
%1756 = util.global.load.indirect %634 : !util.ptr<tensor<512x128xf32>> -> tensor<512x128xf32>
%1757 = util.global.load.indirect %635 : !util.ptr<tensor<512xf32>> -> tensor<512xf32>
%1758 = util.global.load.indirect %636 : !util.ptr<tensor<128x512xf32>> -> tensor<128x512xf32>
%1759 = util.global.load.indirect %637 : !util.ptr<tensor<128xf32>> -> tensor<128xf32>
%1760 = util.global.load.indirect %638 : !util.ptr<tensor<128xf32>> -> tensor<128xf32>
%1761 = util.global.load.indirect %639 : !util.ptr<tensor<128xf32>> -> tensor<128xf32>
%1762 = util.global.load.indirect %640 : !util.ptr<tensor<512x128xf32>> -> tensor<512x128xf32>
%1763 = util.global.load.indirect %641 : !util.ptr<tensor<512xf32>> -> tensor<512xf32>
%1764 = util.global.load.indirect %642 : !util.ptr<tensor<128x512xf32>> -> tensor<128x512xf32>
%1765 = util.global.load.indirect %643 : !util.ptr<tensor<128xf32>> -> tensor<128xf32>
%1766 = util.global.load.indirect %644 : !util.ptr<tensor<128xf32>> -> tensor<128xf32>
%1767 = util.global.load.indirect %645 : !util.ptr<tensor<512xf32>> -> tensor<512xf32>
%1768 = util.global.load.indirect %646 : !util.ptr<tensor<512xf32>> -> tensor<512xf32>
%1769 = util.global.load.indirect %647 : !util.ptr<tensor<512xf32>> -> tensor<512xf32>
%1770 = util.global.load.indirect %648 : !util.ptr<tensor<128x512xf32>> -> tensor<128x512xf32>
%1771 = util.global.load.indirect %649 : !util.ptr<tensor<128xf32>> -> tensor<128xf32>
%1772 = util.global.load.indirect %650 : !util.ptr<tensor<512x128xf32>> -> tensor<512x128xf32>
%1773 = util.global.load.indirect %651 : !util.ptr<tensor<128xf32>> -> tensor<128xf32>
%1774 = util.global.load.indirect %652 : !util.ptr<tensor<128xf32>> -> tensor<128xf32>
%1775 = util.global.load.indirect %653 : !util.ptr<tensor<128xf32>> -> tensor<128xf32>
%1776 = util.global.load.indirect %654 : !util.ptr<tensor<128x128xf32>> -> tensor<128x128xf32>
%1777 = util.global.load.indirect %655 : !util.ptr<tensor<128xf32>> -> tensor<128xf32>
%1778 = util.global.load.indirect %656 : !util.ptr<tensor<128x128xf32>> -> tensor<128x128xf32>
%1779 = util.global.load.indirect %657 : !util.ptr<tensor<128xf32>> -> tensor<128xf32>
%1780 = util.global.load.indirect %658 : !util.ptr<tensor<128x128xf32>> -> tensor<128x128xf32>
%1781 = util.global.load.indirect %659 : !util.ptr<tensor<128xf32>> -> tensor<128xf32>
%1782 = util.global.load.indirect %660 : !util.ptr<tensor<512x128xf32>> -> tensor<512x128xf32>
%1783 = util.global.load.indirect %661 : !util.ptr<tensor<128xf32>> -> tensor<128xf32>
%1784 = util.global.load.indirect %662 : !util.ptr<tensor<128xf32>> -> tensor<128xf32>
%1785 = util.global.load.indirect %663 : !util.ptr<tensor<128xf32>> -> tensor<128xf32>
%1786 = util.global.load.indirect %664 : !util.ptr<tensor<512x128xf32>> -> tensor<512x128xf32>
%1787 = util.global.load.indirect %665 : !util.ptr<tensor<128xf32>> -> tensor<128xf32>
%1788 = util.global.load.indirect %666 : !util.ptr<tensor<128xf32>> -> tensor<128xf32>
%1789 = util.global.load.indirect %667 : !util.ptr<tensor<128xf32>> -> tensor<128xf32>
%1790 = util.global.load.indirect %668 : !util.ptr<tensor<512x128xf32>> -> tensor<512x128xf32>
%1791 = util.global.load.indirect %669 : !util.ptr<tensor<512xf32>> -> tensor<512xf32>
%1792 = util.global.load.indirect %670 : !util.ptr<tensor<128x512xf32>> -> tensor<128x512xf32>
%1793 = util.global.load.indirect %671 : !util.ptr<tensor<128xf32>> -> tensor<128xf32>
%1794 = util.global.load.indirect %672 : !util.ptr<tensor<128xf32>> -> tensor<128xf32>
%1795 = util.global.load.indirect %673 : !util.ptr<tensor<128xf32>> -> tensor<128xf32>
%1796 = util.global.load.indirect %674 : !util.ptr<tensor<512x128xf32>> -> tensor<512x128xf32>
%1797 = util.global.load.indirect %675 : !util.ptr<tensor<512xf32>> -> tensor<512xf32>
%1798 = util.global.load.indirect %676 : !util.ptr<tensor<128x512xf32>> -> tensor<128x512xf32>
%1799 = util.global.load.indirect %677 : !util.ptr<tensor<128xf32>> -> tensor<128xf32>
%1800 = util.global.load.indirect %678 : !util.ptr<tensor<128xf32>> -> tensor<128xf32>
%1801 = util.global.load.indirect %679 : !util.ptr<tensor<128xf32>> -> tensor<128xf32>
%1802 = util.global.load.indirect %680 : !util.ptr<tensor<512x128xf32>> -> tensor<512x128xf32>
%1803 = util.global.load.indirect %681 : !util.ptr<tensor<512xf32>> -> tensor<512xf32>
%1804 = util.global.load.indirect %682 : !util.ptr<tensor<128x512xf32>> -> tensor<128x512xf32>
%1805 = util.global.load.indirect %683 : !util.ptr<tensor<128xf32>> -> tensor<128xf32>
%1806 = util.global.load.indirect %684 : !util.ptr<tensor<128xf32>> -> tensor<128xf32>
%1807 = util.global.load.indirect %685 : !util.ptr<tensor<128xf32>> -> tensor<128xf32>
%1808 = util.global.load.indirect %686 : !util.ptr<tensor<512x128xf32>> -> tensor<512x128xf32>
%1809 = util.global.load.indirect %687 : !util.ptr<tensor<512xf32>> -> tensor<512xf32>
%1810 = util.global.load.indirect %688 : !util.ptr<tensor<128x512xf32>> -> tensor<128x512xf32>
%1811 = util.global.load.indirect %689 : !util.ptr<tensor<128xf32>> -> tensor<128xf32>
%1812 = util.global.load.indirect %690 : !util.ptr<tensor<128xf32>> -> tensor<128xf32>
%1813 = util.global.load.indirect %691 : !util.ptr<tensor<512xf32>> -> tensor<512xf32>
%1814 = util.global.load.indirect %692 : !util.ptr<tensor<512xf32>> -> tensor<512xf32>
%1815 = util.global.load.indirect %693 : !util.ptr<tensor<512xf32>> -> tensor<512xf32>
%1816 = util.global.load.indirect %694 : !util.ptr<tensor<128x512xf32>> -> tensor<128x512xf32>
%1817 = util.global.load.indirect %695 : !util.ptr<tensor<128xf32>> -> tensor<128xf32>
%1818 = util.global.load.indirect %696 : !util.ptr<tensor<512x128xf32>> -> tensor<512x128xf32>
%1819 = util.global.load.indirect %697 : !util.ptr<tensor<128xf32>> -> tensor<128xf32>
%1820 = util.global.load.indirect %698 : !util.ptr<tensor<128xf32>> -> tensor<128xf32>
%1821 = util.global.load.indirect %699 : !util.ptr<tensor<128xf32>> -> tensor<128xf32>
%1822 = util.global.load.indirect %700 : !util.ptr<tensor<128x128xf32>> -> tensor<128x128xf32>
%1823 = util.global.load.indirect %701 : !util.ptr<tensor<128xf32>> -> tensor<128xf32>
%1824 = util.global.load.indirect %702 : !util.ptr<tensor<128x128xf32>> -> tensor<128x128xf32>
%1825 = util.global.load.indirect %703 : !util.ptr<tensor<128xf32>> -> tensor<128xf32>
%1826 = util.global.load.indirect %704 : !util.ptr<tensor<128x128xf32>> -> tensor<128x128xf32>
%1827 = util.global.load.indirect %705 : !util.ptr<tensor<128xf32>> -> tensor<128xf32>
%1828 = util.global.load.indirect %706 : !util.ptr<tensor<512x128xf32>> -> tensor<512x128xf32>
%1829 = util.global.load.indirect %707 : !util.ptr<tensor<128xf32>> -> tensor<128xf32>
%1830 = util.global.load.indirect %708 : !util.ptr<tensor<128xf32>> -> tensor<128xf32>
%1831 = util.global.load.indirect %709 : !util.ptr<tensor<128xf32>> -> tensor<128xf32>
%1832 = util.global.load.indirect %710 : !util.ptr<tensor<512x128xf32>> -> tensor<512x128xf32>
%1833 = util.global.load.indirect %711 : !util.ptr<tensor<128xf32>> -> tensor<128xf32>
%1834 = util.global.load.indirect %712 : !util.ptr<tensor<128xf32>> -> tensor<128xf32>
%1835 = util.global.load.indirect %713 : !util.ptr<tensor<128xf32>> -> tensor<128xf32>
%1836 = util.global.load.indirect %714 : !util.ptr<tensor<512x128xf32>> -> tensor<512x128xf32>
%1837 = util.global.load.indirect %715 : !util.ptr<tensor<512xf32>> -> tensor<512xf32>
%1838 = util.global.load.indirect %716 : !util.ptr<tensor<128x512xf32>> -> tensor<128x512xf32>
%1839 = util.global.load.indirect %717 : !util.ptr<tensor<128xf32>> -> tensor<128xf32>
%1840 = util.global.load.indirect %718 : !util.ptr<tensor<128xf32>> -> tensor<128xf32>
%1841 = util.global.load.indirect %719 : !util.ptr<tensor<128xf32>> -> tensor<128xf32>
%1842 = util.global.load.indirect %720 : !util.ptr<tensor<512x128xf32>> -> tensor<512x128xf32>
%1843 = util.global.load.indirect %721 : !util.ptr<tensor<512xf32>> -> tensor<512xf32>
%1844 = util.global.load.indirect %722 : !util.ptr<tensor<128x512xf32>> -> tensor<128x512xf32>
%1845 = util.global.load.indirect %723 : !util.ptr<tensor<128xf32>> -> tensor<128xf32>
%1846 = util.global.load.indirect %724 : !util.ptr<tensor<128xf32>> -> tensor<128xf32>
%1847 = util.global.load.indirect %725 : !util.ptr<tensor<128xf32>> -> tensor<128xf32>
%1848 = util.global.load.indirect %726 : !util.ptr<tensor<512x128xf32>> -> tensor<512x128xf32>
%1849 = util.global.load.indirect %727 : !util.ptr<tensor<512xf32>> -> tensor<512xf32>
%1850 = util.global.load.indirect %728 : !util.ptr<tensor<128x512xf32>> -> tensor<128x512xf32>
%1851 = util.global.load.indirect %729 : !util.ptr<tensor<128xf32>> -> tensor<128xf32>
%1852 = util.global.load.indirect %730 : !util.ptr<tensor<128xf32>> -> tensor<128xf32>
%1853 = util.global.load.indirect %731 : !util.ptr<tensor<128xf32>> -> tensor<128xf32>
%1854 = util.global.load.indirect %732 : !util.ptr<tensor<512x128xf32>> -> tensor<512x128xf32>
%1855 = util.global.load.indirect %733 : !util.ptr<tensor<512xf32>> -> tensor<512xf32>
%1856 = util.global.load.indirect %734 : !util.ptr<tensor<128x512xf32>> -> tensor<128x512xf32>
%1857 = util.global.load.indirect %735 : !util.ptr<tensor<128xf32>> -> tensor<128xf32>
%1858 = util.global.load.indirect %736 : !util.ptr<tensor<128xf32>> -> tensor<128xf32>
%1859 = util.global.load.indirect %737 : !util.ptr<tensor<512xf32>> -> tensor<512xf32>
%1860 = util.global.load.indirect %738 : !util.ptr<tensor<512xf32>> -> tensor<512xf32>
%1861 = util.global.load.indirect %739 : !util.ptr<tensor<512xf32>> -> tensor<512xf32>
%1862 = util.global.load.indirect %740 : !util.ptr<tensor<128x512xf32>> -> tensor<128x512xf32>
%1863 = util.global.load.indirect %741 : !util.ptr<tensor<128xf32>> -> tensor<128xf32>
%1864 = util.global.load.indirect %742 : !util.ptr<tensor<512x128xf32>> -> tensor<512x128xf32>
%1865 = util.global.load.indirect %743 : !util.ptr<tensor<128xf32>> -> tensor<128xf32>
%1866 = util.global.load.indirect %744 : !util.ptr<tensor<128xf32>> -> tensor<128xf32>
%1867 = util.global.load.indirect %745 : !util.ptr<tensor<128xf32>> -> tensor<128xf32>
%1868 = util.global.load.indirect %746 : !util.ptr<tensor<128x128xf32>> -> tensor<128x128xf32>
%1869 = util.global.load.indirect %747 : !util.ptr<tensor<128xf32>> -> tensor<128xf32>
%1870 = util.global.load.indirect %748 : !util.ptr<tensor<128x128xf32>> -> tensor<128x128xf32>
%1871 = util.global.load.indirect %749 : !util.ptr<tensor<128xf32>> -> tensor<128xf32>
%1872 = util.global.load.indirect %750 : !util.ptr<tensor<128x128xf32>> -> tensor<128x128xf32>
%1873 = util.global.load.indirect %751 : !util.ptr<tensor<128xf32>> -> tensor<128xf32>
%1874 = util.global.load.indirect %752 : !util.ptr<tensor<512x128xf32>> -> tensor<512x128xf32>
%1875 = util.global.load.indirect %753 : !util.ptr<tensor<128xf32>> -> tensor<128xf32>
%1876 = util.global.load.indirect %754 : !util.ptr<tensor<128xf32>> -> tensor<128xf32>
%1877 = util.global.load.indirect %755 : !util.ptr<tensor<128xf32>> -> tensor<128xf32>
%1878 = util.global.load.indirect %756 : !util.ptr<tensor<512x128xf32>> -> tensor<512x128xf32>
%1879 = util.global.load.indirect %757 : !util.ptr<tensor<128xf32>> -> tensor<128xf32>
%1880 = util.global.load.indirect %758 : !util.ptr<tensor<128xf32>> -> tensor<128xf32>
%1881 = util.global.load.indirect %759 : !util.ptr<tensor<128xf32>> -> tensor<128xf32>
%1882 = util.global.load.indirect %760 : !util.ptr<tensor<512x128xf32>> -> tensor<512x128xf32>
%1883 = util.global.load.indirect %761 : !util.ptr<tensor<512xf32>> -> tensor<512xf32>
%1884 = util.global.load.indirect %762 : !util.ptr<tensor<128x512xf32>> -> tensor<128x512xf32>
%1885 = util.global.load.indirect %763 : !util.ptr<tensor<128xf32>> -> tensor<128xf32>
%1886 = util.global.load.indirect %764 : !util.ptr<tensor<128xf32>> -> tensor<128xf32>
%1887 = util.global.load.indirect %765 : !util.ptr<tensor<128xf32>> -> tensor<128xf32>
%1888 = util.global.load.indirect %766 : !util.ptr<tensor<512x128xf32>> -> tensor<512x128xf32>
%1889 = util.global.load.indirect %767 : !util.ptr<tensor<512xf32>> -> tensor<512xf32>
%1890 = util.global.load.indirect %768 : !util.ptr<tensor<128x512xf32>> -> tensor<128x512xf32>
%1891 = util.global.load.indirect %769 : !util.ptr<tensor<128xf32>> -> tensor<128xf32>
%1892 = util.global.load.indirect %770 : !util.ptr<tensor<128xf32>> -> tensor<128xf32>
%1893 = util.global.load.indirect %771 : !util.ptr<tensor<128xf32>> -> tensor<128xf32>
%1894 = util.global.load.indirect %772 : !util.ptr<tensor<512x128xf32>> -> tensor<512x128xf32>
%1895 = util.global.load.indirect %773 : !util.ptr<tensor<512xf32>> -> tensor<512xf32>
%1896 = util.global.load.indirect %774 : !util.ptr<tensor<128x512xf32>> -> tensor<128x512xf32>
%1897 = util.global.load.indirect %775 : !util.ptr<tensor<128xf32>> -> tensor<128xf32>
%1898 = util.global.load.indirect %776 : !util.ptr<tensor<128xf32>> -> tensor<128xf32>
%1899 = util.global.load.indirect %777 : !util.ptr<tensor<128xf32>> -> tensor<128xf32>
%1900 = util.global.load.indirect %778 : !util.ptr<tensor<512x128xf32>> -> tensor<512x128xf32>
%1901 = util.global.load.indirect %779 : !util.ptr<tensor<512xf32>> -> tensor<512xf32>
%1902 = util.global.load.indirect %780 : !util.ptr<tensor<128x512xf32>> -> tensor<128x512xf32>
%1903 = util.global.load.indirect %781 : !util.ptr<tensor<128xf32>> -> tensor<128xf32>
%1904 = util.global.load.indirect %782 : !util.ptr<tensor<128xf32>> -> tensor<128xf32>
%1905 = util.global.load.indirect %783 : !util.ptr<tensor<512xf32>> -> tensor<512xf32>
%1906 = util.global.load.indirect %784 : !util.ptr<tensor<512xf32>> -> tensor<512xf32>
%1907 = util.global.load.indirect %785 : !util.ptr<tensor<512xf32>> -> tensor<512xf32>
%1908 = util.global.load.indirect %786 : !util.ptr<tensor<128x512xf32>> -> tensor<128x512xf32>
%1909 = util.global.load.indirect %787 : !util.ptr<tensor<128xf32>> -> tensor<128xf32>
%1910 = util.global.load.indirect %788 : !util.ptr<tensor<512x128xf32>> -> tensor<512x128xf32>
%1911 = util.global.load.indirect %789 : !util.ptr<tensor<128xf32>> -> tensor<128xf32>
%1912 = util.global.load.indirect %790 : !util.ptr<tensor<128xf32>> -> tensor<128xf32>
%1913 = util.global.load.indirect %791 : !util.ptr<tensor<128xf32>> -> tensor<128xf32>
%1914 = util.global.load.indirect %792 : !util.ptr<tensor<128x128xf32>> -> tensor<128x128xf32>
%1915 = util.global.load.indirect %793 : !util.ptr<tensor<128xf32>> -> tensor<128xf32>
%1916 = util.global.load.indirect %794 : !util.ptr<tensor<128x128xf32>> -> tensor<128x128xf32>
%1917 = util.global.load.indirect %795 : !util.ptr<tensor<128xf32>> -> tensor<128xf32>
%1918 = util.global.load.indirect %796 : !util.ptr<tensor<128x128xf32>> -> tensor<128x128xf32>
%1919 = util.global.load.indirect %797 : !util.ptr<tensor<128xf32>> -> tensor<128xf32>
%1920 = util.global.load.indirect %798 : !util.ptr<tensor<512x128xf32>> -> tensor<512x128xf32>
%1921 = util.global.load.indirect %799 : !util.ptr<tensor<128xf32>> -> tensor<128xf32>
%1922 = util.global.load.indirect %800 : !util.ptr<tensor<128xf32>> -> tensor<128xf32>
%1923 = util.global.load.indirect %801 : !util.ptr<tensor<128xf32>> -> tensor<128xf32>
%1924 = util.global.load.indirect %802 : !util.ptr<tensor<512x128xf32>> -> tensor<512x128xf32>
%1925 = util.global.load.indirect %803 : !util.ptr<tensor<128xf32>> -> tensor<128xf32>
%1926 = util.global.load.indirect %804 : !util.ptr<tensor<128xf32>> -> tensor<128xf32>
%1927 = util.global.load.indirect %805 : !util.ptr<tensor<128xf32>> -> tensor<128xf32>
%1928 = util.global.load.indirect %806 : !util.ptr<tensor<512x128xf32>> -> tensor<512x128xf32>
%1929 = util.global.load.indirect %807 : !util.ptr<tensor<512xf32>> -> tensor<512xf32>
%1930 = util.global.load.indirect %808 : !util.ptr<tensor<128x512xf32>> -> tensor<128x512xf32>
%1931 = util.global.load.indirect %809 : !util.ptr<tensor<128xf32>> -> tensor<128xf32>
%1932 = util.global.load.indirect %810 : !util.ptr<tensor<128xf32>> -> tensor<128xf32>
%1933 = util.global.load.indirect %811 : !util.ptr<tensor<128xf32>> -> tensor<128xf32>
%1934 = util.global.load.indirect %812 : !util.ptr<tensor<512x128xf32>> -> tensor<512x128xf32>
%1935 = util.global.load.indirect %813 : !util.ptr<tensor<512xf32>> -> tensor<512xf32>
%1936 = util.global.load.indirect %814 : !util.ptr<tensor<128x512xf32>> -> tensor<128x512xf32>
%1937 = util.global.load.indirect %815 : !util.ptr<tensor<128xf32>> -> tensor<128xf32>
%1938 = util.global.load.indirect %816 : !util.ptr<tensor<128xf32>> -> tensor<128xf32>
%1939 = util.global.load.indirect %817 : !util.ptr<tensor<128xf32>> -> tensor<128xf32>
%1940 = util.global.load.indirect %818 : !util.ptr<tensor<512x128xf32>> -> tensor<512x128xf32>
%1941 = util.global.load.indirect %819 : !util.ptr<tensor<512xf32>> -> tensor<512xf32>
%1942 = util.global.load.indirect %820 : !util.ptr<tensor<128x512xf32>> -> tensor<128x512xf32>
%1943 = util.global.load.indirect %821 : !util.ptr<tensor<128xf32>> -> tensor<128xf32>
%1944 = util.global.load.indirect %822 : !util.ptr<tensor<128xf32>> -> tensor<128xf32>
%1945 = util.global.load.indirect %823 : !util.ptr<tensor<128xf32>> -> tensor<128xf32>
%1946 = util.global.load.indirect %824 : !util.ptr<tensor<512x128xf32>> -> tensor<512x128xf32>
%1947 = util.global.load.indirect %825 : !util.ptr<tensor<512xf32>> -> tensor<512xf32>
%1948 = util.global.load.indirect %826 : !util.ptr<tensor<128x512xf32>> -> tensor<128x512xf32>
%1949 = util.global.load.indirect %827 : !util.ptr<tensor<128xf32>> -> tensor<128xf32>
%1950 = util.global.load.indirect %828 : !util.ptr<tensor<128xf32>> -> tensor<128xf32>
%1951 = util.global.load.indirect %829 : !util.ptr<tensor<512xf32>> -> tensor<512xf32>
%1952 = util.global.load.indirect %830 : !util.ptr<tensor<512xf32>> -> tensor<512xf32>
%1953 = util.global.load.indirect %831 : !util.ptr<tensor<512xf32>> -> tensor<512xf32>
%1954 = util.global.load.indirect %832 : !util.ptr<tensor<128x512xf32>> -> tensor<128x512xf32>
%1955 = util.global.load.indirect %833 : !util.ptr<tensor<128xf32>> -> tensor<128xf32>
%1956 = util.global.load.indirect %834 : !util.ptr<tensor<512x128xf32>> -> tensor<512x128xf32>
%1957 = util.global.load.indirect %835 : !util.ptr<tensor<128xf32>> -> tensor<128xf32>
%1958 = util.global.load.indirect %836 : !util.ptr<tensor<128xf32>> -> tensor<128xf32>
%1959 = util.global.load.indirect %837 : !util.ptr<tensor<128xf32>> -> tensor<128xf32>
%1960 = util.global.load.indirect %838 : !util.ptr<tensor<128x128xf32>> -> tensor<128x128xf32>
%1961 = util.global.load.indirect %839 : !util.ptr<tensor<128xf32>> -> tensor<128xf32>
%1962 = util.global.load.indirect %840 : !util.ptr<tensor<128x128xf32>> -> tensor<128x128xf32>
%1963 = util.global.load.indirect %841 : !util.ptr<tensor<128xf32>> -> tensor<128xf32>
%1964 = util.global.load.indirect %842 : !util.ptr<tensor<128x128xf32>> -> tensor<128x128xf32>
%1965 = util.global.load.indirect %843 : !util.ptr<tensor<128xf32>> -> tensor<128xf32>
%1966 = util.global.load.indirect %844 : !util.ptr<tensor<512x128xf32>> -> tensor<512x128xf32>
%1967 = util.global.load.indirect %845 : !util.ptr<tensor<128xf32>> -> tensor<128xf32>
%1968 = util.global.load.indirect %846 : !util.ptr<tensor<128xf32>> -> tensor<128xf32>
%1969 = util.global.load.indirect %847 : !util.ptr<tensor<128xf32>> -> tensor<128xf32>
%1970 = util.global.load.indirect %848 : !util.ptr<tensor<512x128xf32>> -> tensor<512x128xf32>
%1971 = util.global.load.indirect %849 : !util.ptr<tensor<128xf32>> -> tensor<128xf32>
%1972 = util.global.load.indirect %850 : !util.ptr<tensor<128xf32>> -> tensor<128xf32>
%1973 = util.global.load.indirect %851 : !util.ptr<tensor<128xf32>> -> tensor<128xf32>
%1974 = util.global.load.indirect %852 : !util.ptr<tensor<512x128xf32>> -> tensor<512x128xf32>
%1975 = util.global.load.indirect %853 : !util.ptr<tensor<512xf32>> -> tensor<512xf32>
%1976 = util.global.load.indirect %854 : !util.ptr<tensor<128x512xf32>> -> tensor<128x512xf32>
%1977 = util.global.load.indirect %855 : !util.ptr<tensor<128xf32>> -> tensor<128xf32>
%1978 = util.global.load.indirect %856 : !util.ptr<tensor<128xf32>> -> tensor<128xf32>
%1979 = util.global.load.indirect %857 : !util.ptr<tensor<128xf32>> -> tensor<128xf32>
%1980 = util.global.load.indirect %858 : !util.ptr<tensor<512x128xf32>> -> tensor<512x128xf32>
%1981 = util.global.load.indirect %859 : !util.ptr<tensor<512xf32>> -> tensor<512xf32>
%1982 = util.global.load.indirect %860 : !util.ptr<tensor<128x512xf32>> -> tensor<128x512xf32>
%1983 = util.global.load.indirect %861 : !util.ptr<tensor<128xf32>> -> tensor<128xf32>
%1984 = util.global.load.indirect %862 : !util.ptr<tensor<128xf32>> -> tensor<128xf32>
%1985 = util.global.load.indirect %863 : !util.ptr<tensor<128xf32>> -> tensor<128xf32>
%1986 = util.global.load.indirect %864 : !util.ptr<tensor<512x128xf32>> -> tensor<512x128xf32>
%1987 = util.global.load.indirect %865 : !util.ptr<tensor<512xf32>> -> tensor<512xf32>
%1988 = util.global.load.indirect %866 : !util.ptr<tensor<128x512xf32>> -> tensor<128x512xf32>
%1989 = util.global.load.indirect %867 : !util.ptr<tensor<128xf32>> -> tensor<128xf32>
%1990 = util.global.load.indirect %868 : !util.ptr<tensor<128xf32>> -> tensor<128xf32>
%1991 = util.global.load.indirect %869 : !util.ptr<tensor<128xf32>> -> tensor<128xf32>
%1992 = util.global.load.indirect %870 : !util.ptr<tensor<512x128xf32>> -> tensor<512x128xf32>
%1993 = util.global.load.indirect %871 : !util.ptr<tensor<512xf32>> -> tensor<512xf32>
%1994 = util.global.load.indirect %872 : !util.ptr<tensor<128x512xf32>> -> tensor<128x512xf32>
%1995 = util.global.load.indirect %873 : !util.ptr<tensor<128xf32>> -> tensor<128xf32>
%1996 = util.global.load.indirect %874 : !util.ptr<tensor<128xf32>> -> tensor<128xf32>
%1997 = util.global.load.indirect %875 : !util.ptr<tensor<512xf32>> -> tensor<512xf32>
%1998 = util.global.load.indirect %876 : !util.ptr<tensor<512xf32>> -> tensor<512xf32>
%1999 = util.global.load.indirect %877 : !util.ptr<tensor<512xf32>> -> tensor<512xf32>
%2000 = util.global.load.indirect %878 : !util.ptr<tensor<128x512xf32>> -> tensor<128x512xf32>
%2001 = util.global.load.indirect %879 : !util.ptr<tensor<128xf32>> -> tensor<128xf32>
%2002 = util.global.load.indirect %880 : !util.ptr<tensor<512x128xf32>> -> tensor<512x128xf32>
%2003 = util.global.load.indirect %881 : !util.ptr<tensor<128xf32>> -> tensor<128xf32>
%2004 = util.global.load.indirect %882 : !util.ptr<tensor<128xf32>> -> tensor<128xf32>
%2005 = util.global.load.indirect %883 : !util.ptr<tensor<128xf32>> -> tensor<128xf32>
%2006 = util.global.load.indirect %884 : !util.ptr<tensor<128x128xf32>> -> tensor<128x128xf32>
%2007 = util.global.load.indirect %885 : !util.ptr<tensor<128xf32>> -> tensor<128xf32>
%2008 = util.global.load.indirect %886 : !util.ptr<tensor<128x128xf32>> -> tensor<128x128xf32>
%2009 = util.global.load.indirect %887 : !util.ptr<tensor<128xf32>> -> tensor<128xf32>
%2010 = util.global.load.indirect %888 : !util.ptr<tensor<128x128xf32>> -> tensor<128x128xf32>
%2011 = util.global.load.indirect %889 : !util.ptr<tensor<128xf32>> -> tensor<128xf32>
%2012 = util.global.load.indirect %890 : !util.ptr<tensor<512x128xf32>> -> tensor<512x128xf32>
%2013 = util.global.load.indirect %891 : !util.ptr<tensor<128xf32>> -> tensor<128xf32>
%2014 = util.global.load.indirect %892 : !util.ptr<tensor<128xf32>> -> tensor<128xf32>
%2015 = util.global.load.indirect %893 : !util.ptr<tensor<128xf32>> -> tensor<128xf32>
%2016 = util.global.load.indirect %894 : !util.ptr<tensor<512x128xf32>> -> tensor<512x128xf32>
%2017 = util.global.load.indirect %895 : !util.ptr<tensor<128xf32>> -> tensor<128xf32>
%2018 = util.global.load.indirect %896 : !util.ptr<tensor<128xf32>> -> tensor<128xf32>
%2019 = util.global.load.indirect %897 : !util.ptr<tensor<128xf32>> -> tensor<128xf32>
%2020 = util.global.load.indirect %898 : !util.ptr<tensor<512x128xf32>> -> tensor<512x128xf32>
%2021 = util.global.load.indirect %899 : !util.ptr<tensor<512xf32>> -> tensor<512xf32>
%2022 = util.global.load.indirect %900 : !util.ptr<tensor<128x512xf32>> -> tensor<128x512xf32>
%2023 = util.global.load.indirect %901 : !util.ptr<tensor<128xf32>> -> tensor<128xf32>
%2024 = util.global.load.indirect %902 : !util.ptr<tensor<128xf32>> -> tensor<128xf32>
%2025 = util.global.load.indirect %903 : !util.ptr<tensor<128xf32>> -> tensor<128xf32>
%2026 = util.global.load.indirect %904 : !util.ptr<tensor<512x128xf32>> -> tensor<512x128xf32>
%2027 = util.global.load.indirect %905 : !util.ptr<tensor<512xf32>> -> tensor<512xf32>
%2028 = util.global.load.indirect %906 : !util.ptr<tensor<128x512xf32>> -> tensor<128x512xf32>
%2029 = util.global.load.indirect %907 : !util.ptr<tensor<128xf32>> -> tensor<128xf32>
%2030 = util.global.load.indirect %908 : !util.ptr<tensor<128xf32>> -> tensor<128xf32>
%2031 = util.global.load.indirect %909 : !util.ptr<tensor<128xf32>> -> tensor<128xf32>
%2032 = util.global.load.indirect %910 : !util.ptr<tensor<512x128xf32>> -> tensor<512x128xf32>
%2033 = util.global.load.indirect %911 : !util.ptr<tensor<512xf32>> -> tensor<512xf32>
%2034 = util.global.load.indirect %912 : !util.ptr<tensor<128x512xf32>> -> tensor<128x512xf32>
%2035 = util.global.load.indirect %913 : !util.ptr<tensor<128xf32>> -> tensor<128xf32>
%2036 = util.global.load.indirect %914 : !util.ptr<tensor<128xf32>> -> tensor<128xf32>
%2037 = util.global.load.indirect %915 : !util.ptr<tensor<128xf32>> -> tensor<128xf32>
%2038 = util.global.load.indirect %916 : !util.ptr<tensor<512x128xf32>> -> tensor<512x128xf32>
%2039 = util.global.load.indirect %917 : !util.ptr<tensor<512xf32>> -> tensor<512xf32>
%2040 = util.global.load.indirect %918 : !util.ptr<tensor<128x512xf32>> -> tensor<128x512xf32>
%2041 = util.global.load.indirect %919 : !util.ptr<tensor<128xf32>> -> tensor<128xf32>
%2042 = util.global.load.indirect %920 : !util.ptr<tensor<128xf32>> -> tensor<128xf32>
%2043 = util.global.load.indirect %921 : !util.ptr<tensor<512xf32>> -> tensor<512xf32>
%2044 = util.global.load.indirect %922 : !util.ptr<tensor<512xf32>> -> tensor<512xf32>
%2045 = util.global.load.indirect %923 : !util.ptr<tensor<512xf32>> -> tensor<512xf32>
%2046 = util.global.load.indirect %924 : !util.ptr<tensor<128x512xf32>> -> tensor<128x512xf32>
%2047 = util.global.load.indirect %925 : !util.ptr<tensor<128xf32>> -> tensor<128xf32>
%2048 = util.global.load.indirect %926 : !util.ptr<tensor<512x128xf32>> -> tensor<512x128xf32>
%2049 = util.global.load.indirect %927 : !util.ptr<tensor<128xf32>> -> tensor<128xf32>
%2050 = util.global.load.indirect %928 : !util.ptr<tensor<128xf32>> -> tensor<128xf32>
%2051 = util.global.load.indirect %929 : !util.ptr<tensor<128xf32>> -> tensor<128xf32>
%2052 = util.global.load.indirect %930 : !util.ptr<tensor<128x128xf32>> -> tensor<128x128xf32>
%2053 = util.global.load.indirect %931 : !util.ptr<tensor<128xf32>> -> tensor<128xf32>
%2054 = util.global.load.indirect %932 : !util.ptr<tensor<128x128xf32>> -> tensor<128x128xf32>
%2055 = util.global.load.indirect %933 : !util.ptr<tensor<128xf32>> -> tensor<128xf32>
%2056 = util.global.load.indirect %934 : !util.ptr<tensor<128x128xf32>> -> tensor<128x128xf32>
%2057 = util.global.load.indirect %935 : !util.ptr<tensor<128xf32>> -> tensor<128xf32>
%2058 = util.global.load.indirect %936 : !util.ptr<tensor<512x128xf32>> -> tensor<512x128xf32>
%2059 = util.global.load.indirect %937 : !util.ptr<tensor<128xf32>> -> tensor<128xf32>
%2060 = util.global.load.indirect %938 : !util.ptr<tensor<128xf32>> -> tensor<128xf32>
%2061 = util.global.load.indirect %939 : !util.ptr<tensor<128xf32>> -> tensor<128xf32>
%2062 = util.global.load.indirect %940 : !util.ptr<tensor<512x128xf32>> -> tensor<512x128xf32>
%2063 = util.global.load.indirect %941 : !util.ptr<tensor<128xf32>> -> tensor<128xf32>
%2064 = util.global.load.indirect %942 : !util.ptr<tensor<128xf32>> -> tensor<128xf32>
%2065 = util.global.load.indirect %943 : !util.ptr<tensor<128xf32>> -> tensor<128xf32>
%2066 = util.global.load.indirect %944 : !util.ptr<tensor<512x128xf32>> -> tensor<512x128xf32>
%2067 = util.global.load.indirect %945 : !util.ptr<tensor<512xf32>> -> tensor<512xf32>
%2068 = util.global.load.indirect %946 : !util.ptr<tensor<128x512xf32>> -> tensor<128x512xf32>
%2069 = util.global.load.indirect %947 : !util.ptr<tensor<128xf32>> -> tensor<128xf32>
%2070 = util.global.load.indirect %948 : !util.ptr<tensor<128xf32>> -> tensor<128xf32>
%2071 = util.global.load.indirect %949 : !util.ptr<tensor<128xf32>> -> tensor<128xf32>
%2072 = util.global.load.indirect %950 : !util.ptr<tensor<512x128xf32>> -> tensor<512x128xf32>
%2073 = util.global.load.indirect %951 : !util.ptr<tensor<512xf32>> -> tensor<512xf32>
%2074 = util.global.load.indirect %952 : !util.ptr<tensor<128x512xf32>> -> tensor<128x512xf32>
%2075 = util.global.load.indirect %953 : !util.ptr<tensor<128xf32>> -> tensor<128xf32>
%2076 = util.global.load.indirect %954 : !util.ptr<tensor<128xf32>> -> tensor<128xf32>
%2077 = util.global.load.indirect %955 : !util.ptr<tensor<128xf32>> -> tensor<128xf32>
%2078 = util.global.load.indirect %956 : !util.ptr<tensor<512x128xf32>> -> tensor<512x128xf32>
%2079 = util.global.load.indirect %957 : !util.ptr<tensor<512xf32>> -> tensor<512xf32>
%2080 = util.global.load.indirect %958 : !util.ptr<tensor<128x512xf32>> -> tensor<128x512xf32>
%2081 = util.global.load.indirect %959 : !util.ptr<tensor<128xf32>> -> tensor<128xf32>
%2082 = util.global.load.indirect %960 : !util.ptr<tensor<128xf32>> -> tensor<128xf32>
%2083 = util.global.load.indirect %961 : !util.ptr<tensor<128xf32>> -> tensor<128xf32>
%2084 = util.global.load.indirect %962 : !util.ptr<tensor<512x128xf32>> -> tensor<512x128xf32>
%2085 = util.global.load.indirect %963 : !util.ptr<tensor<512xf32>> -> tensor<512xf32>
%2086 = util.global.load.indirect %964 : !util.ptr<tensor<128x512xf32>> -> tensor<128x512xf32>
%2087 = util.global.load.indirect %965 : !util.ptr<tensor<128xf32>> -> tensor<128xf32>
%2088 = util.global.load.indirect %966 : !util.ptr<tensor<128xf32>> -> tensor<128xf32>
%2089 = util.global.load.indirect %967 : !util.ptr<tensor<512xf32>> -> tensor<512xf32>
%2090 = util.global.load.indirect %968 : !util.ptr<tensor<512xf32>> -> tensor<512xf32>
%2091 = util.global.load.indirect %969 : !util.ptr<tensor<512xf32>> -> tensor<512xf32>
%2092 = util.global.load.indirect %970 : !util.ptr<tensor<128x512xf32>> -> tensor<128x512xf32>
%2093 = util.global.load.indirect %971 : !util.ptr<tensor<128xf32>> -> tensor<128xf32>
%2094 = util.global.load.indirect %972 : !util.ptr<tensor<512x128xf32>> -> tensor<512x128xf32>
%2095 = util.global.load.indirect %973 : !util.ptr<tensor<128xf32>> -> tensor<128xf32>
%2096 = util.global.load.indirect %974 : !util.ptr<tensor<128xf32>> -> tensor<128xf32>
%2097 = util.global.load.indirect %975 : !util.ptr<tensor<128xf32>> -> tensor<128xf32>
%2098 = util.global.load.indirect %976 : !util.ptr<tensor<128x128xf32>> -> tensor<128x128xf32>
%2099 = util.global.load.indirect %977 : !util.ptr<tensor<128xf32>> -> tensor<128xf32>
%2100 = util.global.load.indirect %978 : !util.ptr<tensor<128x128xf32>> -> tensor<128x128xf32>
%2101 = util.global.load.indirect %979 : !util.ptr<tensor<128xf32>> -> tensor<128xf32>
%2102 = util.global.load.indirect %980 : !util.ptr<tensor<128x128xf32>> -> tensor<128x128xf32>
%2103 = util.global.load.indirect %981 : !util.ptr<tensor<128xf32>> -> tensor<128xf32>
%2104 = util.global.load.indirect %982 : !util.ptr<tensor<512x128xf32>> -> tensor<512x128xf32>
%2105 = util.global.load.indirect %983 : !util.ptr<tensor<128xf32>> -> tensor<128xf32>
%2106 = util.global.load.indirect %984 : !util.ptr<tensor<128xf32>> -> tensor<128xf32>
%2107 = util.global.load.indirect %985 : !util.ptr<tensor<128xf32>> -> tensor<128xf32>
%2108 = util.global.load.indirect %986 : !util.ptr<tensor<512x128xf32>> -> tensor<512x128xf32>
%2109 = util.global.load.indirect %987 : !util.ptr<tensor<128xf32>> -> tensor<128xf32>
%2110 = util.global.load.indirect %988 : !util.ptr<tensor<128xf32>> -> tensor<128xf32>
%2111 = util.global.load.indirect %989 : !util.ptr<tensor<128xf32>> -> tensor<128xf32>
%2112 = util.global.load.indirect %990 : !util.ptr<tensor<512x128xf32>> -> tensor<512x128xf32>
%2113 = util.global.load.indirect %991 : !util.ptr<tensor<512xf32>> -> tensor<512xf32>
%2114 = util.global.load.indirect %992 : !util.ptr<tensor<128x512xf32>> -> tensor<128x512xf32>
%2115 = util.global.load.indirect %993 : !util.ptr<tensor<128xf32>> -> tensor<128xf32>
%2116 = util.global.load.indirect %994 : !util.ptr<tensor<128xf32>> -> tensor<128xf32>
%2117 = util.global.load.indirect %995 : !util.ptr<tensor<128xf32>> -> tensor<128xf32>
%2118 = util.global.load.indirect %996 : !util.ptr<tensor<512x128xf32>> -> tensor<512x128xf32>
%2119 = util.global.load.indirect %997 : !util.ptr<tensor<512xf32>> -> tensor<512xf32>
%2120 = util.global.load.indirect %998 : !util.ptr<tensor<128x512xf32>> -> tensor<128x512xf32>
%2121 = util.global.load.indirect %999 : !util.ptr<tensor<128xf32>> -> tensor<128xf32>
%2122 = util.global.load.indirect %1000 : !util.ptr<tensor<128xf32>> -> tensor<128xf32>
%2123 = util.global.load.indirect %1001 : !util.ptr<tensor<128xf32>> -> tensor<128xf32>
%2124 = util.global.load.indirect %1002 : !util.ptr<tensor<512x128xf32>> -> tensor<512x128xf32>
%2125 = util.global.load.indirect %1003 : !util.ptr<tensor<512xf32>> -> tensor<512xf32>
%2126 = util.global.load.indirect %1004 : !util.ptr<tensor<128x512xf32>> -> tensor<128x512xf32>
%2127 = util.global.load.indirect %1005 : !util.ptr<tensor<128xf32>> -> tensor<128xf32>
%2128 = util.global.load.indirect %1006 : !util.ptr<tensor<128xf32>> -> tensor<128xf32>
%2129 = util.global.load.indirect %1007 : !util.ptr<tensor<128xf32>> -> tensor<128xf32>
%2130 = util.global.load.indirect %1008 : !util.ptr<tensor<512x128xf32>> -> tensor<512x128xf32>
%2131 = util.global.load.indirect %1009 : !util.ptr<tensor<512xf32>> -> tensor<512xf32>
%2132 = util.global.load.indirect %1010 : !util.ptr<tensor<128x512xf32>> -> tensor<128x512xf32>
%2133 = util.global.load.indirect %1011 : !util.ptr<tensor<128xf32>> -> tensor<128xf32>
%2134 = util.global.load.indirect %1012 : !util.ptr<tensor<128xf32>> -> tensor<128xf32>
%2135 = util.global.load.indirect %1013 : !util.ptr<tensor<512xf32>> -> tensor<512xf32>
%2136 = util.global.load.indirect %1014 : !util.ptr<tensor<512xf32>> -> tensor<512xf32>
%2137 = util.global.load.indirect %1015 : !util.ptr<tensor<512xf32>> -> tensor<512xf32>
%2138 = util.global.load.indirect %1016 : !util.ptr<tensor<128x512xf32>> -> tensor<128x512xf32>
%2139 = util.global.load.indirect %1017 : !util.ptr<tensor<128xf32>> -> tensor<128xf32>
%2140 = util.global.load.indirect %1018 : !util.ptr<tensor<512x128xf32>> -> tensor<512x128xf32>
%2141 = util.global.load.indirect %1019 : !util.ptr<tensor<128xf32>> -> tensor<128xf32>
%2142 = util.global.load.indirect %1020 : !util.ptr<tensor<128xf32>> -> tensor<128xf32>
%2143 = util.global.load.indirect %1021 : !util.ptr<tensor<128xf32>> -> tensor<128xf32>
%2144 = util.global.load.indirect %1022 : !util.ptr<tensor<128x128xf32>> -> tensor<128x128xf32>
%2145 = util.global.load.indirect %1023 : !util.ptr<tensor<128xf32>> -> tensor<128xf32>
%2146 = util.global.load.indirect %1024 : !util.ptr<tensor<128x128xf32>> -> tensor<128x128xf32>
%2147 = util.global.load.indirect %1025 : !util.ptr<tensor<128xf32>> -> tensor<128xf32>
%2148 = util.global.load.indirect %1026 : !util.ptr<tensor<128x128xf32>> -> tensor<128x128xf32>
%2149 = util.global.load.indirect %1027 : !util.ptr<tensor<128xf32>> -> tensor<128xf32>
%2150 = util.global.load.indirect %1028 : !util.ptr<tensor<512x128xf32>> -> tensor<512x128xf32>
%2151 = util.global.load.indirect %1029 : !util.ptr<tensor<128xf32>> -> tensor<128xf32>
%2152 = util.global.load.indirect %1030 : !util.ptr<tensor<128xf32>> -> tensor<128xf32>
%2153 = util.global.load.indirect %1031 : !util.ptr<tensor<128xf32>> -> tensor<128xf32>
%2154 = util.global.load.indirect %1032 : !util.ptr<tensor<512x128xf32>> -> tensor<512x128xf32>
%2155 = util.global.load.indirect %1033 : !util.ptr<tensor<128xf32>> -> tensor<128xf32>
%2156 = util.global.load.indirect %1034 : !util.ptr<tensor<128xf32>> -> tensor<128xf32>
%2157 = util.global.load.indirect %1035 : !util.ptr<tensor<128xf32>> -> tensor<128xf32>
%2158 = util.global.load.indirect %1036 : !util.ptr<tensor<512x128xf32>> -> tensor<512x128xf32>
%2159 = util.global.load.indirect %1037 : !util.ptr<tensor<512xf32>> -> tensor<512xf32>
%2160 = util.global.load.indirect %1038 : !util.ptr<tensor<128x512xf32>> -> tensor<128x512xf32>
%2161 = util.global.load.indirect %1039 : !util.ptr<tensor<128xf32>> -> tensor<128xf32>
%2162 = util.global.load.indirect %1040 : !util.ptr<tensor<128xf32>> -> tensor<128xf32>
%2163 = util.global.load.indirect %1041 : !util.ptr<tensor<128xf32>> -> tensor<128xf32>
%2164 = util.global.load.indirect %1042 : !util.ptr<tensor<512x128xf32>> -> tensor<512x128xf32>
%2165 = util.global.load.indirect %1043 : !util.ptr<tensor<512xf32>> -> tensor<512xf32>
%2166 = util.global.load.indirect %1044 : !util.ptr<tensor<128x512xf32>> -> tensor<128x512xf32>
%2167 = util.global.load.indirect %1045 : !util.ptr<tensor<128xf32>> -> tensor<128xf32>
%2168 = util.global.load.indirect %1046 : !util.ptr<tensor<128xf32>> -> tensor<128xf32>
%2169 = util.global.load.indirect %1047 : !util.ptr<tensor<128xf32>> -> tensor<128xf32>
%2170 = util.global.load.indirect %1048 : !util.ptr<tensor<512x128xf32>> -> tensor<512x128xf32>
%2171 = util.global.load.indirect %1049 : !util.ptr<tensor<512xf32>> -> tensor<512xf32>
%2172 = util.global.load.indirect %1050 : !util.ptr<tensor<128x512xf32>> -> tensor<128x512xf32>
%2173 = util.global.load.indirect %1051 : !util.ptr<tensor<128xf32>> -> tensor<128xf32>
%2174 = util.global.load.indirect %1052 : !util.ptr<tensor<128xf32>> -> tensor<128xf32>
%2175 = util.global.load.indirect %1053 : !util.ptr<tensor<128xf32>> -> tensor<128xf32>
%2176 = util.global.load.indirect %1054 : !util.ptr<tensor<512x128xf32>> -> tensor<512x128xf32>
%2177 = util.global.load.indirect %1055 : !util.ptr<tensor<512xf32>> -> tensor<512xf32>
%2178 = util.global.load.indirect %1056 : !util.ptr<tensor<128x512xf32>> -> tensor<128x512xf32>
%2179 = util.global.load.indirect %1057 : !util.ptr<tensor<128xf32>> -> tensor<128xf32>
%2180 = util.global.load.indirect %1058 : !util.ptr<tensor<128xf32>> -> tensor<128xf32>
%2181 = util.global.load.indirect %1059 : !util.ptr<tensor<512xf32>> -> tensor<512xf32>
%2182 = util.global.load.indirect %1060 : !util.ptr<tensor<512xf32>> -> tensor<512xf32>
%2183 = util.global.load.indirect %1061 : !util.ptr<tensor<512xf32>> -> tensor<512xf32>
%2184 = util.global.load.indirect %1062 : !util.ptr<tensor<128x512xf32>> -> tensor<128x512xf32>
%2185 = util.global.load.indirect %1063 : !util.ptr<tensor<128xf32>> -> tensor<128xf32>
%2186 = util.global.load.indirect %1064 : !util.ptr<tensor<512x128xf32>> -> tensor<512x128xf32>
%2187 = util.global.load.indirect %1065 : !util.ptr<tensor<128xf32>> -> tensor<128xf32>
%2188 = util.global.load.indirect %1066 : !util.ptr<tensor<128xf32>> -> tensor<128xf32>
%2189 = util.global.load.indirect %1067 : !util.ptr<tensor<128xf32>> -> tensor<128xf32>
%2190 = util.global.load.indirect %1068 : !util.ptr<tensor<128x128xf32>> -> tensor<128x128xf32>
%2191 = util.global.load.indirect %1069 : !util.ptr<tensor<128xf32>> -> tensor<128xf32>
%2192 = util.global.load.indirect %1070 : !util.ptr<tensor<128x128xf32>> -> tensor<128x128xf32>
%2193 = util.global.load.indirect %1071 : !util.ptr<tensor<128xf32>> -> tensor<128xf32>
%2194 = util.global.load.indirect %1072 : !util.ptr<tensor<128x128xf32>> -> tensor<128x128xf32>
%2195 = util.global.load.indirect %1073 : !util.ptr<tensor<128xf32>> -> tensor<128xf32>
%2196 = util.global.load.indirect %1074 : !util.ptr<tensor<512x128xf32>> -> tensor<512x128xf32>
%2197 = util.global.load.indirect %1075 : !util.ptr<tensor<128xf32>> -> tensor<128xf32>
%2198 = util.global.load.indirect %1076 : !util.ptr<tensor<128xf32>> -> tensor<128xf32>
%2199 = util.global.load.indirect %1077 : !util.ptr<tensor<128xf32>> -> tensor<128xf32>
%2200 = util.global.load.indirect %1078 : !util.ptr<tensor<512x128xf32>> -> tensor<512x128xf32>
%2201 = util.global.load.indirect %1079 : !util.ptr<tensor<128xf32>> -> tensor<128xf32>
%2202 = util.global.load.indirect %1080 : !util.ptr<tensor<128xf32>> -> tensor<128xf32>
%2203 = util.global.load.indirect %1081 : !util.ptr<tensor<128xf32>> -> tensor<128xf32>
%2204 = util.global.load.indirect %1082 : !util.ptr<tensor<512x128xf32>> -> tensor<512x128xf32>
%2205 = util.global.load.indirect %1083 : !util.ptr<tensor<512xf32>> -> tensor<512xf32>
%2206 = util.global.load.indirect %1084 : !util.ptr<tensor<128x512xf32>> -> tensor<128x512xf32>
%2207 = util.global.load.indirect %1085 : !util.ptr<tensor<128xf32>> -> tensor<128xf32>
%2208 = util.global.load.indirect %1086 : !util.ptr<tensor<128xf32>> -> tensor<128xf32>
%2209 = util.global.load.indirect %1087 : !util.ptr<tensor<128xf32>> -> tensor<128xf32>
%2210 = util.global.load.indirect %1088 : !util.ptr<tensor<512x128xf32>> -> tensor<512x128xf32>
%2211 = util.global.load.indirect %1089 : !util.ptr<tensor<512xf32>> -> tensor<512xf32>
%2212 = util.global.load.indirect %1090 : !util.ptr<tensor<128x512xf32>> -> tensor<128x512xf32>
%2213 = util.global.load.indirect %1091 : !util.ptr<tensor<128xf32>> -> tensor<128xf32>
%2214 = util.global.load.indirect %1092 : !util.ptr<tensor<128xf32>> -> tensor<128xf32>
%2215 = util.global.load.indirect %1093 : !util.ptr<tensor<128xf32>> -> tensor<128xf32>
%2216 = util.global.load.indirect %1094 : !util.ptr<tensor<512x128xf32>> -> tensor<512x128xf32>
%2217 = util.global.load.indirect %1095 : !util.ptr<tensor<512xf32>> -> tensor<512xf32>
%2218 = util.global.load.indirect %1096 : !util.ptr<tensor<128x512xf32>> -> tensor<128x512xf32>
%2219 = util.global.load.indirect %1097 : !util.ptr<tensor<128xf32>> -> tensor<128xf32>
%2220 = util.global.load.indirect %1098 : !util.ptr<tensor<128xf32>> -> tensor<128xf32>
%2221 = util.global.load.indirect %1099 : !util.ptr<tensor<128xf32>> -> tensor<128xf32>
%2222 = util.global.load.indirect %1100 : !util.ptr<tensor<512x128xf32>> -> tensor<512x128xf32>
%2223 = util.global.load.indirect %1101 : !util.ptr<tensor<512xf32>> -> tensor<512xf32>
%2224 = util.global.load.indirect %1102 : !util.ptr<tensor<128x512xf32>> -> tensor<128x512xf32>
%2225 = util.global.load.indirect %1103 : !util.ptr<tensor<128xf32>> -> tensor<128xf32>
%2226 = util.global.load.indirect %1104 : !util.ptr<tensor<128xf32>> -> tensor<128xf32>
%2227 = util.global.load.indirect %1105 : !util.ptr<tensor<512xf32>> -> tensor<512xf32>
%2228 = util.global.load.indirect %1106 : !util.ptr<tensor<512xf32>> -> tensor<512xf32>
%2229 = util.global.load.indirect %1107 : !util.ptr<tensor<512xf32>> -> tensor<512xf32>
%2230 = util.global.load.indirect %1108 : !util.ptr<tensor<128x512xf32>> -> tensor<128x512xf32>
%2231 = util.global.load.indirect %1109 : !util.ptr<tensor<128xf32>> -> tensor<128xf32>
%2232 = util.global.load.indirect %1110 : !util.ptr<tensor<512x128xf32>> -> tensor<512x128xf32>
%2233 = util.global.load.indirect %1111 : !util.ptr<tensor<2xf32>> -> tensor<2xf32>
%2234 = util.global.load.indirect %1112 : !util.ptr<tensor<2x512xf32>> -> tensor<2x512xf32>
%2235 = "mhlo.reshape"(%arg1) : (tensor<1x384xi32>) -> tensor<1x384x1xi32>
%2236 = "mhlo.torch_index_select"(%1128, %2235) {batch_dims = 0 : i64, dim = 0 : i64} : (tensor<30522x128xf32>, tensor<1x384x1xi32>) -> tensor<1x384x1x128xf32>
%2237 = "mhlo.reshape"(%2236) : (tensor<1x384x1x128xf32>) -> tensor<1x384x128xf32>
%2238 = "mhlo.slice"(%2237) {limit_indices = dense<[1, 384, 128]> : tensor<3xi64>, start_indices = dense<[0, 1, 0]> : tensor<3xi64>, strides = dense<1> : tensor<3xi64>} : (tensor<1x384x128xf32>) -> tensor<1x383x128xf32>
%2239 = "mhlo.pad"(%2238, %1118) {edge_padding_high = dense<[0, 1, 0]> : tensor<3xi64>, edge_padding_low = dense<0> : tensor<3xi64>, interior_padding = dense<0> : tensor<3xi64>} : (tensor<1x383x128xf32>, tensor<f32>) -> tensor<1x384x128xf32>
%2240 = "mhlo.slice"(%2237) {limit_indices = dense<[1, 383, 128]> : tensor<3xi64>, start_indices = dense<0> : tensor<3xi64>, strides = dense<1> : tensor<3xi64>} : (tensor<1x384x128xf32>) -> tensor<1x383x128xf32>
%2241 = "mhlo.pad"(%2240, %1118) {edge_padding_high = dense<0> : tensor<3xi64>, edge_padding_low = dense<[0, 1, 0]> : tensor<3xi64>, interior_padding = dense<0> : tensor<3xi64>} : (tensor<1x383x128xf32>, tensor<f32>) -> tensor<1x384x128xf32>
%2242 = "mhlo.concatenate"(%2239, %2237, %2241) {dimension = 2 : i64} : (tensor<1x384x128xf32>, tensor<1x384x128xf32>, tensor<1x384x128xf32>) -> tensor<1x384x384xf32>
%2243 = "mhlo.reshape"(%2242) : (tensor<1x384x384xf32>) -> tensor<384x384xf32>
%2244 = "mhlo.dot"(%2243, %1123) : (tensor<384x384xf32>, tensor<384x512xf32>) -> tensor<384x512xf32>
%2245 = "mhlo.broadcast_in_dim"(%1122) {broadcast_dimensions = dense<1> : tensor<1xi64>} : (tensor<512xf32>) -> tensor<384x512xf32>
%2246 = mhlo.add %2244, %2245 : tensor<384x512xf32>
%2247 = "mhlo.reshape"(%2246) : (tensor<384x512xf32>) -> tensor<1x384x512xf32>
%2248 = "mhlo.convert"(%arg0) : (tensor<1x384xi32>) -> tensor<1x384xf32>
%2249 = "mhlo.reshape"(%2248) : (tensor<1x384xf32>) -> tensor<1x1x384xf32>
%2250 = "mhlo.broadcast_in_dim"(%2249) {broadcast_dimensions = dense<[0, 1, 2]> : tensor<3xi64>} : (tensor<1x1x384xf32>) -> tensor<1x384x384xf32>
%2251 = mhlo.multiply %2250, %1116 : tensor<1x384x384xf32>
%2252 = "mhlo.reshape"(%2251) : (tensor<1x384x384xf32>) -> tensor<1x1x384x384xf32>
%2253 = mhlo.multiply %2252, %1115 : tensor<1x1x384x384xf32>
%2254 = mhlo.add %2253, %1113 : tensor<1x1x384x384xf32>
%2255 = "mhlo.torch_index_select"(%1127, %arg2) {batch_dims = 0 : i64, dim = 0 : i64} : (tensor<2x512xf32>, tensor<1x384xi32>) -> tensor<1x384x512xf32>
%2256 = mhlo.add %2247, %2255 : tensor<1x384x512xf32>
%2257 = mhlo.add %2256, %1126 : tensor<1x384x512xf32>
%2258 = "mhlo.broadcast_in_dim"(%1121) {broadcast_dimensions = dense<2> : tensor<1xi64>} : (tensor<512xf32>) -> tensor<1x384x512xf32>
%2259 = mhlo.multiply %2257, %2258 : tensor<1x384x512xf32>
%2260 = "mhlo.broadcast_in_dim"(%1120) {broadcast_dimensions = dense<2> : tensor<1xi64>} : (tensor<512xf32>) -> tensor<1x384x512xf32>
%2261 = mhlo.add %2259, %2260 : tensor<1x384x512xf32>
%2262 = "mhlo.reshape"(%2261) : (tensor<1x384x512xf32>) -> tensor<384x512xf32>
%2263 = "mhlo.dot"(%2262, %1138) : (tensor<384x512xf32>, tensor<512x128xf32>) -> tensor<384x128xf32>
%2264 = "mhlo.broadcast_in_dim"(%1137) {broadcast_dimensions = dense<1> : tensor<1xi64>} : (tensor<128xf32>) -> tensor<384x128xf32>
%2265 = mhlo.add %2263, %2264 : tensor<384x128xf32>
%2266 = "mhlo.reshape"(%2265) : (tensor<384x128xf32>) -> tensor<1x384x4x32xf32>
%2267 = "mhlo.transpose"(%2266) {permutation = dense<[0, 2, 1, 3]> : tensor<4xi64>} : (tensor<1x384x4x32xf32>) -> tensor<1x4x384x32xf32>
%2268 = "mhlo.dot"(%2262, %1142) : (tensor<384x512xf32>, tensor<512x128xf32>) -> tensor<384x128xf32>
%2269 = "mhlo.reshape"(%2268) : (tensor<384x128xf32>) -> tensor<1x384x128xf32>
%2270 = "mhlo.broadcast_in_dim"(%1141) {broadcast_dimensions = dense<2> : tensor<1xi64>} : (tensor<128xf32>) -> tensor<1x384x128xf32>
%2271 = mhlo.add %2269, %2270 : tensor<1x384x128xf32>
%2272 = "mhlo.broadcast_in_dim"(%1140) {broadcast_dimensions = dense<2> : tensor<1xi64>} : (tensor<128xf32>) -> tensor<1x384x128xf32>
%2273 = mhlo.multiply %2271, %2272 : tensor<1x384x128xf32>
%2274 = "mhlo.broadcast_in_dim"(%1139) {broadcast_dimensions = dense<2> : tensor<1xi64>} : (tensor<128xf32>) -> tensor<1x384x128xf32>
%2275 = mhlo.add %2273, %2274 : tensor<1x384x128xf32>
%2276 = "mhlo.reshape"(%2275) : (tensor<1x384x128xf32>) -> tensor<384x128xf32>
%2277 = "mhlo.dot"(%2276, %1134) : (tensor<384x128xf32>, tensor<128x128xf32>) -> tensor<384x128xf32>
%2278 = "mhlo.broadcast_in_dim"(%1133) {broadcast_dimensions = dense<1> : tensor<1xi64>} : (tensor<128xf32>) -> tensor<384x128xf32>
%2279 = mhlo.add %2277, %2278 : tensor<384x128xf32>
%2280 = "mhlo.reshape"(%2279) : (tensor<384x128xf32>) -> tensor<1x384x4x32xf32>
%2281 = "mhlo.transpose"(%2280) {permutation = dense<[0, 2, 1, 3]> : tensor<4xi64>} : (tensor<1x384x4x32xf32>) -> tensor<1x4x384x32xf32>
%2282 = "mhlo.dot"(%2276, %1136) : (tensor<384x128xf32>, tensor<128x128xf32>) -> tensor<384x128xf32>
%2283 = "mhlo.broadcast_in_dim"(%1135) {broadcast_dimensions = dense<1> : tensor<1xi64>} : (tensor<128xf32>) -> tensor<384x128xf32>
%2284 = mhlo.add %2282, %2283 : tensor<384x128xf32>
%2285 = "mhlo.reshape"(%2284) : (tensor<384x128xf32>) -> tensor<1x384x4x32xf32>
%2286 = "mhlo.transpose"(%2285) {permutation = dense<[0, 2, 1, 3]> : tensor<4xi64>} : (tensor<1x384x4x32xf32>) -> tensor<1x4x384x32xf32>
%2287 = "mhlo.dot_general"(%2286, %2281) {dot_dimension_numbers = #mhlo.dot<lhs_batching_dimensions = [0, 1], lhs_contracting_dimensions = [3], rhs_batching_dimensions = [0, 1], rhs_contracting_dimensions = [3]>} : (tensor<1x4x384x32xf32>, tensor<1x4x384x32xf32>) -> tensor<1x4x384x384xf32>
%2288 = mhlo.multiply %2287, %1114 : tensor<1x4x384x384xf32>
%2289 = "mhlo.broadcast_in_dim"(%2254) {broadcast_dimensions = dense<[0, 1, 2, 3]> : tensor<4xi64>} : (tensor<1x1x384x384xf32>) -> tensor<1x4x384x384xf32>
%2290 = mhlo.add %2288, %2289 : tensor<1x4x384x384xf32>
%2291 = "mhlo.reduce"(%2290, %1117) ( {
^bb0(%arg3: tensor<f32>, %arg4: tensor<f32>): // no predecessors
%5393 = mhlo.maximum %arg3, %arg4 : tensor<f32>
"mhlo.return"(%5393) : (tensor<f32>) -> ()
}) {dimensions = dense<3> : tensor<1xi64>} : (tensor<1x4x384x384xf32>, tensor<f32>) -> tensor<1x4x384xf32>
%2292 = "mhlo.broadcast_in_dim"(%2291) {broadcast_dimensions = dense<[0, 1, 2]> : tensor<3xi64>} : (tensor<1x4x384xf32>) -> tensor<1x4x384x384xf32>
%2293 = mhlo.subtract %2290, %2292 : tensor<1x4x384x384xf32>
%2294 = "mhlo.exponential"(%2293) : (tensor<1x4x384x384xf32>) -> tensor<1x4x384x384xf32>
%2295 = "mhlo.reduce"(%2294, %1118) ( {
^bb0(%arg3: tensor<f32>, %arg4: tensor<f32>): // no predecessors
%5393 = mhlo.add %arg3, %arg4 : tensor<f32>
"mhlo.return"(%5393) : (tensor<f32>) -> ()
}) {dimensions = dense<3> : tensor<1xi64>} : (tensor<1x4x384x384xf32>, tensor<f32>) -> tensor<1x4x384xf32>
%2296 = "mhlo.broadcast_in_dim"(%2295) {broadcast_dimensions = dense<[0, 1, 2]> : tensor<3xi64>} : (tensor<1x4x384xf32>) -> tensor<1x4x384x384xf32>
%2297 = mhlo.divide %2294, %2296 : tensor<1x4x384x384xf32>
%2298 = "mhlo.dot_general"(%2297, %2267) {dot_dimension_numbers = #mhlo.dot<lhs_batching_dimensions = [0, 1], lhs_contracting_dimensions = [3], rhs_batching_dimensions = [0, 1], rhs_contracting_dimensions = [2]>} : (tensor<1x4x384x384xf32>, tensor<1x4x384x32xf32>) -> tensor<1x4x384x32xf32>
%2299 = "mhlo.transpose"(%2298) {permutation = dense<[0, 2, 1, 3]> : tensor<4xi64>} : (tensor<1x4x384x32xf32>) -> tensor<1x384x4x32xf32>
%2300 = "mhlo.reshape"(%2299) : (tensor<1x384x4x32xf32>) -> tensor<384x128xf32>
%2301 = "mhlo.dot"(%2300, %1132) : (tensor<384x128xf32>, tensor<128x128xf32>) -> tensor<384x128xf32>
%2302 = "mhlo.broadcast_in_dim"(%1131) {broadcast_dimensions = dense<1> : tensor<1xi64>} : (tensor<128xf32>) -> tensor<384x128xf32>
%2303 = mhlo.add %2301, %2302 : tensor<384x128xf32>
%2304 = "mhlo.reshape"(%2303) : (tensor<384x128xf32>) -> tensor<1x384x128xf32>
%2305 = "mhlo.dot"(%2262, %1146) : (tensor<384x512xf32>, tensor<512x128xf32>) -> tensor<384x128xf32>
%2306 = "mhlo.broadcast_in_dim"(%1145) {broadcast_dimensions = dense<1> : tensor<1xi64>} : (tensor<128xf32>) -> tensor<384x128xf32>
%2307 = mhlo.add %2305, %2306 : tensor<384x128xf32>
%2308 = "mhlo.reshape"(%2307) : (tensor<384x128xf32>) -> tensor<1x384x128xf32>
%2309 = "mhlo.broadcast_in_dim"(%1144) {broadcast_dimensions = dense<2> : tensor<1xi64>} : (tensor<128xf32>) -> tensor<1x384x128xf32>
%2310 = mhlo.multiply %2308, %2309 : tensor<1x384x128xf32>
%2311 = "mhlo.broadcast_in_dim"(%1143) {broadcast_dimensions = dense<2> : tensor<1xi64>} : (tensor<128xf32>) -> tensor<1x384x128xf32>
%2312 = mhlo.add %2310, %2311 : tensor<1x384x128xf32>
%2313 = mhlo.add %2304, %2312 : tensor<1x384x128xf32>
%2314 = "mhlo.broadcast_in_dim"(%1130) {broadcast_dimensions = dense<2> : tensor<1xi64>} : (tensor<128xf32>) -> tensor<1x384x128xf32>
%2315 = mhlo.multiply %2313, %2314 : tensor<1x384x128xf32>
%2316 = "mhlo.broadcast_in_dim"(%1129) {broadcast_dimensions = dense<2> : tensor<1xi64>} : (tensor<128xf32>) -> tensor<1x384x128xf32>
%2317 = mhlo.add %2315, %2316 : tensor<1x384x128xf32>
%2318 = "mhlo.reshape"(%2317) : (tensor<1x384x128xf32>) -> tensor<384x128xf32>
%2319 = "mhlo.dot"(%2318, %1148) : (tensor<384x128xf32>, tensor<128x512xf32>) -> tensor<384x512xf32>
%2320 = "mhlo.broadcast_in_dim"(%1147) {broadcast_dimensions = dense<1> : tensor<1xi64>} : (tensor<512xf32>) -> tensor<384x512xf32>
%2321 = mhlo.add %2319, %2320 : tensor<384x512xf32>
%2322 = "mhlo.reshape"(%2321) : (tensor<384x512xf32>) -> tensor<1x384x512xf32>
%2323 = mhlo.maximum %2322, %1119 : tensor<1x384x512xf32>
%2324 = "mhlo.reshape"(%2323) : (tensor<1x384x512xf32>) -> tensor<384x512xf32>
%2325 = "mhlo.dot"(%2324, %1152) : (tensor<384x512xf32>, tensor<512x128xf32>) -> tensor<384x128xf32>
%2326 = "mhlo.broadcast_in_dim"(%1151) {broadcast_dimensions = dense<1> : tensor<1xi64>} : (tensor<128xf32>) -> tensor<384x128xf32>
%2327 = mhlo.add %2325, %2326 : tensor<384x128xf32>
%2328 = "mhlo.reshape"(%2327) : (tensor<384x128xf32>) -> tensor<1x384x128xf32>
%2329 = mhlo.add %2328, %2317 : tensor<1x384x128xf32>
%2330 = "mhlo.broadcast_in_dim"(%1150) {broadcast_dimensions = dense<2> : tensor<1xi64>} : (tensor<128xf32>) -> tensor<1x384x128xf32>
%2331 = mhlo.multiply %2329, %2330 : tensor<1x384x128xf32>
%2332 = "mhlo.broadcast_in_dim"(%1149) {broadcast_dimensions = dense<2> : tensor<1xi64>} : (tensor<128xf32>) -> tensor<1x384x128xf32>
%2333 = mhlo.add %2331, %2332 : tensor<1x384x128xf32>
%2334 = "mhlo.reshape"(%2333) : (tensor<1x384x128xf32>) -> tensor<384x128xf32>
%2335 = "mhlo.dot"(%2334, %1154) : (tensor<384x128xf32>, tensor<128x512xf32>) -> tensor<384x512xf32>
%2336 = "mhlo.broadcast_in_dim"(%1153) {broadcast_dimensions = dense<1> : tensor<1xi64>} : (tensor<512xf32>) -> tensor<384x512xf32>
%2337 = mhlo.add %2335, %2336 : tensor<384x512xf32>
%2338 = "mhlo.reshape"(%2337) : (tensor<384x512xf32>) -> tensor<1x384x512xf32>
%2339 = mhlo.maximum %2338, %1119 : tensor<1x384x512xf32>
%2340 = "mhlo.reshape"(%2339) : (tensor<1x384x512xf32>) -> tensor<384x512xf32>
%2341 = "mhlo.dot"(%2340, %1158) : (tensor<384x512xf32>, tensor<512x128xf32>) -> tensor<384x128xf32>
%2342 = "mhlo.broadcast_in_dim"(%1157) {broadcast_dimensions = dense<1> : tensor<1xi64>} : (tensor<128xf32>) -> tensor<384x128xf32>
%2343 = mhlo.add %2341, %2342 : tensor<384x128xf32>
%2344 = "mhlo.reshape"(%2343) : (tensor<384x128xf32>) -> tensor<1x384x128xf32>
%2345 = mhlo.add %2344, %2333 : tensor<1x384x128xf32>
%2346 = "mhlo.broadcast_in_dim"(%1156) {broadcast_dimensions = dense<2> : tensor<1xi64>} : (tensor<128xf32>) -> tensor<1x384x128xf32>
%2347 = mhlo.multiply %2345, %2346 : tensor<1x384x128xf32>
%2348 = "mhlo.broadcast_in_dim"(%1155) {broadcast_dimensions = dense<2> : tensor<1xi64>} : (tensor<128xf32>) -> tensor<1x384x128xf32>
%2349 = mhlo.add %2347, %2348 : tensor<1x384x128xf32>
%2350 = "mhlo.reshape"(%2349) : (tensor<1x384x128xf32>) -> tensor<384x128xf32>
%2351 = "mhlo.dot"(%2350, %1160) : (tensor<384x128xf32>, tensor<128x512xf32>) -> tensor<384x512xf32>
%2352 = "mhlo.broadcast_in_dim"(%1159) {broadcast_dimensions = dense<1> : tensor<1xi64>} : (tensor<512xf32>) -> tensor<384x512xf32>
%2353 = mhlo.add %2351, %2352 : tensor<384x512xf32>
%2354 = "mhlo.reshape"(%2353) : (tensor<384x512xf32>) -> tensor<1x384x512xf32>
%2355 = mhlo.maximum %2354, %1119 : tensor<1x384x512xf32>
%2356 = "mhlo.reshape"(%2355) : (tensor<1x384x512xf32>) -> tensor<384x512xf32>
%2357 = "mhlo.dot"(%2356, %1164) : (tensor<384x512xf32>, tensor<512x128xf32>) -> tensor<384x128xf32>
%2358 = "mhlo.broadcast_in_dim"(%1163) {broadcast_dimensions = dense<1> : tensor<1xi64>} : (tensor<128xf32>) -> tensor<384x128xf32>
%2359 = mhlo.add %2357, %2358 : tensor<384x128xf32>
%2360 = "mhlo.reshape"(%2359) : (tensor<384x128xf32>) -> tensor<1x384x128xf32>
%2361 = mhlo.add %2360, %2349 : tensor<1x384x128xf32>
%2362 = "mhlo.broadcast_in_dim"(%1162) {broadcast_dimensions = dense<2> : tensor<1xi64>} : (tensor<128xf32>) -> tensor<1x384x128xf32>
%2363 = mhlo.multiply %2361, %2362 : tensor<1x384x128xf32>
%2364 = "mhlo.broadcast_in_dim"(%1161) {broadcast_dimensions = dense<2> : tensor<1xi64>} : (tensor<128xf32>) -> tensor<1x384x128xf32>
%2365 = mhlo.add %2363, %2364 : tensor<1x384x128xf32>
%2366 = "mhlo.reshape"(%2365) : (tensor<1x384x128xf32>) -> tensor<384x128xf32>
%2367 = "mhlo.dot"(%2366, %1166) : (tensor<384x128xf32>, tensor<128x512xf32>) -> tensor<384x512xf32>
%2368 = "mhlo.broadcast_in_dim"(%1165) {broadcast_dimensions = dense<1> : tensor<1xi64>} : (tensor<512xf32>) -> tensor<384x512xf32>
%2369 = mhlo.add %2367, %2368 : tensor<384x512xf32>
%2370 = "mhlo.reshape"(%2369) : (tensor<384x512xf32>) -> tensor<1x384x512xf32>
%2371 = mhlo.maximum %2370, %1119 : tensor<1x384x512xf32>
%2372 = "mhlo.reshape"(%2371) : (tensor<1x384x512xf32>) -> tensor<384x512xf32>
%2373 = "mhlo.dot"(%2372, %1174) : (tensor<384x512xf32>, tensor<512x128xf32>) -> tensor<384x128xf32>
%2374 = "mhlo.broadcast_in_dim"(%1173) {broadcast_dimensions = dense<1> : tensor<1xi64>} : (tensor<128xf32>) -> tensor<384x128xf32>
%2375 = mhlo.add %2373, %2374 : tensor<384x128xf32>
%2376 = "mhlo.reshape"(%2375) : (tensor<384x128xf32>) -> tensor<1x384x128xf32>
%2377 = mhlo.add %2376, %2365 : tensor<1x384x128xf32>
%2378 = "mhlo.broadcast_in_dim"(%1168) {broadcast_dimensions = dense<2> : tensor<1xi64>} : (tensor<128xf32>) -> tensor<1x384x128xf32>
%2379 = mhlo.multiply %2377, %2378 : tensor<1x384x128xf32>
%2380 = "mhlo.broadcast_in_dim"(%1167) {broadcast_dimensions = dense<2> : tensor<1xi64>} : (tensor<128xf32>) -> tensor<1x384x128xf32>
%2381 = mhlo.add %2379, %2380 : tensor<1x384x128xf32>
%2382 = "mhlo.reshape"(%2381) : (tensor<1x384x128xf32>) -> tensor<384x128xf32>
%2383 = "mhlo.dot"(%2382, %1172) : (tensor<384x128xf32>, tensor<128x512xf32>) -> tensor<384x512xf32>
%2384 = "mhlo.broadcast_in_dim"(%1171) {broadcast_dimensions = dense<1> : tensor<1xi64>} : (tensor<512xf32>) -> tensor<384x512xf32>
%2385 = mhlo.add %2383, %2384 : tensor<384x512xf32>
%2386 = "mhlo.reshape"(%2385) : (tensor<384x512xf32>) -> tensor<1x384x512xf32>
%2387 = mhlo.add %2386, %2261 : tensor<1x384x512xf32>
%2388 = "mhlo.broadcast_in_dim"(%1170) {broadcast_dimensions = dense<2> : tensor<1xi64>} : (tensor<512xf32>) -> tensor<1x384x512xf32>
%2389 = mhlo.multiply %2387, %2388 : tensor<1x384x512xf32>
%2390 = "mhlo.broadcast_in_dim"(%1169) {broadcast_dimensions = dense<2> : tensor<1xi64>} : (tensor<512xf32>) -> tensor<1x384x512xf32>
%2391 = mhlo.add %2389, %2390 : tensor<1x384x512xf32>
%2392 = "mhlo.reshape"(%2391) : (tensor<1x384x512xf32>) -> tensor<384x512xf32>
%2393 = "mhlo.dot"(%2392, %1184) : (tensor<384x512xf32>, tensor<512x128xf32>) -> tensor<384x128xf32>
%2394 = "mhlo.broadcast_in_dim"(%1183) {broadcast_dimensions = dense<1> : tensor<1xi64>} : (tensor<128xf32>) -> tensor<384x128xf32>
%2395 = mhlo.add %2393, %2394 : tensor<384x128xf32>
%2396 = "mhlo.reshape"(%2395) : (tensor<384x128xf32>) -> tensor<1x384x4x32xf32>
%2397 = "mhlo.transpose"(%2396) {permutation = dense<[0, 2, 1, 3]> : tensor<4xi64>} : (tensor<1x384x4x32xf32>) -> tensor<1x4x384x32xf32>
%2398 = "mhlo.dot"(%2392, %1188) : (tensor<384x512xf32>, tensor<512x128xf32>) -> tensor<384x128xf32>
%2399 = "mhlo.reshape"(%2398) : (tensor<384x128xf32>) -> tensor<1x384x128xf32>
%2400 = "mhlo.broadcast_in_dim"(%1187) {broadcast_dimensions = dense<2> : tensor<1xi64>} : (tensor<128xf32>) -> tensor<1x384x128xf32>
%2401 = mhlo.add %2399, %2400 : tensor<1x384x128xf32>
%2402 = "mhlo.broadcast_in_dim"(%1186) {broadcast_dimensions = dense<2> : tensor<1xi64>} : (tensor<128xf32>) -> tensor<1x384x128xf32>
%2403 = mhlo.multiply %2401, %2402 : tensor<1x384x128xf32>
%2404 = "mhlo.broadcast_in_dim"(%1185) {broadcast_dimensions = dense<2> : tensor<1xi64>} : (tensor<128xf32>) -> tensor<1x384x128xf32>
%2405 = mhlo.add %2403, %2404 : tensor<1x384x128xf32>
%2406 = "mhlo.reshape"(%2405) : (tensor<1x384x128xf32>) -> tensor<384x128xf32>
%2407 = "mhlo.dot"(%2406, %1180) : (tensor<384x128xf32>, tensor<128x128xf32>) -> tensor<384x128xf32>
%2408 = "mhlo.broadcast_in_dim"(%1179) {broadcast_dimensions = dense<1> : tensor<1xi64>} : (tensor<128xf32>) -> tensor<384x128xf32>
%2409 = mhlo.add %2407, %2408 : tensor<384x128xf32>
%2410 = "mhlo.reshape"(%2409) : (tensor<384x128xf32>) -> tensor<1x384x4x32xf32>
%2411 = "mhlo.transpose"(%2410) {permutation = dense<[0, 2, 1, 3]> : tensor<4xi64>} : (tensor<1x384x4x32xf32>) -> tensor<1x4x384x32xf32>
%2412 = "mhlo.dot"(%2406, %1182) : (tensor<384x128xf32>, tensor<128x128xf32>) -> tensor<384x128xf32>
%2413 = "mhlo.broadcast_in_dim"(%1181) {broadcast_dimensions = dense<1> : tensor<1xi64>} : (tensor<128xf32>) -> tensor<384x128xf32>
%2414 = mhlo.add %2412, %2413 : tensor<384x128xf32>
%2415 = "mhlo.reshape"(%2414) : (tensor<384x128xf32>) -> tensor<1x384x4x32xf32>
%2416 = "mhlo.transpose"(%2415) {permutation = dense<[0, 2, 1, 3]> : tensor<4xi64>} : (tensor<1x384x4x32xf32>) -> tensor<1x4x384x32xf32>
%2417 = "mhlo.dot_general"(%2416, %2411) {dot_dimension_numbers = #mhlo.dot<lhs_batching_dimensions = [0, 1], lhs_contracting_dimensions = [3], rhs_batching_dimensions = [0, 1], rhs_contracting_dimensions = [3]>} : (tensor<1x4x384x32xf32>, tensor<1x4x384x32xf32>) -> tensor<1x4x384x384xf32>
%2418 = mhlo.multiply %2417, %1114 : tensor<1x4x384x384xf32>
%2419 = "mhlo.broadcast_in_dim"(%2254) {broadcast_dimensions = dense<[0, 1, 2, 3]> : tensor<4xi64>} : (tensor<1x1x384x384xf32>) -> tensor<1x4x384x384xf32>
%2420 = mhlo.add %2418, %2419 : tensor<1x4x384x384xf32>
%2421 = "mhlo.reduce"(%2420, %1117) ( {
^bb0(%arg3: tensor<f32>, %arg4: tensor<f32>): // no predecessors
%5393 = mhlo.maximum %arg3, %arg4 : tensor<f32>
"mhlo.return"(%5393) : (tensor<f32>) -> ()
}) {dimensions = dense<3> : tensor<1xi64>} : (tensor<1x4x384x384xf32>, tensor<f32>) -> tensor<1x4x384xf32>
%2422 = "mhlo.broadcast_in_dim"(%2421) {broadcast_dimensions = dense<[0, 1, 2]> : tensor<3xi64>} : (tensor<1x4x384xf32>) -> tensor<1x4x384x384xf32>
%2423 = mhlo.subtract %2420, %2422 : tensor<1x4x384x384xf32>
%2424 = "mhlo.exponential"(%2423) : (tensor<1x4x384x384xf32>) -> tensor<1x4x384x384xf32>
%2425 = "mhlo.reduce"(%2424, %1118) ( {
^bb0(%arg3: tensor<f32>, %arg4: tensor<f32>): // no predecessors
%5393 = mhlo.add %arg3, %arg4 : tensor<f32>
"mhlo.return"(%5393) : (tensor<f32>) -> ()
}) {dimensions = dense<3> : tensor<1xi64>} : (tensor<1x4x384x384xf32>, tensor<f32>) -> tensor<1x4x384xf32>
%2426 = "mhlo.broadcast_in_dim"(%2425) {broadcast_dimensions = dense<[0, 1, 2]> : tensor<3xi64>} : (tensor<1x4x384xf32>) -> tensor<1x4x384x384xf32>
%2427 = mhlo.divide %2424, %2426 : tensor<1x4x384x384xf32>
%2428 = "mhlo.dot_general"(%2427, %2397) {dot_dimension_numbers = #mhlo.dot<lhs_batching_dimensions = [0, 1], lhs_contracting_dimensions = [3], rhs_batching_dimensions = [0, 1], rhs_contracting_dimensions = [2]>} : (tensor<1x4x384x384xf32>, tensor<1x4x384x32xf32>) -> tensor<1x4x384x32xf32>
%2429 = "mhlo.transpose"(%2428) {permutation = dense<[0, 2, 1, 3]> : tensor<4xi64>} : (tensor<1x4x384x32xf32>) -> tensor<1x384x4x32xf32>
%2430 = "mhlo.reshape"(%2429) : (tensor<1x384x4x32xf32>) -> tensor<384x128xf32>
%2431 = "mhlo.dot"(%2430, %1178) : (tensor<384x128xf32>, tensor<128x128xf32>) -> tensor<384x128xf32>
%2432 = "mhlo.broadcast_in_dim"(%1177) {broadcast_dimensions = dense<1> : tensor<1xi64>} : (tensor<128xf32>) -> tensor<384x128xf32>
%2433 = mhlo.add %2431, %2432 : tensor<384x128xf32>
%2434 = "mhlo.reshape"(%2433) : (tensor<384x128xf32>) -> tensor<1x384x128xf32>
%2435 = "mhlo.dot"(%2392, %1192) : (tensor<384x512xf32>, tensor<512x128xf32>) -> tensor<384x128xf32>
%2436 = "mhlo.broadcast_in_dim"(%1191) {broadcast_dimensions = dense<1> : tensor<1xi64>} : (tensor<128xf32>) -> tensor<384x128xf32>
%2437 = mhlo.add %2435, %2436 : tensor<384x128xf32>
%2438 = "mhlo.reshape"(%2437) : (tensor<384x128xf32>) -> tensor<1x384x128xf32>
%2439 = "mhlo.broadcast_in_dim"(%1190) {broadcast_dimensions = dense<2> : tensor<1xi64>} : (tensor<128xf32>) -> tensor<1x384x128xf32>
%2440 = mhlo.multiply %2438, %2439 : tensor<1x384x128xf32>
%2441 = "mhlo.broadcast_in_dim"(%1189) {broadcast_dimensions = dense<2> : tensor<1xi64>} : (tensor<128xf32>) -> tensor<1x384x128xf32>
%2442 = mhlo.add %2440, %2441 : tensor<1x384x128xf32>
%2443 = mhlo.add %2434, %2442 : tensor<1x384x128xf32>
%2444 = "mhlo.broadcast_in_dim"(%1176) {broadcast_dimensions = dense<2> : tensor<1xi64>} : (tensor<128xf32>) -> tensor<1x384x128xf32>
%2445 = mhlo.multiply %2443, %2444 : tensor<1x384x128xf32>
%2446 = "mhlo.broadcast_in_dim"(%1175) {broadcast_dimensions = dense<2> : tensor<1xi64>} : (tensor<128xf32>) -> tensor<1x384x128xf32>
%2447 = mhlo.add %2445, %2446 : tensor<1x384x128xf32>
%2448 = "mhlo.reshape"(%2447) : (tensor<1x384x128xf32>) -> tensor<384x128xf32>
%2449 = "mhlo.dot"(%2448, %1194) : (tensor<384x128xf32>, tensor<128x512xf32>) -> tensor<384x512xf32>
%2450 = "mhlo.broadcast_in_dim"(%1193) {broadcast_dimensions = dense<1> : tensor<1xi64>} : (tensor<512xf32>) -> tensor<384x512xf32>
%2451 = mhlo.add %2449, %2450 : tensor<384x512xf32>
%2452 = "mhlo.reshape"(%2451) : (tensor<384x512xf32>) -> tensor<1x384x512xf32>
%2453 = mhlo.maximum %2452, %1119 : tensor<1x384x512xf32>
%2454 = "mhlo.reshape"(%2453) : (tensor<1x384x512xf32>) -> tensor<384x512xf32>
%2455 = "mhlo.dot"(%2454, %1198) : (tensor<384x512xf32>, tensor<512x128xf32>) -> tensor<384x128xf32>
%2456 = "mhlo.broadcast_in_dim"(%1197) {broadcast_dimensions = dense<1> : tensor<1xi64>} : (tensor<128xf32>) -> tensor<384x128xf32>
%2457 = mhlo.add %2455, %2456 : tensor<384x128xf32>
%2458 = "mhlo.reshape"(%2457) : (tensor<384x128xf32>) -> tensor<1x384x128xf32>
%2459 = mhlo.add %2458, %2447 : tensor<1x384x128xf32>
%2460 = "mhlo.broadcast_in_dim"(%1196) {broadcast_dimensions = dense<2> : tensor<1xi64>} : (tensor<128xf32>) -> tensor<1x384x128xf32>
%2461 = mhlo.multiply %2459, %2460 : tensor<1x384x128xf32>
%2462 = "mhlo.broadcast_in_dim"(%1195) {broadcast_dimensions = dense<2> : tensor<1xi64>} : (tensor<128xf32>) -> tensor<1x384x128xf32>
%2463 = mhlo.add %2461, %2462 : tensor<1x384x128xf32>
%2464 = "mhlo.reshape"(%2463) : (tensor<1x384x128xf32>) -> tensor<384x128xf32>
%2465 = "mhlo.dot"(%2464, %1200) : (tensor<384x128xf32>, tensor<128x512xf32>) -> tensor<384x512xf32>
%2466 = "mhlo.broadcast_in_dim"(%1199) {broadcast_dimensions = dense<1> : tensor<1xi64>} : (tensor<512xf32>) -> tensor<384x512xf32>
%2467 = mhlo.add %2465, %2466 : tensor<384x512xf32>
%2468 = "mhlo.reshape"(%2467) : (tensor<384x512xf32>) -> tensor<1x384x512xf32>
%2469 = mhlo.maximum %2468, %1119 : tensor<1x384x512xf32>
%2470 = "mhlo.reshape"(%2469) : (tensor<1x384x512xf32>) -> tensor<384x512xf32>
%2471 = "mhlo.dot"(%2470, %1204) : (tensor<384x512xf32>, tensor<512x128xf32>) -> tensor<384x128xf32>
%2472 = "mhlo.broadcast_in_dim"(%1203) {broadcast_dimensions = dense<1> : tensor<1xi64>} : (tensor<128xf32>) -> tensor<384x128xf32>
%2473 = mhlo.add %2471, %2472 : tensor<384x128xf32>
%2474 = "mhlo.reshape"(%2473) : (tensor<384x128xf32>) -> tensor<1x384x128xf32>
%2475 = mhlo.add %2474, %2463 : tensor<1x384x128xf32>
%2476 = "mhlo.broadcast_in_dim"(%1202) {broadcast_dimensions = dense<2> : tensor<1xi64>} : (tensor<128xf32>) -> tensor<1x384x128xf32>
%2477 = mhlo.multiply %2475, %2476 : tensor<1x384x128xf32>
%2478 = "mhlo.broadcast_in_dim"(%1201) {broadcast_dimensions = dense<2> : tensor<1xi64>} : (tensor<128xf32>) -> tensor<1x384x128xf32>
%2479 = mhlo.add %2477, %2478 : tensor<1x384x128xf32>
%2480 = "mhlo.reshape"(%2479) : (tensor<1x384x128xf32>) -> tensor<384x128xf32>
%2481 = "mhlo.dot"(%2480, %1206) : (tensor<384x128xf32>, tensor<128x512xf32>) -> tensor<384x512xf32>
%2482 = "mhlo.broadcast_in_dim"(%1205) {broadcast_dimensions = dense<1> : tensor<1xi64>} : (tensor<512xf32>) -> tensor<384x512xf32>
%2483 = mhlo.add %2481, %2482 : tensor<384x512xf32>
%2484 = "mhlo.reshape"(%2483) : (tensor<384x512xf32>) -> tensor<1x384x512xf32>
%2485 = mhlo.maximum %2484, %1119 : tensor<1x384x512xf32>
%2486 = "mhlo.reshape"(%2485) : (tensor<1x384x512xf32>) -> tensor<384x512xf32>
%2487 = "mhlo.dot"(%2486, %1210) : (tensor<384x512xf32>, tensor<512x128xf32>) -> tensor<384x128xf32>
%2488 = "mhlo.broadcast_in_dim"(%1209) {broadcast_dimensions = dense<1> : tensor<1xi64>} : (tensor<128xf32>) -> tensor<384x128xf32>
%2489 = mhlo.add %2487, %2488 : tensor<384x128xf32>
%2490 = "mhlo.reshape"(%2489) : (tensor<384x128xf32>) -> tensor<1x384x128xf32>
%2491 = mhlo.add %2490, %2479 : tensor<1x384x128xf32>
%2492 = "mhlo.broadcast_in_dim"(%1208) {broadcast_dimensions = dense<2> : tensor<1xi64>} : (tensor<128xf32>) -> tensor<1x384x128xf32>
%2493 = mhlo.multiply %2491, %2492 : tensor<1x384x128xf32>
%2494 = "mhlo.broadcast_in_dim"(%1207) {broadcast_dimensions = dense<2> : tensor<1xi64>} : (tensor<128xf32>) -> tensor<1x384x128xf32>
%2495 = mhlo.add %2493, %2494 : tensor<1x384x128xf32>
%2496 = "mhlo.reshape"(%2495) : (tensor<1x384x128xf32>) -> tensor<384x128xf32>
%2497 = "mhlo.dot"(%2496, %1212) : (tensor<384x128xf32>, tensor<128x512xf32>) -> tensor<384x512xf32>
%2498 = "mhlo.broadcast_in_dim"(%1211) {broadcast_dimensions = dense<1> : tensor<1xi64>} : (tensor<512xf32>) -> tensor<384x512xf32>
%2499 = mhlo.add %2497, %2498 : tensor<384x512xf32>
%2500 = "mhlo.reshape"(%2499) : (tensor<384x512xf32>) -> tensor<1x384x512xf32>
%2501 = mhlo.maximum %2500, %1119 : tensor<1x384x512xf32>
%2502 = "mhlo.reshape"(%2501) : (tensor<1x384x512xf32>) -> tensor<384x512xf32>
%2503 = "mhlo.dot"(%2502, %1220) : (tensor<384x512xf32>, tensor<512x128xf32>) -> tensor<384x128xf32>
%2504 = "mhlo.broadcast_in_dim"(%1219) {broadcast_dimensions = dense<1> : tensor<1xi64>} : (tensor<128xf32>) -> tensor<384x128xf32>
%2505 = mhlo.add %2503, %2504 : tensor<384x128xf32>
%2506 = "mhlo.reshape"(%2505) : (tensor<384x128xf32>) -> tensor<1x384x128xf32>
%2507 = mhlo.add %2506, %2495 : tensor<1x384x128xf32>
%2508 = "mhlo.broadcast_in_dim"(%1214) {broadcast_dimensions = dense<2> : tensor<1xi64>} : (tensor<128xf32>) -> tensor<1x384x128xf32>
%2509 = mhlo.multiply %2507, %2508 : tensor<1x384x128xf32>
%2510 = "mhlo.broadcast_in_dim"(%1213) {broadcast_dimensions = dense<2> : tensor<1xi64>} : (tensor<128xf32>) -> tensor<1x384x128xf32>
%2511 = mhlo.add %2509, %2510 : tensor<1x384x128xf32>
%2512 = "mhlo.reshape"(%2511) : (tensor<1x384x128xf32>) -> tensor<384x128xf32>
%2513 = "mhlo.dot"(%2512, %1218) : (tensor<384x128xf32>, tensor<128x512xf32>) -> tensor<384x512xf32>
%2514 = "mhlo.broadcast_in_dim"(%1217) {broadcast_dimensions = dense<1> : tensor<1xi64>} : (tensor<512xf32>) -> tensor<384x512xf32>
%2515 = mhlo.add %2513, %2514 : tensor<384x512xf32>
%2516 = "mhlo.reshape"(%2515) : (tensor<384x512xf32>) -> tensor<1x384x512xf32>
%2517 = mhlo.add %2516, %2391 : tensor<1x384x512xf32>
%2518 = "mhlo.broadcast_in_dim"(%1216) {broadcast_dimensions = dense<2> : tensor<1xi64>} : (tensor<512xf32>) -> tensor<1x384x512xf32>
%2519 = mhlo.multiply %2517, %2518 : tensor<1x384x512xf32>
%2520 = "mhlo.broadcast_in_dim"(%1215) {broadcast_dimensions = dense<2> : tensor<1xi64>} : (tensor<512xf32>) -> tensor<1x384x512xf32>
%2521 = mhlo.add %2519, %2520 : tensor<1x384x512xf32>
%2522 = "mhlo.reshape"(%2521) : (tensor<1x384x512xf32>) -> tensor<384x512xf32>
%2523 = "mhlo.dot"(%2522, %1690) : (tensor<384x512xf32>, tensor<512x128xf32>) -> tensor<384x128xf32>
%2524 = "mhlo.broadcast_in_dim"(%1689) {broadcast_dimensions = dense<1> : tensor<1xi64>} : (tensor<128xf32>) -> tensor<384x128xf32>
%2525 = mhlo.add %2523, %2524 : tensor<384x128xf32>
%2526 = "mhlo.reshape"(%2525) : (tensor<384x128xf32>) -> tensor<1x384x4x32xf32>
%2527 = "mhlo.transpose"(%2526) {permutation = dense<[0, 2, 1, 3]> : tensor<4xi64>} : (tensor<1x384x4x32xf32>) -> tensor<1x4x384x32xf32>
%2528 = "mhlo.dot"(%2522, %1694) : (tensor<384x512xf32>, tensor<512x128xf32>) -> tensor<384x128xf32>
%2529 = "mhlo.reshape"(%2528) : (tensor<384x128xf32>) -> tensor<1x384x128xf32>
%2530 = "mhlo.broadcast_in_dim"(%1693) {broadcast_dimensions = dense<2> : tensor<1xi64>} : (tensor<128xf32>) -> tensor<1x384x128xf32>
%2531 = mhlo.add %2529, %2530 : tensor<1x384x128xf32>
%2532 = "mhlo.broadcast_in_dim"(%1692) {broadcast_dimensions = dense<2> : tensor<1xi64>} : (tensor<128xf32>) -> tensor<1x384x128xf32>
%2533 = mhlo.multiply %2531, %2532 : tensor<1x384x128xf32>
%2534 = "mhlo.broadcast_in_dim"(%1691) {broadcast_dimensions = dense<2> : tensor<1xi64>} : (tensor<128xf32>) -> tensor<1x384x128xf32>
%2535 = mhlo.add %2533, %2534 : tensor<1x384x128xf32>
%2536 = "mhlo.reshape"(%2535) : (tensor<1x384x128xf32>) -> tensor<384x128xf32>
%2537 = "mhlo.dot"(%2536, %1686) : (tensor<384x128xf32>, tensor<128x128xf32>) -> tensor<384x128xf32>
%2538 = "mhlo.broadcast_in_dim"(%1685) {broadcast_dimensions = dense<1> : tensor<1xi64>} : (tensor<128xf32>) -> tensor<384x128xf32>
%2539 = mhlo.add %2537, %2538 : tensor<384x128xf32>
%2540 = "mhlo.reshape"(%2539) : (tensor<384x128xf32>) -> tensor<1x384x4x32xf32>
%2541 = "mhlo.transpose"(%2540) {permutation = dense<[0, 2, 1, 3]> : tensor<4xi64>} : (tensor<1x384x4x32xf32>) -> tensor<1x4x384x32xf32>
%2542 = "mhlo.dot"(%2536, %1688) : (tensor<384x128xf32>, tensor<128x128xf32>) -> tensor<384x128xf32>
%2543 = "mhlo.broadcast_in_dim"(%1687) {broadcast_dimensions = dense<1> : tensor<1xi64>} : (tensor<128xf32>) -> tensor<384x128xf32>
%2544 = mhlo.add %2542, %2543 : tensor<384x128xf32>
%2545 = "mhlo.reshape"(%2544) : (tensor<384x128xf32>) -> tensor<1x384x4x32xf32>
%2546 = "mhlo.transpose"(%2545) {permutation = dense<[0, 2, 1, 3]> : tensor<4xi64>} : (tensor<1x384x4x32xf32>) -> tensor<1x4x384x32xf32>
%2547 = "mhlo.dot_general"(%2546, %2541) {dot_dimension_numbers = #mhlo.dot<lhs_batching_dimensions = [0, 1], lhs_contracting_dimensions = [3], rhs_batching_dimensions = [0, 1], rhs_contracting_dimensions = [3]>} : (tensor<1x4x384x32xf32>, tensor<1x4x384x32xf32>) -> tensor<1x4x384x384xf32>
%2548 = mhlo.multiply %2547, %1114 : tensor<1x4x384x384xf32>
%2549 = "mhlo.broadcast_in_dim"(%2254) {broadcast_dimensions = dense<[0, 1, 2, 3]> : tensor<4xi64>} : (tensor<1x1x384x384xf32>) -> tensor<1x4x384x384xf32>
%2550 = mhlo.add %2548, %2549 : tensor<1x4x384x384xf32>
%2551 = "mhlo.reduce"(%2550, %1117) ( {
^bb0(%arg3: tensor<f32>, %arg4: tensor<f32>): // no predecessors
%5393 = mhlo.maximum %arg3, %arg4 : tensor<f32>
"mhlo.return"(%5393) : (tensor<f32>) -> ()
}) {dimensions = dense<3> : tensor<1xi64>} : (tensor<1x4x384x384xf32>, tensor<f32>) -> tensor<1x4x384xf32>
%2552 = "mhlo.broadcast_in_dim"(%2551) {broadcast_dimensions = dense<[0, 1, 2]> : tensor<3xi64>} : (tensor<1x4x384xf32>) -> tensor<1x4x384x384xf32>
%2553 = mhlo.subtract %2550, %2552 : tensor<1x4x384x384xf32>
%2554 = "mhlo.exponential"(%2553) : (tensor<1x4x384x384xf32>) -> tensor<1x4x384x384xf32>
%2555 = "mhlo.reduce"(%2554, %1118) ( {
^bb0(%arg3: tensor<f32>, %arg4: tensor<f32>): // no predecessors
%5393 = mhlo.add %arg3, %arg4 : tensor<f32>
"mhlo.return"(%5393) : (tensor<f32>) -> ()
}) {dimensions = dense<3> : tensor<1xi64>} : (tensor<1x4x384x384xf32>, tensor<f32>) -> tensor<1x4x384xf32>
%2556 = "mhlo.broadcast_in_dim"(%2555) {broadcast_dimensions = dense<[0, 1, 2]> : tensor<3xi64>} : (tensor<1x4x384xf32>) -> tensor<1x4x384x384xf32>
%2557 = mhlo.divide %2554, %2556 : tensor<1x4x384x384xf32>
%2558 = "mhlo.dot_general"(%2557, %2527) {dot_dimension_numbers = #mhlo.dot<lhs_batching_dimensions = [0, 1], lhs_contracting_dimensions = [3], rhs_batching_dimensions = [0, 1], rhs_contracting_dimensions = [2]>} : (tensor<1x4x384x384xf32>, tensor<1x4x384x32xf32>) -> tensor<1x4x384x32xf32>
%2559 = "mhlo.transpose"(%2558) {permutation = dense<[0, 2, 1, 3]> : tensor<4xi64>} : (tensor<1x4x384x32xf32>) -> tensor<1x384x4x32xf32>
%2560 = "mhlo.reshape"(%2559) : (tensor<1x384x4x32xf32>) -> tensor<384x128xf32>
%2561 = "mhlo.dot"(%2560, %1684) : (tensor<384x128xf32>, tensor<128x128xf32>) -> tensor<384x128xf32>
%2562 = "mhlo.broadcast_in_dim"(%1683) {broadcast_dimensions = dense<1> : tensor<1xi64>} : (tensor<128xf32>) -> tensor<384x128xf32>
%2563 = mhlo.add %2561, %2562 : tensor<384x128xf32>
%2564 = "mhlo.reshape"(%2563) : (tensor<384x128xf32>) -> tensor<1x384x128xf32>
%2565 = "mhlo.dot"(%2522, %1698) : (tensor<384x512xf32>, tensor<512x128xf32>) -> tensor<384x128xf32>
%2566 = "mhlo.broadcast_in_dim"(%1697) {broadcast_dimensions = dense<1> : tensor<1xi64>} : (tensor<128xf32>) -> tensor<384x128xf32>
%2567 = mhlo.add %2565, %2566 : tensor<384x128xf32>
%2568 = "mhlo.reshape"(%2567) : (tensor<384x128xf32>) -> tensor<1x384x128xf32>
%2569 = "mhlo.broadcast_in_dim"(%1696) {broadcast_dimensions = dense<2> : tensor<1xi64>} : (tensor<128xf32>) -> tensor<1x384x128xf32>
%2570 = mhlo.multiply %2568, %2569 : tensor<1x384x128xf32>
%2571 = "mhlo.broadcast_in_dim"(%1695) {broadcast_dimensions = dense<2> : tensor<1xi64>} : (tensor<128xf32>) -> tensor<1x384x128xf32>
%2572 = mhlo.add %2570, %2571 : tensor<1x384x128xf32>
%2573 = mhlo.add %2564, %2572 : tensor<1x384x128xf32>
%2574 = "mhlo.broadcast_in_dim"(%1682) {broadcast_dimensions = dense<2> : tensor<1xi64>} : (tensor<128xf32>) -> tensor<1x384x128xf32>
%2575 = mhlo.multiply %2573, %2574 : tensor<1x384x128xf32>
%2576 = "mhlo.broadcast_in_dim"(%1681) {broadcast_dimensions = dense<2> : tensor<1xi64>} : (tensor<128xf32>) -> tensor<1x384x128xf32>
%2577 = mhlo.add %2575, %2576 : tensor<1x384x128xf32>
%2578 = "mhlo.reshape"(%2577) : (tensor<1x384x128xf32>) -> tensor<384x128xf32>
%2579 = "mhlo.dot"(%2578, %1700) : (tensor<384x128xf32>, tensor<128x512xf32>) -> tensor<384x512xf32>
%2580 = "mhlo.broadcast_in_dim"(%1699) {broadcast_dimensions = dense<1> : tensor<1xi64>} : (tensor<512xf32>) -> tensor<384x512xf32>
%2581 = mhlo.add %2579, %2580 : tensor<384x512xf32>
%2582 = "mhlo.reshape"(%2581) : (tensor<384x512xf32>) -> tensor<1x384x512xf32>
%2583 = mhlo.maximum %2582, %1119 : tensor<1x384x512xf32>
%2584 = "mhlo.reshape"(%2583) : (tensor<1x384x512xf32>) -> tensor<384x512xf32>
%2585 = "mhlo.dot"(%2584, %1704) : (tensor<384x512xf32>, tensor<512x128xf32>) -> tensor<384x128xf32>
%2586 = "mhlo.broadcast_in_dim"(%1703) {broadcast_dimensions = dense<1> : tensor<1xi64>} : (tensor<128xf32>) -> tensor<384x128xf32>
%2587 = mhlo.add %2585, %2586 : tensor<384x128xf32>
%2588 = "mhlo.reshape"(%2587) : (tensor<384x128xf32>) -> tensor<1x384x128xf32>
%2589 = mhlo.add %2588, %2577 : tensor<1x384x128xf32>
%2590 = "mhlo.broadcast_in_dim"(%1702) {broadcast_dimensions = dense<2> : tensor<1xi64>} : (tensor<128xf32>) -> tensor<1x384x128xf32>
%2591 = mhlo.multiply %2589, %2590 : tensor<1x384x128xf32>
%2592 = "mhlo.broadcast_in_dim"(%1701) {broadcast_dimensions = dense<2> : tensor<1xi64>} : (tensor<128xf32>) -> tensor<1x384x128xf32>
%2593 = mhlo.add %2591, %2592 : tensor<1x384x128xf32>
%2594 = "mhlo.reshape"(%2593) : (tensor<1x384x128xf32>) -> tensor<384x128xf32>
%2595 = "mhlo.dot"(%2594, %1706) : (tensor<384x128xf32>, tensor<128x512xf32>) -> tensor<384x512xf32>
%2596 = "mhlo.broadcast_in_dim"(%1705) {broadcast_dimensions = dense<1> : tensor<1xi64>} : (tensor<512xf32>) -> tensor<384x512xf32>
%2597 = mhlo.add %2595, %2596 : tensor<384x512xf32>
%2598 = "mhlo.reshape"(%2597) : (tensor<384x512xf32>) -> tensor<1x384x512xf32>
%2599 = mhlo.maximum %2598, %1119 : tensor<1x384x512xf32>
%2600 = "mhlo.reshape"(%2599) : (tensor<1x384x512xf32>) -> tensor<384x512xf32>
%2601 = "mhlo.dot"(%2600, %1710) : (tensor<384x512xf32>, tensor<512x128xf32>) -> tensor<384x128xf32>
%2602 = "mhlo.broadcast_in_dim"(%1709) {broadcast_dimensions = dense<1> : tensor<1xi64>} : (tensor<128xf32>) -> tensor<384x128xf32>
%2603 = mhlo.add %2601, %2602 : tensor<384x128xf32>
%2604 = "mhlo.reshape"(%2603) : (tensor<384x128xf32>) -> tensor<1x384x128xf32>
%2605 = mhlo.add %2604, %2593 : tensor<1x384x128xf32>
%2606 = "mhlo.broadcast_in_dim"(%1708) {broadcast_dimensions = dense<2> : tensor<1xi64>} : (tensor<128xf32>) -> tensor<1x384x128xf32>
%2607 = mhlo.multiply %2605, %2606 : tensor<1x384x128xf32>
%2608 = "mhlo.broadcast_in_dim"(%1707) {broadcast_dimensions = dense<2> : tensor<1xi64>} : (tensor<128xf32>) -> tensor<1x384x128xf32>
%2609 = mhlo.add %2607, %2608 : tensor<1x384x128xf32>
%2610 = "mhlo.reshape"(%2609) : (tensor<1x384x128xf32>) -> tensor<384x128xf32>
%2611 = "mhlo.dot"(%2610, %1712) : (tensor<384x128xf32>, tensor<128x512xf32>) -> tensor<384x512xf32>
%2612 = "mhlo.broadcast_in_dim"(%1711) {broadcast_dimensions = dense<1> : tensor<1xi64>} : (tensor<512xf32>) -> tensor<384x512xf32>
%2613 = mhlo.add %2611, %2612 : tensor<384x512xf32>
%2614 = "mhlo.reshape"(%2613) : (tensor<384x512xf32>) -> tensor<1x384x512xf32>
%2615 = mhlo.maximum %2614, %1119 : tensor<1x384x512xf32>
%2616 = "mhlo.reshape"(%2615) : (tensor<1x384x512xf32>) -> tensor<384x512xf32>
%2617 = "mhlo.dot"(%2616, %1716) : (tensor<384x512xf32>, tensor<512x128xf32>) -> tensor<384x128xf32>
%2618 = "mhlo.broadcast_in_dim"(%1715) {broadcast_dimensions = dense<1> : tensor<1xi64>} : (tensor<128xf32>) -> tensor<384x128xf32>
%2619 = mhlo.add %2617, %2618 : tensor<384x128xf32>
%2620 = "mhlo.reshape"(%2619) : (tensor<384x128xf32>) -> tensor<1x384x128xf32>
%2621 = mhlo.add %2620, %2609 : tensor<1x384x128xf32>
%2622 = "mhlo.broadcast_in_dim"(%1714) {broadcast_dimensions = dense<2> : tensor<1xi64>} : (tensor<128xf32>) -> tensor<1x384x128xf32>
%2623 = mhlo.multiply %2621, %2622 : tensor<1x384x128xf32>
%2624 = "mhlo.broadcast_in_dim"(%1713) {broadcast_dimensions = dense<2> : tensor<1xi64>} : (tensor<128xf32>) -> tensor<1x384x128xf32>
%2625 = mhlo.add %2623, %2624 : tensor<1x384x128xf32>
%2626 = "mhlo.reshape"(%2625) : (tensor<1x384x128xf32>) -> tensor<384x128xf32>
%2627 = "mhlo.dot"(%2626, %1718) : (tensor<384x128xf32>, tensor<128x512xf32>) -> tensor<384x512xf32>
%2628 = "mhlo.broadcast_in_dim"(%1717) {broadcast_dimensions = dense<1> : tensor<1xi64>} : (tensor<512xf32>) -> tensor<384x512xf32>
%2629 = mhlo.add %2627, %2628 : tensor<384x512xf32>
%2630 = "mhlo.reshape"(%2629) : (tensor<384x512xf32>) -> tensor<1x384x512xf32>
%2631 = mhlo.maximum %2630, %1119 : tensor<1x384x512xf32>
%2632 = "mhlo.reshape"(%2631) : (tensor<1x384x512xf32>) -> tensor<384x512xf32>
%2633 = "mhlo.dot"(%2632, %1726) : (tensor<384x512xf32>, tensor<512x128xf32>) -> tensor<384x128xf32>
%2634 = "mhlo.broadcast_in_dim"(%1725) {broadcast_dimensions = dense<1> : tensor<1xi64>} : (tensor<128xf32>) -> tensor<384x128xf32>
%2635 = mhlo.add %2633, %2634 : tensor<384x128xf32>
%2636 = "mhlo.reshape"(%2635) : (tensor<384x128xf32>) -> tensor<1x384x128xf32>
%2637 = mhlo.add %2636, %2625 : tensor<1x384x128xf32>
%2638 = "mhlo.broadcast_in_dim"(%1720) {broadcast_dimensions = dense<2> : tensor<1xi64>} : (tensor<128xf32>) -> tensor<1x384x128xf32>
%2639 = mhlo.multiply %2637, %2638 : tensor<1x384x128xf32>
%2640 = "mhlo.broadcast_in_dim"(%1719) {broadcast_dimensions = dense<2> : tensor<1xi64>} : (tensor<128xf32>) -> tensor<1x384x128xf32>
%2641 = mhlo.add %2639, %2640 : tensor<1x384x128xf32>
%2642 = "mhlo.reshape"(%2641) : (tensor<1x384x128xf32>) -> tensor<384x128xf32>
%2643 = "mhlo.dot"(%2642, %1724) : (tensor<384x128xf32>, tensor<128x512xf32>) -> tensor<384x512xf32>
%2644 = "mhlo.broadcast_in_dim"(%1723) {broadcast_dimensions = dense<1> : tensor<1xi64>} : (tensor<512xf32>) -> tensor<384x512xf32>
%2645 = mhlo.add %2643, %2644 : tensor<384x512xf32>
%2646 = "mhlo.reshape"(%2645) : (tensor<384x512xf32>) -> tensor<1x384x512xf32>
%2647 = mhlo.add %2646, %2521 : tensor<1x384x512xf32>
%2648 = "mhlo.broadcast_in_dim"(%1722) {broadcast_dimensions = dense<2> : tensor<1xi64>} : (tensor<512xf32>) -> tensor<1x384x512xf32>
%2649 = mhlo.multiply %2647, %2648 : tensor<1x384x512xf32>
%2650 = "mhlo.broadcast_in_dim"(%1721) {broadcast_dimensions = dense<2> : tensor<1xi64>} : (tensor<512xf32>) -> tensor<1x384x512xf32>
%2651 = mhlo.add %2649, %2650 : tensor<1x384x512xf32>
%2652 = "mhlo.reshape"(%2651) : (tensor<1x384x512xf32>) -> tensor<384x512xf32>
%2653 = "mhlo.dot"(%2652, %1920) : (tensor<384x512xf32>, tensor<512x128xf32>) -> tensor<384x128xf32>
%2654 = "mhlo.broadcast_in_dim"(%1919) {broadcast_dimensions = dense<1> : tensor<1xi64>} : (tensor<128xf32>) -> tensor<384x128xf32>
%2655 = mhlo.add %2653, %2654 : tensor<384x128xf32>
%2656 = "mhlo.reshape"(%2655) : (tensor<384x128xf32>) -> tensor<1x384x4x32xf32>
%2657 = "mhlo.transpose"(%2656) {permutation = dense<[0, 2, 1, 3]> : tensor<4xi64>} : (tensor<1x384x4x32xf32>) -> tensor<1x4x384x32xf32>
%2658 = "mhlo.dot"(%2652, %1924) : (tensor<384x512xf32>, tensor<512x128xf32>) -> tensor<384x128xf32>
%2659 = "mhlo.reshape"(%2658) : (tensor<384x128xf32>) -> tensor<1x384x128xf32>
%2660 = "mhlo.broadcast_in_dim"(%1923) {broadcast_dimensions = dense<2> : tensor<1xi64>} : (tensor<128xf32>) -> tensor<1x384x128xf32>
%2661 = mhlo.add %2659, %2660 : tensor<1x384x128xf32>
%2662 = "mhlo.broadcast_in_dim"(%1922) {broadcast_dimensions = dense<2> : tensor<1xi64>} : (tensor<128xf32>) -> tensor<1x384x128xf32>
%2663 = mhlo.multiply %2661, %2662 : tensor<1x384x128xf32>
%2664 = "mhlo.broadcast_in_dim"(%1921) {broadcast_dimensions = dense<2> : tensor<1xi64>} : (tensor<128xf32>) -> tensor<1x384x128xf32>
%2665 = mhlo.add %2663, %2664 : tensor<1x384x128xf32>
%2666 = "mhlo.reshape"(%2665) : (tensor<1x384x128xf32>) -> tensor<384x128xf32>
%2667 = "mhlo.dot"(%2666, %1916) : (tensor<384x128xf32>, tensor<128x128xf32>) -> tensor<384x128xf32>
%2668 = "mhlo.broadcast_in_dim"(%1915) {broadcast_dimensions = dense<1> : tensor<1xi64>} : (tensor<128xf32>) -> tensor<384x128xf32>
%2669 = mhlo.add %2667, %2668 : tensor<384x128xf32>
%2670 = "mhlo.reshape"(%2669) : (tensor<384x128xf32>) -> tensor<1x384x4x32xf32>
%2671 = "mhlo.transpose"(%2670) {permutation = dense<[0, 2, 1, 3]> : tensor<4xi64>} : (tensor<1x384x4x32xf32>) -> tensor<1x4x384x32xf32>
%2672 = "mhlo.dot"(%2666, %1918) : (tensor<384x128xf32>, tensor<128x128xf32>) -> tensor<384x128xf32>
%2673 = "mhlo.broadcast_in_dim"(%1917) {broadcast_dimensions = dense<1> : tensor<1xi64>} : (tensor<128xf32>) -> tensor<384x128xf32>
%2674 = mhlo.add %2672, %2673 : tensor<384x128xf32>
%2675 = "mhlo.reshape"(%2674) : (tensor<384x128xf32>) -> tensor<1x384x4x32xf32>
%2676 = "mhlo.transpose"(%2675) {permutation = dense<[0, 2, 1, 3]> : tensor<4xi64>} : (tensor<1x384x4x32xf32>) -> tensor<1x4x384x32xf32>
%2677 = "mhlo.dot_general"(%2676, %2671) {dot_dimension_numbers = #mhlo.dot<lhs_batching_dimensions = [0, 1], lhs_contracting_dimensions = [3], rhs_batching_dimensions = [0, 1], rhs_contracting_dimensions = [3]>} : (tensor<1x4x384x32xf32>, tensor<1x4x384x32xf32>) -> tensor<1x4x384x384xf32>
%2678 = mhlo.multiply %2677, %1114 : tensor<1x4x384x384xf32>
%2679 = "mhlo.broadcast_in_dim"(%2254) {broadcast_dimensions = dense<[0, 1, 2, 3]> : tensor<4xi64>} : (tensor<1x1x384x384xf32>) -> tensor<1x4x384x384xf32>
%2680 = mhlo.add %2678, %2679 : tensor<1x4x384x384xf32>
%2681 = "mhlo.reduce"(%2680, %1117) ( {
^bb0(%arg3: tensor<f32>, %arg4: tensor<f32>): // no predecessors
%5393 = mhlo.maximum %arg3, %arg4 : tensor<f32>
"mhlo.return"(%5393) : (tensor<f32>) -> ()
}) {dimensions = dense<3> : tensor<1xi64>} : (tensor<1x4x384x384xf32>, tensor<f32>) -> tensor<1x4x384xf32>
%2682 = "mhlo.broadcast_in_dim"(%2681) {broadcast_dimensions = dense<[0, 1, 2]> : tensor<3xi64>} : (tensor<1x4x384xf32>) -> tensor<1x4x384x384xf32>
%2683 = mhlo.subtract %2680, %2682 : tensor<1x4x384x384xf32>
%2684 = "mhlo.exponential"(%2683) : (tensor<1x4x384x384xf32>) -> tensor<1x4x384x384xf32>
%2685 = "mhlo.reduce"(%2684, %1118) ( {
^bb0(%arg3: tensor<f32>, %arg4: tensor<f32>): // no predecessors
%5393 = mhlo.add %arg3, %arg4 : tensor<f32>
"mhlo.return"(%5393) : (tensor<f32>) -> ()
}) {dimensions = dense<3> : tensor<1xi64>} : (tensor<1x4x384x384xf32>, tensor<f32>) -> tensor<1x4x384xf32>
%2686 = "mhlo.broadcast_in_dim"(%2685) {broadcast_dimensions = dense<[0, 1, 2]> : tensor<3xi64>} : (tensor<1x4x384xf32>) -> tensor<1x4x384x384xf32>
%2687 = mhlo.divide %2684, %2686 : tensor<1x4x384x384xf32>
%2688 = "mhlo.dot_general"(%2687, %2657) {dot_dimension_numbers = #mhlo.dot<lhs_batching_dimensions = [0, 1], lhs_contracting_dimensions = [3], rhs_batching_dimensions = [0, 1], rhs_contracting_dimensions = [2]>} : (tensor<1x4x384x384xf32>, tensor<1x4x384x32xf32>) -> tensor<1x4x384x32xf32>
%2689 = "mhlo.transpose"(%2688) {permutation = dense<[0, 2, 1, 3]> : tensor<4xi64>} : (tensor<1x4x384x32xf32>) -> tensor<1x384x4x32xf32>
%2690 = "mhlo.reshape"(%2689) : (tensor<1x384x4x32xf32>) -> tensor<384x128xf32>
%2691 = "mhlo.dot"(%2690, %1914) : (tensor<384x128xf32>, tensor<128x128xf32>) -> tensor<384x128xf32>
%2692 = "mhlo.broadcast_in_dim"(%1913) {broadcast_dimensions = dense<1> : tensor<1xi64>} : (tensor<128xf32>) -> tensor<384x128xf32>
%2693 = mhlo.add %2691, %2692 : tensor<384x128xf32>
%2694 = "mhlo.reshape"(%2693) : (tensor<384x128xf32>) -> tensor<1x384x128xf32>
%2695 = "mhlo.dot"(%2652, %1928) : (tensor<384x512xf32>, tensor<512x128xf32>) -> tensor<384x128xf32>
%2696 = "mhlo.broadcast_in_dim"(%1927) {broadcast_dimensions = dense<1> : tensor<1xi64>} : (tensor<128xf32>) -> tensor<384x128xf32>
%2697 = mhlo.add %2695, %2696 : tensor<384x128xf32>
%2698 = "mhlo.reshape"(%2697) : (tensor<384x128xf32>) -> tensor<1x384x128xf32>
%2699 = "mhlo.broadcast_in_dim"(%1926) {broadcast_dimensions = dense<2> : tensor<1xi64>} : (tensor<128xf32>) -> tensor<1x384x128xf32>
%2700 = mhlo.multiply %2698, %2699 : tensor<1x384x128xf32>
%2701 = "mhlo.broadcast_in_dim"(%1925) {broadcast_dimensions = dense<2> : tensor<1xi64>} : (tensor<128xf32>) -> tensor<1x384x128xf32>
%2702 = mhlo.add %2700, %2701 : tensor<1x384x128xf32>
%2703 = mhlo.add %2694, %2702 : tensor<1x384x128xf32>
%2704 = "mhlo.broadcast_in_dim"(%1912) {broadcast_dimensions = dense<2> : tensor<1xi64>} : (tensor<128xf32>) -> tensor<1x384x128xf32>
%2705 = mhlo.multiply %2703, %2704 : tensor<1x384x128xf32>
%2706 = "mhlo.broadcast_in_dim"(%1911) {broadcast_dimensions = dense<2> : tensor<1xi64>} : (tensor<128xf32>) -> tensor<1x384x128xf32>
%2707 = mhlo.add %2705, %2706 : tensor<1x384x128xf32>
%2708 = "mhlo.reshape"(%2707) : (tensor<1x384x128xf32>) -> tensor<384x128xf32>
%2709 = "mhlo.dot"(%2708, %1930) : (tensor<384x128xf32>, tensor<128x512xf32>) -> tensor<384x512xf32>
%2710 = "mhlo.broadcast_in_dim"(%1929) {broadcast_dimensions = dense<1> : tensor<1xi64>} : (tensor<512xf32>) -> tensor<384x512xf32>
%2711 = mhlo.add %2709, %2710 : tensor<384x512xf32>
%2712 = "mhlo.reshape"(%2711) : (tensor<384x512xf32>) -> tensor<1x384x512xf32>
%2713 = mhlo.maximum %2712, %1119 : tensor<1x384x512xf32>
%2714 = "mhlo.reshape"(%2713) : (tensor<1x384x512xf32>) -> tensor<384x512xf32>
%2715 = "mhlo.dot"(%2714, %1934) : (tensor<384x512xf32>, tensor<512x128xf32>) -> tensor<384x128xf32>
%2716 = "mhlo.broadcast_in_dim"(%1933) {broadcast_dimensions = dense<1> : tensor<1xi64>} : (tensor<128xf32>) -> tensor<384x128xf32>
%2717 = mhlo.add %2715, %2716 : tensor<384x128xf32>
%2718 = "mhlo.reshape"(%2717) : (tensor<384x128xf32>) -> tensor<1x384x128xf32>
%2719 = mhlo.add %2718, %2707 : tensor<1x384x128xf32>
%2720 = "mhlo.broadcast_in_dim"(%1932) {broadcast_dimensions = dense<2> : tensor<1xi64>} : (tensor<128xf32>) -> tensor<1x384x128xf32>
%2721 = mhlo.multiply %2719, %2720 : tensor<1x384x128xf32>
%2722 = "mhlo.broadcast_in_dim"(%1931) {broadcast_dimensions = dense<2> : tensor<1xi64>} : (tensor<128xf32>) -> tensor<1x384x128xf32>
%2723 = mhlo.add %2721, %2722 : tensor<1x384x128xf32>
%2724 = "mhlo.reshape"(%2723) : (tensor<1x384x128xf32>) -> tensor<384x128xf32>
%2725 = "mhlo.dot"(%2724, %1936) : (tensor<384x128xf32>, tensor<128x512xf32>) -> tensor<384x512xf32>
%2726 = "mhlo.broadcast_in_dim"(%1935) {broadcast_dimensions = dense<1> : tensor<1xi64>} : (tensor<512xf32>) -> tensor<384x512xf32>
%2727 = mhlo.add %2725, %2726 : tensor<384x512xf32>
%2728 = "mhlo.reshape"(%2727) : (tensor<384x512xf32>) -> tensor<1x384x512xf32>
%2729 = mhlo.maximum %2728, %1119 : tensor<1x384x512xf32>
%2730 = "mhlo.reshape"(%2729) : (tensor<1x384x512xf32>) -> tensor<384x512xf32>
%2731 = "mhlo.dot"(%2730, %1940) : (tensor<384x512xf32>, tensor<512x128xf32>) -> tensor<384x128xf32>
%2732 = "mhlo.broadcast_in_dim"(%1939) {broadcast_dimensions = dense<1> : tensor<1xi64>} : (tensor<128xf32>) -> tensor<384x128xf32>
%2733 = mhlo.add %2731, %2732 : tensor<384x128xf32>
%2734 = "mhlo.reshape"(%2733) : (tensor<384x128xf32>) -> tensor<1x384x128xf32>
%2735 = mhlo.add %2734, %2723 : tensor<1x384x128xf32>
%2736 = "mhlo.broadcast_in_dim"(%1938) {broadcast_dimensions = dense<2> : tensor<1xi64>} : (tensor<128xf32>) -> tensor<1x384x128xf32>
%2737 = mhlo.multiply %2735, %2736 : tensor<1x384x128xf32>
%2738 = "mhlo.broadcast_in_dim"(%1937) {broadcast_dimensions = dense<2> : tensor<1xi64>} : (tensor<128xf32>) -> tensor<1x384x128xf32>
%2739 = mhlo.add %2737, %2738 : tensor<1x384x128xf32>
%2740 = "mhlo.reshape"(%2739) : (tensor<1x384x128xf32>) -> tensor<384x128xf32>
%2741 = "mhlo.dot"(%2740, %1942) : (tensor<384x128xf32>, tensor<128x512xf32>) -> tensor<384x512xf32>
%2742 = "mhlo.broadcast_in_dim"(%1941) {broadcast_dimensions = dense<1> : tensor<1xi64>} : (tensor<512xf32>) -> tensor<384x512xf32>
%2743 = mhlo.add %2741, %2742 : tensor<384x512xf32>
%2744 = "mhlo.reshape"(%2743) : (tensor<384x512xf32>) -> tensor<1x384x512xf32>
%2745 = mhlo.maximum %2744, %1119 : tensor<1x384x512xf32>
%2746 = "mhlo.reshape"(%2745) : (tensor<1x384x512xf32>) -> tensor<384x512xf32>
%2747 = "mhlo.dot"(%2746, %1946) : (tensor<384x512xf32>, tensor<512x128xf32>) -> tensor<384x128xf32>
%2748 = "mhlo.broadcast_in_dim"(%1945) {broadcast_dimensions = dense<1> : tensor<1xi64>} : (tensor<128xf32>) -> tensor<384x128xf32>
%2749 = mhlo.add %2747, %2748 : tensor<384x128xf32>
%2750 = "mhlo.reshape"(%2749) : (tensor<384x128xf32>) -> tensor<1x384x128xf32>
%2751 = mhlo.add %2750, %2739 : tensor<1x384x128xf32>
%2752 = "mhlo.broadcast_in_dim"(%1944) {broadcast_dimensions = dense<2> : tensor<1xi64>} : (tensor<128xf32>) -> tensor<1x384x128xf32>
%2753 = mhlo.multiply %2751, %2752 : tensor<1x384x128xf32>
%2754 = "mhlo.broadcast_in_dim"(%1943) {broadcast_dimensions = dense<2> : tensor<1xi64>} : (tensor<128xf32>) -> tensor<1x384x128xf32>
%2755 = mhlo.add %2753, %2754 : tensor<1x384x128xf32>
%2756 = "mhlo.reshape"(%2755) : (tensor<1x384x128xf32>) -> tensor<384x128xf32>
%2757 = "mhlo.dot"(%2756, %1948) : (tensor<384x128xf32>, tensor<128x512xf32>) -> tensor<384x512xf32>
%2758 = "mhlo.broadcast_in_dim"(%1947) {broadcast_dimensions = dense<1> : tensor<1xi64>} : (tensor<512xf32>) -> tensor<384x512xf32>
%2759 = mhlo.add %2757, %2758 : tensor<384x512xf32>
%2760 = "mhlo.reshape"(%2759) : (tensor<384x512xf32>) -> tensor<1x384x512xf32>
%2761 = mhlo.maximum %2760, %1119 : tensor<1x384x512xf32>
%2762 = "mhlo.reshape"(%2761) : (tensor<1x384x512xf32>) -> tensor<384x512xf32>
%2763 = "mhlo.dot"(%2762, %1956) : (tensor<384x512xf32>, tensor<512x128xf32>) -> tensor<384x128xf32>
%2764 = "mhlo.broadcast_in_dim"(%1955) {broadcast_dimensions = dense<1> : tensor<1xi64>} : (tensor<128xf32>) -> tensor<384x128xf32>
%2765 = mhlo.add %2763, %2764 : tensor<384x128xf32>
%2766 = "mhlo.reshape"(%2765) : (tensor<384x128xf32>) -> tensor<1x384x128xf32>
%2767 = mhlo.add %2766, %2755 : tensor<1x384x128xf32>
%2768 = "mhlo.broadcast_in_dim"(%1950) {broadcast_dimensions = dense<2> : tensor<1xi64>} : (tensor<128xf32>) -> tensor<1x384x128xf32>
%2769 = mhlo.multiply %2767, %2768 : tensor<1x384x128xf32>
%2770 = "mhlo.broadcast_in_dim"(%1949) {broadcast_dimensions = dense<2> : tensor<1xi64>} : (tensor<128xf32>) -> tensor<1x384x128xf32>
%2771 = mhlo.add %2769, %2770 : tensor<1x384x128xf32>
%2772 = "mhlo.reshape"(%2771) : (tensor<1x384x128xf32>) -> tensor<384x128xf32>
%2773 = "mhlo.dot"(%2772, %1954) : (tensor<384x128xf32>, tensor<128x512xf32>) -> tensor<384x512xf32>
%2774 = "mhlo.broadcast_in_dim"(%1953) {broadcast_dimensions = dense<1> : tensor<1xi64>} : (tensor<512xf32>) -> tensor<384x512xf32>
%2775 = mhlo.add %2773, %2774 : tensor<384x512xf32>
%2776 = "mhlo.reshape"(%2775) : (tensor<384x512xf32>) -> tensor<1x384x512xf32>
%2777 = mhlo.add %2776, %2651 : tensor<1x384x512xf32>
%2778 = "mhlo.broadcast_in_dim"(%1952) {broadcast_dimensions = dense<2> : tensor<1xi64>} : (tensor<512xf32>) -> tensor<1x384x512xf32>
%2779 = mhlo.multiply %2777, %2778 : tensor<1x384x512xf32>
%2780 = "mhlo.broadcast_in_dim"(%1951) {broadcast_dimensions = dense<2> : tensor<1xi64>} : (tensor<512xf32>) -> tensor<1x384x512xf32>
%2781 = mhlo.add %2779, %2780 : tensor<1x384x512xf32>
%2782 = "mhlo.reshape"(%2781) : (tensor<1x384x512xf32>) -> tensor<384x512xf32>
%2783 = "mhlo.dot"(%2782, %1966) : (tensor<384x512xf32>, tensor<512x128xf32>) -> tensor<384x128xf32>
%2784 = "mhlo.broadcast_in_dim"(%1965) {broadcast_dimensions = dense<1> : tensor<1xi64>} : (tensor<128xf32>) -> tensor<384x128xf32>
%2785 = mhlo.add %2783, %2784 : tensor<384x128xf32>
%2786 = "mhlo.reshape"(%2785) : (tensor<384x128xf32>) -> tensor<1x384x4x32xf32>
%2787 = "mhlo.transpose"(%2786) {permutation = dense<[0, 2, 1, 3]> : tensor<4xi64>} : (tensor<1x384x4x32xf32>) -> tensor<1x4x384x32xf32>
%2788 = "mhlo.dot"(%2782, %1970) : (tensor<384x512xf32>, tensor<512x128xf32>) -> tensor<384x128xf32>
%2789 = "mhlo.reshape"(%2788) : (tensor<384x128xf32>) -> tensor<1x384x128xf32>
%2790 = "mhlo.broadcast_in_dim"(%1969) {broadcast_dimensions = dense<2> : tensor<1xi64>} : (tensor<128xf32>) -> tensor<1x384x128xf32>
%2791 = mhlo.add %2789, %2790 : tensor<1x384x128xf32>
%2792 = "mhlo.broadcast_in_dim"(%1968) {broadcast_dimensions = dense<2> : tensor<1xi64>} : (tensor<128xf32>) -> tensor<1x384x128xf32>
%2793 = mhlo.multiply %2791, %2792 : tensor<1x384x128xf32>
%2794 = "mhlo.broadcast_in_dim"(%1967) {broadcast_dimensions = dense<2> : tensor<1xi64>} : (tensor<128xf32>) -> tensor<1x384x128xf32>
%2795 = mhlo.add %2793, %2794 : tensor<1x384x128xf32>
%2796 = "mhlo.reshape"(%2795) : (tensor<1x384x128xf32>) -> tensor<384x128xf32>
%2797 = "mhlo.dot"(%2796, %1962) : (tensor<384x128xf32>, tensor<128x128xf32>) -> tensor<384x128xf32>
%2798 = "mhlo.broadcast_in_dim"(%1961) {broadcast_dimensions = dense<1> : tensor<1xi64>} : (tensor<128xf32>) -> tensor<384x128xf32>
%2799 = mhlo.add %2797, %2798 : tensor<384x128xf32>
%2800 = "mhlo.reshape"(%2799) : (tensor<384x128xf32>) -> tensor<1x384x4x32xf32>
%2801 = "mhlo.transpose"(%2800) {permutation = dense<[0, 2, 1, 3]> : tensor<4xi64>} : (tensor<1x384x4x32xf32>) -> tensor<1x4x384x32xf32>
%2802 = "mhlo.dot"(%2796, %1964) : (tensor<384x128xf32>, tensor<128x128xf32>) -> tensor<384x128xf32>
%2803 = "mhlo.broadcast_in_dim"(%1963) {broadcast_dimensions = dense<1> : tensor<1xi64>} : (tensor<128xf32>) -> tensor<384x128xf32>
%2804 = mhlo.add %2802, %2803 : tensor<384x128xf32>
%2805 = "mhlo.reshape"(%2804) : (tensor<384x128xf32>) -> tensor<1x384x4x32xf32>
%2806 = "mhlo.transpose"(%2805) {permutation = dense<[0, 2, 1, 3]> : tensor<4xi64>} : (tensor<1x384x4x32xf32>) -> tensor<1x4x384x32xf32>
%2807 = "mhlo.dot_general"(%2806, %2801) {dot_dimension_numbers = #mhlo.dot<lhs_batching_dimensions = [0, 1], lhs_contracting_dimensions = [3], rhs_batching_dimensions = [0, 1], rhs_contracting_dimensions = [3]>} : (tensor<1x4x384x32xf32>, tensor<1x4x384x32xf32>) -> tensor<1x4x384x384xf32>
%2808 = mhlo.multiply %2807, %1114 : tensor<1x4x384x384xf32>
%2809 = "mhlo.broadcast_in_dim"(%2254) {broadcast_dimensions = dense<[0, 1, 2, 3]> : tensor<4xi64>} : (tensor<1x1x384x384xf32>) -> tensor<1x4x384x384xf32>
%2810 = mhlo.add %2808, %2809 : tensor<1x4x384x384xf32>
%2811 = "mhlo.reduce"(%2810, %1117) ( {
^bb0(%arg3: tensor<f32>, %arg4: tensor<f32>): // no predecessors
%5393 = mhlo.maximum %arg3, %arg4 : tensor<f32>
"mhlo.return"(%5393) : (tensor<f32>) -> ()
}) {dimensions = dense<3> : tensor<1xi64>} : (tensor<1x4x384x384xf32>, tensor<f32>) -> tensor<1x4x384xf32>
%2812 = "mhlo.broadcast_in_dim"(%2811) {broadcast_dimensions = dense<[0, 1, 2]> : tensor<3xi64>} : (tensor<1x4x384xf32>) -> tensor<1x4x384x384xf32>
%2813 = mhlo.subtract %2810, %2812 : tensor<1x4x384x384xf32>
%2814 = "mhlo.exponential"(%2813) : (tensor<1x4x384x384xf32>) -> tensor<1x4x384x384xf32>
%2815 = "mhlo.reduce"(%2814, %1118) ( {
^bb0(%arg3: tensor<f32>, %arg4: tensor<f32>): // no predecessors
%5393 = mhlo.add %arg3, %arg4 : tensor<f32>
"mhlo.return"(%5393) : (tensor<f32>) -> ()
}) {dimensions = dense<3> : tensor<1xi64>} : (tensor<1x4x384x384xf32>, tensor<f32>) -> tensor<1x4x384xf32>
%2816 = "mhlo.broadcast_in_dim"(%2815) {broadcast_dimensions = dense<[0, 1, 2]> : tensor<3xi64>} : (tensor<1x4x384xf32>) -> tensor<1x4x384x384xf32>
%2817 = mhlo.divide %2814, %2816 : tensor<1x4x384x384xf32>
%2818 = "mhlo.dot_general"(%2817, %2787) {dot_dimension_numbers = #mhlo.dot<lhs_batching_dimensions = [0, 1], lhs_contracting_dimensions = [3], rhs_batching_dimensions = [0, 1], rhs_contracting_dimensions = [2]>} : (tensor<1x4x384x384xf32>, tensor<1x4x384x32xf32>) -> tensor<1x4x384x32xf32>
%2819 = "mhlo.transpose"(%2818) {permutation = dense<[0, 2, 1, 3]> : tensor<4xi64>} : (tensor<1x4x384x32xf32>) -> tensor<1x384x4x32xf32>
%2820 = "mhlo.reshape"(%2819) : (tensor<1x384x4x32xf32>) -> tensor<384x128xf32>
%2821 = "mhlo.dot"(%2820, %1960) : (tensor<384x128xf32>, tensor<128x128xf32>) -> tensor<384x128xf32>
%2822 = "mhlo.broadcast_in_dim"(%1959) {broadcast_dimensions = dense<1> : tensor<1xi64>} : (tensor<128xf32>) -> tensor<384x128xf32>
%2823 = mhlo.add %2821, %2822 : tensor<384x128xf32>
%2824 = "mhlo.reshape"(%2823) : (tensor<384x128xf32>) -> tensor<1x384x128xf32>
%2825 = "mhlo.dot"(%2782, %1974) : (tensor<384x512xf32>, tensor<512x128xf32>) -> tensor<384x128xf32>
%2826 = "mhlo.broadcast_in_dim"(%1973) {broadcast_dimensions = dense<1> : tensor<1xi64>} : (tensor<128xf32>) -> tensor<384x128xf32>
%2827 = mhlo.add %2825, %2826 : tensor<384x128xf32>
%2828 = "mhlo.reshape"(%2827) : (tensor<384x128xf32>) -> tensor<1x384x128xf32>
%2829 = "mhlo.broadcast_in_dim"(%1972) {broadcast_dimensions = dense<2> : tensor<1xi64>} : (tensor<128xf32>) -> tensor<1x384x128xf32>
%2830 = mhlo.multiply %2828, %2829 : tensor<1x384x128xf32>
%2831 = "mhlo.broadcast_in_dim"(%1971) {broadcast_dimensions = dense<2> : tensor<1xi64>} : (tensor<128xf32>) -> tensor<1x384x128xf32>
%2832 = mhlo.add %2830, %2831 : tensor<1x384x128xf32>
%2833 = mhlo.add %2824, %2832 : tensor<1x384x128xf32>
%2834 = "mhlo.broadcast_in_dim"(%1958) {broadcast_dimensions = dense<2> : tensor<1xi64>} : (tensor<128xf32>) -> tensor<1x384x128xf32>
%2835 = mhlo.multiply %2833, %2834 : tensor<1x384x128xf32>
%2836 = "mhlo.broadcast_in_dim"(%1957) {broadcast_dimensions = dense<2> : tensor<1xi64>} : (tensor<128xf32>) -> tensor<1x384x128xf32>
%2837 = mhlo.add %2835, %2836 : tensor<1x384x128xf32>
%2838 = "mhlo.reshape"(%2837) : (tensor<1x384x128xf32>) -> tensor<384x128xf32>
%2839 = "mhlo.dot"(%2838, %1976) : (tensor<384x128xf32>, tensor<128x512xf32>) -> tensor<384x512xf32>
%2840 = "mhlo.broadcast_in_dim"(%1975) {broadcast_dimensions = dense<1> : tensor<1xi64>} : (tensor<512xf32>) -> tensor<384x512xf32>
%2841 = mhlo.add %2839, %2840 : tensor<384x512xf32>
%2842 = "mhlo.reshape"(%2841) : (tensor<384x512xf32>) -> tensor<1x384x512xf32>
%2843 = mhlo.maximum %2842, %1119 : tensor<1x384x512xf32>
%2844 = "mhlo.reshape"(%2843) : (tensor<1x384x512xf32>) -> tensor<384x512xf32>
%2845 = "mhlo.dot"(%2844, %1980) : (tensor<384x512xf32>, tensor<512x128xf32>) -> tensor<384x128xf32>
%2846 = "mhlo.broadcast_in_dim"(%1979) {broadcast_dimensions = dense<1> : tensor<1xi64>} : (tensor<128xf32>) -> tensor<384x128xf32>
%2847 = mhlo.add %2845, %2846 : tensor<384x128xf32>
%2848 = "mhlo.reshape"(%2847) : (tensor<384x128xf32>) -> tensor<1x384x128xf32>
%2849 = mhlo.add %2848, %2837 : tensor<1x384x128xf32>
%2850 = "mhlo.broadcast_in_dim"(%1978) {broadcast_dimensions = dense<2> : tensor<1xi64>} : (tensor<128xf32>) -> tensor<1x384x128xf32>
%2851 = mhlo.multiply %2849, %2850 : tensor<1x384x128xf32>
%2852 = "mhlo.broadcast_in_dim"(%1977) {broadcast_dimensions = dense<2> : tensor<1xi64>} : (tensor<128xf32>) -> tensor<1x384x128xf32>
%2853 = mhlo.add %2851, %2852 : tensor<1x384x128xf32>
%2854 = "mhlo.reshape"(%2853) : (tensor<1x384x128xf32>) -> tensor<384x128xf32>
%2855 = "mhlo.dot"(%2854, %1982) : (tensor<384x128xf32>, tensor<128x512xf32>) -> tensor<384x512xf32>
%2856 = "mhlo.broadcast_in_dim"(%1981) {broadcast_dimensions = dense<1> : tensor<1xi64>} : (tensor<512xf32>) -> tensor<384x512xf32>
%2857 = mhlo.add %2855, %2856 : tensor<384x512xf32>
%2858 = "mhlo.reshape"(%2857) : (tensor<384x512xf32>) -> tensor<1x384x512xf32>
%2859 = mhlo.maximum %2858, %1119 : tensor<1x384x512xf32>
%2860 = "mhlo.reshape"(%2859) : (tensor<1x384x512xf32>) -> tensor<384x512xf32>
%2861 = "mhlo.dot"(%2860, %1986) : (tensor<384x512xf32>, tensor<512x128xf32>) -> tensor<384x128xf32>
%2862 = "mhlo.broadcast_in_dim"(%1985) {broadcast_dimensions = dense<1> : tensor<1xi64>} : (tensor<128xf32>) -> tensor<384x128xf32>
%2863 = mhlo.add %2861, %2862 : tensor<384x128xf32>
%2864 = "mhlo.reshape"(%2863) : (tensor<384x128xf32>) -> tensor<1x384x128xf32>
%2865 = mhlo.add %2864, %2853 : tensor<1x384x128xf32>
%2866 = "mhlo.broadcast_in_dim"(%1984) {broadcast_dimensions = dense<2> : tensor<1xi64>} : (tensor<128xf32>) -> tensor<1x384x128xf32>
%2867 = mhlo.multiply %2865, %2866 : tensor<1x384x128xf32>
%2868 = "mhlo.broadcast_in_dim"(%1983) {broadcast_dimensions = dense<2> : tensor<1xi64>} : (tensor<128xf32>) -> tensor<1x384x128xf32>
%2869 = mhlo.add %2867, %2868 : tensor<1x384x128xf32>
%2870 = "mhlo.reshape"(%2869) : (tensor<1x384x128xf32>) -> tensor<384x128xf32>
%2871 = "mhlo.dot"(%2870, %1988) : (tensor<384x128xf32>, tensor<128x512xf32>) -> tensor<384x512xf32>
%2872 = "mhlo.broadcast_in_dim"(%1987) {broadcast_dimensions = dense<1> : tensor<1xi64>} : (tensor<512xf32>) -> tensor<384x512xf32>
%2873 = mhlo.add %2871, %2872 : tensor<384x512xf32>
%2874 = "mhlo.reshape"(%2873) : (tensor<384x512xf32>) -> tensor<1x384x512xf32>
%2875 = mhlo.maximum %2874, %1119 : tensor<1x384x512xf32>
%2876 = "mhlo.reshape"(%2875) : (tensor<1x384x512xf32>) -> tensor<384x512xf32>
%2877 = "mhlo.dot"(%2876, %1992) : (tensor<384x512xf32>, tensor<512x128xf32>) -> tensor<384x128xf32>
%2878 = "mhlo.broadcast_in_dim"(%1991) {broadcast_dimensions = dense<1> : tensor<1xi64>} : (tensor<128xf32>) -> tensor<384x128xf32>
%2879 = mhlo.add %2877, %2878 : tensor<384x128xf32>
%2880 = "mhlo.reshape"(%2879) : (tensor<384x128xf32>) -> tensor<1x384x128xf32>
%2881 = mhlo.add %2880, %2869 : tensor<1x384x128xf32>
%2882 = "mhlo.broadcast_in_dim"(%1990) {broadcast_dimensions = dense<2> : tensor<1xi64>} : (tensor<128xf32>) -> tensor<1x384x128xf32>
%2883 = mhlo.multiply %2881, %2882 : tensor<1x384x128xf32>
%2884 = "mhlo.broadcast_in_dim"(%1989) {broadcast_dimensions = dense<2> : tensor<1xi64>} : (tensor<128xf32>) -> tensor<1x384x128xf32>
%2885 = mhlo.add %2883, %2884 : tensor<1x384x128xf32>
%2886 = "mhlo.reshape"(%2885) : (tensor<1x384x128xf32>) -> tensor<384x128xf32>
%2887 = "mhlo.dot"(%2886, %1994) : (tensor<384x128xf32>, tensor<128x512xf32>) -> tensor<384x512xf32>
%2888 = "mhlo.broadcast_in_dim"(%1993) {broadcast_dimensions = dense<1> : tensor<1xi64>} : (tensor<512xf32>) -> tensor<384x512xf32>
%2889 = mhlo.add %2887, %2888 : tensor<384x512xf32>
%2890 = "mhlo.reshape"(%2889) : (tensor<384x512xf32>) -> tensor<1x384x512xf32>
%2891 = mhlo.maximum %2890, %1119 : tensor<1x384x512xf32>
%2892 = "mhlo.reshape"(%2891) : (tensor<1x384x512xf32>) -> tensor<384x512xf32>
%2893 = "mhlo.dot"(%2892, %2002) : (tensor<384x512xf32>, tensor<512x128xf32>) -> tensor<384x128xf32>
%2894 = "mhlo.broadcast_in_dim"(%2001) {broadcast_dimensions = dense<1> : tensor<1xi64>} : (tensor<128xf32>) -> tensor<384x128xf32>
%2895 = mhlo.add %2893, %2894 : tensor<384x128xf32>
%2896 = "mhlo.reshape"(%2895) : (tensor<384x128xf32>) -> tensor<1x384x128xf32>
%2897 = mhlo.add %2896, %2885 : tensor<1x384x128xf32>
%2898 = "mhlo.broadcast_in_dim"(%1996) {broadcast_dimensions = dense<2> : tensor<1xi64>} : (tensor<128xf32>) -> tensor<1x384x128xf32>
%2899 = mhlo.multiply %2897, %2898 : tensor<1x384x128xf32>
%2900 = "mhlo.broadcast_in_dim"(%1995) {broadcast_dimensions = dense<2> : tensor<1xi64>} : (tensor<128xf32>) -> tensor<1x384x128xf32>
%2901 = mhlo.add %2899, %2900 : tensor<1x384x128xf32>
%2902 = "mhlo.reshape"(%2901) : (tensor<1x384x128xf32>) -> tensor<384x128xf32>
%2903 = "mhlo.dot"(%2902, %2000) : (tensor<384x128xf32>, tensor<128x512xf32>) -> tensor<384x512xf32>
%2904 = "mhlo.broadcast_in_dim"(%1999) {broadcast_dimensions = dense<1> : tensor<1xi64>} : (tensor<512xf32>) -> tensor<384x512xf32>
%2905 = mhlo.add %2903, %2904 : tensor<384x512xf32>
%2906 = "mhlo.reshape"(%2905) : (tensor<384x512xf32>) -> tensor<1x384x512xf32>
%2907 = mhlo.add %2906, %2781 : tensor<1x384x512xf32>
%2908 = "mhlo.broadcast_in_dim"(%1998) {broadcast_dimensions = dense<2> : tensor<1xi64>} : (tensor<512xf32>) -> tensor<1x384x512xf32>
%2909 = mhlo.multiply %2907, %2908 : tensor<1x384x512xf32>
%2910 = "mhlo.broadcast_in_dim"(%1997) {broadcast_dimensions = dense<2> : tensor<1xi64>} : (tensor<512xf32>) -> tensor<1x384x512xf32>
%2911 = mhlo.add %2909, %2910 : tensor<1x384x512xf32>
%2912 = "mhlo.reshape"(%2911) : (tensor<1x384x512xf32>) -> tensor<384x512xf32>
%2913 = "mhlo.dot"(%2912, %2012) : (tensor<384x512xf32>, tensor<512x128xf32>) -> tensor<384x128xf32>
%2914 = "mhlo.broadcast_in_dim"(%2011) {broadcast_dimensions = dense<1> : tensor<1xi64>} : (tensor<128xf32>) -> tensor<384x128xf32>
%2915 = mhlo.add %2913, %2914 : tensor<384x128xf32>
%2916 = "mhlo.reshape"(%2915) : (tensor<384x128xf32>) -> tensor<1x384x4x32xf32>
%2917 = "mhlo.transpose"(%2916) {permutation = dense<[0, 2, 1, 3]> : tensor<4xi64>} : (tensor<1x384x4x32xf32>) -> tensor<1x4x384x32xf32>
%2918 = "mhlo.dot"(%2912, %2016) : (tensor<384x512xf32>, tensor<512x128xf32>) -> tensor<384x128xf32>
%2919 = "mhlo.reshape"(%2918) : (tensor<384x128xf32>) -> tensor<1x384x128xf32>
%2920 = "mhlo.broadcast_in_dim"(%2015) {broadcast_dimensions = dense<2> : tensor<1xi64>} : (tensor<128xf32>) -> tensor<1x384x128xf32>
%2921 = mhlo.add %2919, %2920 : tensor<1x384x128xf32>
%2922 = "mhlo.broadcast_in_dim"(%2014) {broadcast_dimensions = dense<2> : tensor<1xi64>} : (tensor<128xf32>) -> tensor<1x384x128xf32>
%2923 = mhlo.multiply %2921, %2922 : tensor<1x384x128xf32>
%2924 = "mhlo.broadcast_in_dim"(%2013) {broadcast_dimensions = dense<2> : tensor<1xi64>} : (tensor<128xf32>) -> tensor<1x384x128xf32>
%2925 = mhlo.add %2923, %2924 : tensor<1x384x128xf32>
%2926 = "mhlo.reshape"(%2925) : (tensor<1x384x128xf32>) -> tensor<384x128xf32>
%2927 = "mhlo.dot"(%2926, %2008) : (tensor<384x128xf32>, tensor<128x128xf32>) -> tensor<384x128xf32>
%2928 = "mhlo.broadcast_in_dim"(%2007) {broadcast_dimensions = dense<1> : tensor<1xi64>} : (tensor<128xf32>) -> tensor<384x128xf32>
%2929 = mhlo.add %2927, %2928 : tensor<384x128xf32>
%2930 = "mhlo.reshape"(%2929) : (tensor<384x128xf32>) -> tensor<1x384x4x32xf32>
%2931 = "mhlo.transpose"(%2930) {permutation = dense<[0, 2, 1, 3]> : tensor<4xi64>} : (tensor<1x384x4x32xf32>) -> tensor<1x4x384x32xf32>
%2932 = "mhlo.dot"(%2926, %2010) : (tensor<384x128xf32>, tensor<128x128xf32>) -> tensor<384x128xf32>
%2933 = "mhlo.broadcast_in_dim"(%2009) {broadcast_dimensions = dense<1> : tensor<1xi64>} : (tensor<128xf32>) -> tensor<384x128xf32>
%2934 = mhlo.add %2932, %2933 : tensor<384x128xf32>
%2935 = "mhlo.reshape"(%2934) : (tensor<384x128xf32>) -> tensor<1x384x4x32xf32>
%2936 = "mhlo.transpose"(%2935) {permutation = dense<[0, 2, 1, 3]> : tensor<4xi64>} : (tensor<1x384x4x32xf32>) -> tensor<1x4x384x32xf32>
%2937 = "mhlo.dot_general"(%2936, %2931) {dot_dimension_numbers = #mhlo.dot<lhs_batching_dimensions = [0, 1], lhs_contracting_dimensions = [3], rhs_batching_dimensions = [0, 1], rhs_contracting_dimensions = [3]>} : (tensor<1x4x384x32xf32>, tensor<1x4x384x32xf32>) -> tensor<1x4x384x384xf32>
%2938 = mhlo.multiply %2937, %1114 : tensor<1x4x384x384xf32>
%2939 = "mhlo.broadcast_in_dim"(%2254) {broadcast_dimensions = dense<[0, 1, 2, 3]> : tensor<4xi64>} : (tensor<1x1x384x384xf32>) -> tensor<1x4x384x384xf32>
%2940 = mhlo.add %2938, %2939 : tensor<1x4x384x384xf32>
%2941 = "mhlo.reduce"(%2940, %1117) ( {
^bb0(%arg3: tensor<f32>, %arg4: tensor<f32>): // no predecessors
%5393 = mhlo.maximum %arg3, %arg4 : tensor<f32>
"mhlo.return"(%5393) : (tensor<f32>) -> ()
}) {dimensions = dense<3> : tensor<1xi64>} : (tensor<1x4x384x384xf32>, tensor<f32>) -> tensor<1x4x384xf32>
%2942 = "mhlo.broadcast_in_dim"(%2941) {broadcast_dimensions = dense<[0, 1, 2]> : tensor<3xi64>} : (tensor<1x4x384xf32>) -> tensor<1x4x384x384xf32>
%2943 = mhlo.subtract %2940, %2942 : tensor<1x4x384x384xf32>
%2944 = "mhlo.exponential"(%2943) : (tensor<1x4x384x384xf32>) -> tensor<1x4x384x384xf32>
%2945 = "mhlo.reduce"(%2944, %1118) ( {
^bb0(%arg3: tensor<f32>, %arg4: tensor<f32>): // no predecessors
%5393 = mhlo.add %arg3, %arg4 : tensor<f32>
"mhlo.return"(%5393) : (tensor<f32>) -> ()
}) {dimensions = dense<3> : tensor<1xi64>} : (tensor<1x4x384x384xf32>, tensor<f32>) -> tensor<1x4x384xf32>
%2946 = "mhlo.broadcast_in_dim"(%2945) {broadcast_dimensions = dense<[0, 1, 2]> : tensor<3xi64>} : (tensor<1x4x384xf32>) -> tensor<1x4x384x384xf32>
%2947 = mhlo.divide %2944, %2946 : tensor<1x4x384x384xf32>
%2948 = "mhlo.dot_general"(%2947, %2917) {dot_dimension_numbers = #mhlo.dot<lhs_batching_dimensions = [0, 1], lhs_contracting_dimensions = [3], rhs_batching_dimensions = [0, 1], rhs_contracting_dimensions = [2]>} : (tensor<1x4x384x384xf32>, tensor<1x4x384x32xf32>) -> tensor<1x4x384x32xf32>
%2949 = "mhlo.transpose"(%2948) {permutation = dense<[0, 2, 1, 3]> : tensor<4xi64>} : (tensor<1x4x384x32xf32>) -> tensor<1x384x4x32xf32>
%2950 = "mhlo.reshape"(%2949) : (tensor<1x384x4x32xf32>) -> tensor<384x128xf32>
%2951 = "mhlo.dot"(%2950, %2006) : (tensor<384x128xf32>, tensor<128x128xf32>) -> tensor<384x128xf32>
%2952 = "mhlo.broadcast_in_dim"(%2005) {broadcast_dimensions = dense<1> : tensor<1xi64>} : (tensor<128xf32>) -> tensor<384x128xf32>
%2953 = mhlo.add %2951, %2952 : tensor<384x128xf32>
%2954 = "mhlo.reshape"(%2953) : (tensor<384x128xf32>) -> tensor<1x384x128xf32>
%2955 = "mhlo.dot"(%2912, %2020) : (tensor<384x512xf32>, tensor<512x128xf32>) -> tensor<384x128xf32>
%2956 = "mhlo.broadcast_in_dim"(%2019) {broadcast_dimensions = dense<1> : tensor<1xi64>} : (tensor<128xf32>) -> tensor<384x128xf32>
%2957 = mhlo.add %2955, %2956 : tensor<384x128xf32>
%2958 = "mhlo.reshape"(%2957) : (tensor<384x128xf32>) -> tensor<1x384x128xf32>
%2959 = "mhlo.broadcast_in_dim"(%2018) {broadcast_dimensions = dense<2> : tensor<1xi64>} : (tensor<128xf32>) -> tensor<1x384x128xf32>
%2960 = mhlo.multiply %2958, %2959 : tensor<1x384x128xf32>
%2961 = "mhlo.broadcast_in_dim"(%2017) {broadcast_dimensions = dense<2> : tensor<1xi64>} : (tensor<128xf32>) -> tensor<1x384x128xf32>
%2962 = mhlo.add %2960, %2961 : tensor<1x384x128xf32>
%2963 = mhlo.add %2954, %2962 : tensor<1x384x128xf32>
%2964 = "mhlo.broadcast_in_dim"(%2004) {broadcast_dimensions = dense<2> : tensor<1xi64>} : (tensor<128xf32>) -> tensor<1x384x128xf32>
%2965 = mhlo.multiply %2963, %2964 : tensor<1x384x128xf32>
%2966 = "mhlo.broadcast_in_dim"(%2003) {broadcast_dimensions = dense<2> : tensor<1xi64>} : (tensor<128xf32>) -> tensor<1x384x128xf32>
%2967 = mhlo.add %2965, %2966 : tensor<1x384x128xf32>
%2968 = "mhlo.reshape"(%2967) : (tensor<1x384x128xf32>) -> tensor<384x128xf32>
%2969 = "mhlo.dot"(%2968, %2022) : (tensor<384x128xf32>, tensor<128x512xf32>) -> tensor<384x512xf32>
%2970 = "mhlo.broadcast_in_dim"(%2021) {broadcast_dimensions = dense<1> : tensor<1xi64>} : (tensor<512xf32>) -> tensor<384x512xf32>
%2971 = mhlo.add %2969, %2970 : tensor<384x512xf32>
%2972 = "mhlo.reshape"(%2971) : (tensor<384x512xf32>) -> tensor<1x384x512xf32>
%2973 = mhlo.maximum %2972, %1119 : tensor<1x384x512xf32>
%2974 = "mhlo.reshape"(%2973) : (tensor<1x384x512xf32>) -> tensor<384x512xf32>
%2975 = "mhlo.dot"(%2974, %2026) : (tensor<384x512xf32>, tensor<512x128xf32>) -> tensor<384x128xf32>
%2976 = "mhlo.broadcast_in_dim"(%2025) {broadcast_dimensions = dense<1> : tensor<1xi64>} : (tensor<128xf32>) -> tensor<384x128xf32>
%2977 = mhlo.add %2975, %2976 : tensor<384x128xf32>
%2978 = "mhlo.reshape"(%2977) : (tensor<384x128xf32>) -> tensor<1x384x128xf32>
%2979 = mhlo.add %2978, %2967 : tensor<1x384x128xf32>
%2980 = "mhlo.broadcast_in_dim"(%2024) {broadcast_dimensions = dense<2> : tensor<1xi64>} : (tensor<128xf32>) -> tensor<1x384x128xf32>
%2981 = mhlo.multiply %2979, %2980 : tensor<1x384x128xf32>
%2982 = "mhlo.broadcast_in_dim"(%2023) {broadcast_dimensions = dense<2> : tensor<1xi64>} : (tensor<128xf32>) -> tensor<1x384x128xf32>
%2983 = mhlo.add %2981, %2982 : tensor<1x384x128xf32>
%2984 = "mhlo.reshape"(%2983) : (tensor<1x384x128xf32>) -> tensor<384x128xf32>
%2985 = "mhlo.dot"(%2984, %2028) : (tensor<384x128xf32>, tensor<128x512xf32>) -> tensor<384x512xf32>
%2986 = "mhlo.broadcast_in_dim"(%2027) {broadcast_dimensions = dense<1> : tensor<1xi64>} : (tensor<512xf32>) -> tensor<384x512xf32>
%2987 = mhlo.add %2985, %2986 : tensor<384x512xf32>
%2988 = "mhlo.reshape"(%2987) : (tensor<384x512xf32>) -> tensor<1x384x512xf32>
%2989 = mhlo.maximum %2988, %1119 : tensor<1x384x512xf32>
%2990 = "mhlo.reshape"(%2989) : (tensor<1x384x512xf32>) -> tensor<384x512xf32>
%2991 = "mhlo.dot"(%2990, %2032) : (tensor<384x512xf32>, tensor<512x128xf32>) -> tensor<384x128xf32>
%2992 = "mhlo.broadcast_in_dim"(%2031) {broadcast_dimensions = dense<1> : tensor<1xi64>} : (tensor<128xf32>) -> tensor<384x128xf32>
%2993 = mhlo.add %2991, %2992 : tensor<384x128xf32>
%2994 = "mhlo.reshape"(%2993) : (tensor<384x128xf32>) -> tensor<1x384x128xf32>
%2995 = mhlo.add %2994, %2983 : tensor<1x384x128xf32>
%2996 = "mhlo.broadcast_in_dim"(%2030) {broadcast_dimensions = dense<2> : tensor<1xi64>} : (tensor<128xf32>) -> tensor<1x384x128xf32>
%2997 = mhlo.multiply %2995, %2996 : tensor<1x384x128xf32>
%2998 = "mhlo.broadcast_in_dim"(%2029) {broadcast_dimensions = dense<2> : tensor<1xi64>} : (tensor<128xf32>) -> tensor<1x384x128xf32>
%2999 = mhlo.add %2997, %2998 : tensor<1x384x128xf32>
%3000 = "mhlo.reshape"(%2999) : (tensor<1x384x128xf32>) -> tensor<384x128xf32>
%3001 = "mhlo.dot"(%3000, %2034) : (tensor<384x128xf32>, tensor<128x512xf32>) -> tensor<384x512xf32>
%3002 = "mhlo.broadcast_in_dim"(%2033) {broadcast_dimensions = dense<1> : tensor<1xi64>} : (tensor<512xf32>) -> tensor<384x512xf32>
%3003 = mhlo.add %3001, %3002 : tensor<384x512xf32>
%3004 = "mhlo.reshape"(%3003) : (tensor<384x512xf32>) -> tensor<1x384x512xf32>
%3005 = mhlo.maximum %3004, %1119 : tensor<1x384x512xf32>
%3006 = "mhlo.reshape"(%3005) : (tensor<1x384x512xf32>) -> tensor<384x512xf32>
%3007 = "mhlo.dot"(%3006, %2038) : (tensor<384x512xf32>, tensor<512x128xf32>) -> tensor<384x128xf32>
%3008 = "mhlo.broadcast_in_dim"(%2037) {broadcast_dimensions = dense<1> : tensor<1xi64>} : (tensor<128xf32>) -> tensor<384x128xf32>
%3009 = mhlo.add %3007, %3008 : tensor<384x128xf32>
%3010 = "mhlo.reshape"(%3009) : (tensor<384x128xf32>) -> tensor<1x384x128xf32>
%3011 = mhlo.add %3010, %2999 : tensor<1x384x128xf32>
%3012 = "mhlo.broadcast_in_dim"(%2036) {broadcast_dimensions = dense<2> : tensor<1xi64>} : (tensor<128xf32>) -> tensor<1x384x128xf32>
%3013 = mhlo.multiply %3011, %3012 : tensor<1x384x128xf32>
%3014 = "mhlo.broadcast_in_dim"(%2035) {broadcast_dimensions = dense<2> : tensor<1xi64>} : (tensor<128xf32>) -> tensor<1x384x128xf32>
%3015 = mhlo.add %3013, %3014 : tensor<1x384x128xf32>
%3016 = "mhlo.reshape"(%3015) : (tensor<1x384x128xf32>) -> tensor<384x128xf32>
%3017 = "mhlo.dot"(%3016, %2040) : (tensor<384x128xf32>, tensor<128x512xf32>) -> tensor<384x512xf32>
%3018 = "mhlo.broadcast_in_dim"(%2039) {broadcast_dimensions = dense<1> : tensor<1xi64>} : (tensor<512xf32>) -> tensor<384x512xf32>
%3019 = mhlo.add %3017, %3018 : tensor<384x512xf32>
%3020 = "mhlo.reshape"(%3019) : (tensor<384x512xf32>) -> tensor<1x384x512xf32>
%3021 = mhlo.maximum %3020, %1119 : tensor<1x384x512xf32>
%3022 = "mhlo.reshape"(%3021) : (tensor<1x384x512xf32>) -> tensor<384x512xf32>
%3023 = "mhlo.dot"(%3022, %2048) : (tensor<384x512xf32>, tensor<512x128xf32>) -> tensor<384x128xf32>
%3024 = "mhlo.broadcast_in_dim"(%2047) {broadcast_dimensions = dense<1> : tensor<1xi64>} : (tensor<128xf32>) -> tensor<384x128xf32>
%3025 = mhlo.add %3023, %3024 : tensor<384x128xf32>
%3026 = "mhlo.reshape"(%3025) : (tensor<384x128xf32>) -> tensor<1x384x128xf32>
%3027 = mhlo.add %3026, %3015 : tensor<1x384x128xf32>
%3028 = "mhlo.broadcast_in_dim"(%2042) {broadcast_dimensions = dense<2> : tensor<1xi64>} : (tensor<128xf32>) -> tensor<1x384x128xf32>
%3029 = mhlo.multiply %3027, %3028 : tensor<1x384x128xf32>
%3030 = "mhlo.broadcast_in_dim"(%2041) {broadcast_dimensions = dense<2> : tensor<1xi64>} : (tensor<128xf32>) -> tensor<1x384x128xf32>
%3031 = mhlo.add %3029, %3030 : tensor<1x384x128xf32>
%3032 = "mhlo.reshape"(%3031) : (tensor<1x384x128xf32>) -> tensor<384x128xf32>
%3033 = "mhlo.dot"(%3032, %2046) : (tensor<384x128xf32>, tensor<128x512xf32>) -> tensor<384x512xf32>
%3034 = "mhlo.broadcast_in_dim"(%2045) {broadcast_dimensions = dense<1> : tensor<1xi64>} : (tensor<512xf32>) -> tensor<384x512xf32>
%3035 = mhlo.add %3033, %3034 : tensor<384x512xf32>
%3036 = "mhlo.reshape"(%3035) : (tensor<384x512xf32>) -> tensor<1x384x512xf32>
%3037 = mhlo.add %3036, %2911 : tensor<1x384x512xf32>
%3038 = "mhlo.broadcast_in_dim"(%2044) {broadcast_dimensions = dense<2> : tensor<1xi64>} : (tensor<512xf32>) -> tensor<1x384x512xf32>
%3039 = mhlo.multiply %3037, %3038 : tensor<1x384x512xf32>
%3040 = "mhlo.broadcast_in_dim"(%2043) {broadcast_dimensions = dense<2> : tensor<1xi64>} : (tensor<512xf32>) -> tensor<1x384x512xf32>
%3041 = mhlo.add %3039, %3040 : tensor<1x384x512xf32>
%3042 = "mhlo.reshape"(%3041) : (tensor<1x384x512xf32>) -> tensor<384x512xf32>
%3043 = "mhlo.dot"(%3042, %2058) : (tensor<384x512xf32>, tensor<512x128xf32>) -> tensor<384x128xf32>
%3044 = "mhlo.broadcast_in_dim"(%2057) {broadcast_dimensions = dense<1> : tensor<1xi64>} : (tensor<128xf32>) -> tensor<384x128xf32>
%3045 = mhlo.add %3043, %3044 : tensor<384x128xf32>
%3046 = "mhlo.reshape"(%3045) : (tensor<384x128xf32>) -> tensor<1x384x4x32xf32>
%3047 = "mhlo.transpose"(%3046) {permutation = dense<[0, 2, 1, 3]> : tensor<4xi64>} : (tensor<1x384x4x32xf32>) -> tensor<1x4x384x32xf32>
%3048 = "mhlo.dot"(%3042, %2062) : (tensor<384x512xf32>, tensor<512x128xf32>) -> tensor<384x128xf32>
%3049 = "mhlo.reshape"(%3048) : (tensor<384x128xf32>) -> tensor<1x384x128xf32>
%3050 = "mhlo.broadcast_in_dim"(%2061) {broadcast_dimensions = dense<2> : tensor<1xi64>} : (tensor<128xf32>) -> tensor<1x384x128xf32>
%3051 = mhlo.add %3049, %3050 : tensor<1x384x128xf32>
%3052 = "mhlo.broadcast_in_dim"(%2060) {broadcast_dimensions = dense<2> : tensor<1xi64>} : (tensor<128xf32>) -> tensor<1x384x128xf32>
%3053 = mhlo.multiply %3051, %3052 : tensor<1x384x128xf32>
%3054 = "mhlo.broadcast_in_dim"(%2059) {broadcast_dimensions = dense<2> : tensor<1xi64>} : (tensor<128xf32>) -> tensor<1x384x128xf32>
%3055 = mhlo.add %3053, %3054 : tensor<1x384x128xf32>
%3056 = "mhlo.reshape"(%3055) : (tensor<1x384x128xf32>) -> tensor<384x128xf32>
%3057 = "mhlo.dot"(%3056, %2054) : (tensor<384x128xf32>, tensor<128x128xf32>) -> tensor<384x128xf32>
%3058 = "mhlo.broadcast_in_dim"(%2053) {broadcast_dimensions = dense<1> : tensor<1xi64>} : (tensor<128xf32>) -> tensor<384x128xf32>
%3059 = mhlo.add %3057, %3058 : tensor<384x128xf32>
%3060 = "mhlo.reshape"(%3059) : (tensor<384x128xf32>) -> tensor<1x384x4x32xf32>
%3061 = "mhlo.transpose"(%3060) {permutation = dense<[0, 2, 1, 3]> : tensor<4xi64>} : (tensor<1x384x4x32xf32>) -> tensor<1x4x384x32xf32>
%3062 = "mhlo.dot"(%3056, %2056) : (tensor<384x128xf32>, tensor<128x128xf32>) -> tensor<384x128xf32>
%3063 = "mhlo.broadcast_in_dim"(%2055) {broadcast_dimensions = dense<1> : tensor<1xi64>} : (tensor<128xf32>) -> tensor<384x128xf32>
%3064 = mhlo.add %3062, %3063 : tensor<384x128xf32>
%3065 = "mhlo.reshape"(%3064) : (tensor<384x128xf32>) -> tensor<1x384x4x32xf32>
%3066 = "mhlo.transpose"(%3065) {permutation = dense<[0, 2, 1, 3]> : tensor<4xi64>} : (tensor<1x384x4x32xf32>) -> tensor<1x4x384x32xf32>
%3067 = "mhlo.dot_general"(%3066, %3061) {dot_dimension_numbers = #mhlo.dot<lhs_batching_dimensions = [0, 1], lhs_contracting_dimensions = [3], rhs_batching_dimensions = [0, 1], rhs_contracting_dimensions = [3]>} : (tensor<1x4x384x32xf32>, tensor<1x4x384x32xf32>) -> tensor<1x4x384x384xf32>
%3068 = mhlo.multiply %3067, %1114 : tensor<1x4x384x384xf32>
%3069 = "mhlo.broadcast_in_dim"(%2254) {broadcast_dimensions = dense<[0, 1, 2, 3]> : tensor<4xi64>} : (tensor<1x1x384x384xf32>) -> tensor<1x4x384x384xf32>
%3070 = mhlo.add %3068, %3069 : tensor<1x4x384x384xf32>
%3071 = "mhlo.reduce"(%3070, %1117) ( {
^bb0(%arg3: tensor<f32>, %arg4: tensor<f32>): // no predecessors
%5393 = mhlo.maximum %arg3, %arg4 : tensor<f32>
"mhlo.return"(%5393) : (tensor<f32>) -> ()
}) {dimensions = dense<3> : tensor<1xi64>} : (tensor<1x4x384x384xf32>, tensor<f32>) -> tensor<1x4x384xf32>
%3072 = "mhlo.broadcast_in_dim"(%3071) {broadcast_dimensions = dense<[0, 1, 2]> : tensor<3xi64>} : (tensor<1x4x384xf32>) -> tensor<1x4x384x384xf32>
%3073 = mhlo.subtract %3070, %3072 : tensor<1x4x384x384xf32>
%3074 = "mhlo.exponential"(%3073) : (tensor<1x4x384x384xf32>) -> tensor<1x4x384x384xf32>
%3075 = "mhlo.reduce"(%3074, %1118) ( {
^bb0(%arg3: tensor<f32>, %arg4: tensor<f32>): // no predecessors
%5393 = mhlo.add %arg3, %arg4 : tensor<f32>
"mhlo.return"(%5393) : (tensor<f32>) -> ()
}) {dimensions = dense<3> : tensor<1xi64>} : (tensor<1x4x384x384xf32>, tensor<f32>) -> tensor<1x4x384xf32>
%3076 = "mhlo.broadcast_in_dim"(%3075) {broadcast_dimensions = dense<[0, 1, 2]> : tensor<3xi64>} : (tensor<1x4x384xf32>) -> tensor<1x4x384x384xf32>
%3077 = mhlo.divide %3074, %3076 : tensor<1x4x384x384xf32>
%3078 = "mhlo.dot_general"(%3077, %3047) {dot_dimension_numbers = #mhlo.dot<lhs_batching_dimensions = [0, 1], lhs_contracting_dimensions = [3], rhs_batching_dimensions = [0, 1], rhs_contracting_dimensions = [2]>} : (tensor<1x4x384x384xf32>, tensor<1x4x384x32xf32>) -> tensor<1x4x384x32xf32>
%3079 = "mhlo.transpose"(%3078) {permutation = dense<[0, 2, 1, 3]> : tensor<4xi64>} : (tensor<1x4x384x32xf32>) -> tensor<1x384x4x32xf32>
%3080 = "mhlo.reshape"(%3079) : (tensor<1x384x4x32xf32>) -> tensor<384x128xf32>
%3081 = "mhlo.dot"(%3080, %2052) : (tensor<384x128xf32>, tensor<128x128xf32>) -> tensor<384x128xf32>
%3082 = "mhlo.broadcast_in_dim"(%2051) {broadcast_dimensions = dense<1> : tensor<1xi64>} : (tensor<128xf32>) -> tensor<384x128xf32>
%3083 = mhlo.add %3081, %3082 : tensor<384x128xf32>
%3084 = "mhlo.reshape"(%3083) : (tensor<384x128xf32>) -> tensor<1x384x128xf32>
%3085 = "mhlo.dot"(%3042, %2066) : (tensor<384x512xf32>, tensor<512x128xf32>) -> tensor<384x128xf32>
%3086 = "mhlo.broadcast_in_dim"(%2065) {broadcast_dimensions = dense<1> : tensor<1xi64>} : (tensor<128xf32>) -> tensor<384x128xf32>
%3087 = mhlo.add %3085, %3086 : tensor<384x128xf32>
%3088 = "mhlo.reshape"(%3087) : (tensor<384x128xf32>) -> tensor<1x384x128xf32>
%3089 = "mhlo.broadcast_in_dim"(%2064) {broadcast_dimensions = dense<2> : tensor<1xi64>} : (tensor<128xf32>) -> tensor<1x384x128xf32>
%3090 = mhlo.multiply %3088, %3089 : tensor<1x384x128xf32>
%3091 = "mhlo.broadcast_in_dim"(%2063) {broadcast_dimensions = dense<2> : tensor<1xi64>} : (tensor<128xf32>) -> tensor<1x384x128xf32>
%3092 = mhlo.add %3090, %3091 : tensor<1x384x128xf32>
%3093 = mhlo.add %3084, %3092 : tensor<1x384x128xf32>
%3094 = "mhlo.broadcast_in_dim"(%2050) {broadcast_dimensions = dense<2> : tensor<1xi64>} : (tensor<128xf32>) -> tensor<1x384x128xf32>
%3095 = mhlo.multiply %3093, %3094 : tensor<1x384x128xf32>
%3096 = "mhlo.broadcast_in_dim"(%2049) {broadcast_dimensions = dense<2> : tensor<1xi64>} : (tensor<128xf32>) -> tensor<1x384x128xf32>
%3097 = mhlo.add %3095, %3096 : tensor<1x384x128xf32>
%3098 = "mhlo.reshape"(%3097) : (tensor<1x384x128xf32>) -> tensor<384x128xf32>
%3099 = "mhlo.dot"(%3098, %2068) : (tensor<384x128xf32>, tensor<128x512xf32>) -> tensor<384x512xf32>
%3100 = "mhlo.broadcast_in_dim"(%2067) {broadcast_dimensions = dense<1> : tensor<1xi64>} : (tensor<512xf32>) -> tensor<384x512xf32>
%3101 = mhlo.add %3099, %3100 : tensor<384x512xf32>
%3102 = "mhlo.reshape"(%3101) : (tensor<384x512xf32>) -> tensor<1x384x512xf32>
%3103 = mhlo.maximum %3102, %1119 : tensor<1x384x512xf32>
%3104 = "mhlo.reshape"(%3103) : (tensor<1x384x512xf32>) -> tensor<384x512xf32>
%3105 = "mhlo.dot"(%3104, %2072) : (tensor<384x512xf32>, tensor<512x128xf32>) -> tensor<384x128xf32>
%3106 = "mhlo.broadcast_in_dim"(%2071) {broadcast_dimensions = dense<1> : tensor<1xi64>} : (tensor<128xf32>) -> tensor<384x128xf32>
%3107 = mhlo.add %3105, %3106 : tensor<384x128xf32>
%3108 = "mhlo.reshape"(%3107) : (tensor<384x128xf32>) -> tensor<1x384x128xf32>
%3109 = mhlo.add %3108, %3097 : tensor<1x384x128xf32>
%3110 = "mhlo.broadcast_in_dim"(%2070) {broadcast_dimensions = dense<2> : tensor<1xi64>} : (tensor<128xf32>) -> tensor<1x384x128xf32>
%3111 = mhlo.multiply %3109, %3110 : tensor<1x384x128xf32>
%3112 = "mhlo.broadcast_in_dim"(%2069) {broadcast_dimensions = dense<2> : tensor<1xi64>} : (tensor<128xf32>) -> tensor<1x384x128xf32>
%3113 = mhlo.add %3111, %3112 : tensor<1x384x128xf32>
%3114 = "mhlo.reshape"(%3113) : (tensor<1x384x128xf32>) -> tensor<384x128xf32>
%3115 = "mhlo.dot"(%3114, %2074) : (tensor<384x128xf32>, tensor<128x512xf32>) -> tensor<384x512xf32>
%3116 = "mhlo.broadcast_in_dim"(%2073) {broadcast_dimensions = dense<1> : tensor<1xi64>} : (tensor<512xf32>) -> tensor<384x512xf32>
%3117 = mhlo.add %3115, %3116 : tensor<384x512xf32>
%3118 = "mhlo.reshape"(%3117) : (tensor<384x512xf32>) -> tensor<1x384x512xf32>
%3119 = mhlo.maximum %3118, %1119 : tensor<1x384x512xf32>
%3120 = "mhlo.reshape"(%3119) : (tensor<1x384x512xf32>) -> tensor<384x512xf32>
%3121 = "mhlo.dot"(%3120, %2078) : (tensor<384x512xf32>, tensor<512x128xf32>) -> tensor<384x128xf32>
%3122 = "mhlo.broadcast_in_dim"(%2077) {broadcast_dimensions = dense<1> : tensor<1xi64>} : (tensor<128xf32>) -> tensor<384x128xf32>
%3123 = mhlo.add %3121, %3122 : tensor<384x128xf32>
%3124 = "mhlo.reshape"(%3123) : (tensor<384x128xf32>) -> tensor<1x384x128xf32>
%3125 = mhlo.add %3124, %3113 : tensor<1x384x128xf32>
%3126 = "mhlo.broadcast_in_dim"(%2076) {broadcast_dimensions = dense<2> : tensor<1xi64>} : (tensor<128xf32>) -> tensor<1x384x128xf32>
%3127 = mhlo.multiply %3125, %3126 : tensor<1x384x128xf32>
%3128 = "mhlo.broadcast_in_dim"(%2075) {broadcast_dimensions = dense<2> : tensor<1xi64>} : (tensor<128xf32>) -> tensor<1x384x128xf32>
%3129 = mhlo.add %3127, %3128 : tensor<1x384x128xf32>
%3130 = "mhlo.reshape"(%3129) : (tensor<1x384x128xf32>) -> tensor<384x128xf32>
%3131 = "mhlo.dot"(%3130, %2080) : (tensor<384x128xf32>, tensor<128x512xf32>) -> tensor<384x512xf32>
%3132 = "mhlo.broadcast_in_dim"(%2079) {broadcast_dimensions = dense<1> : tensor<1xi64>} : (tensor<512xf32>) -> tensor<384x512xf32>
%3133 = mhlo.add %3131, %3132 : tensor<384x512xf32>
%3134 = "mhlo.reshape"(%3133) : (tensor<384x512xf32>) -> tensor<1x384x512xf32>
%3135 = mhlo.maximum %3134, %1119 : tensor<1x384x512xf32>
%3136 = "mhlo.reshape"(%3135) : (tensor<1x384x512xf32>) -> tensor<384x512xf32>
%3137 = "mhlo.dot"(%3136, %2084) : (tensor<384x512xf32>, tensor<512x128xf32>) -> tensor<384x128xf32>
%3138 = "mhlo.broadcast_in_dim"(%2083) {broadcast_dimensions = dense<1> : tensor<1xi64>} : (tensor<128xf32>) -> tensor<384x128xf32>
%3139 = mhlo.add %3137, %3138 : tensor<384x128xf32>
%3140 = "mhlo.reshape"(%3139) : (tensor<384x128xf32>) -> tensor<1x384x128xf32>
%3141 = mhlo.add %3140, %3129 : tensor<1x384x128xf32>
%3142 = "mhlo.broadcast_in_dim"(%2082) {broadcast_dimensions = dense<2> : tensor<1xi64>} : (tensor<128xf32>) -> tensor<1x384x128xf32>
%3143 = mhlo.multiply %3141, %3142 : tensor<1x384x128xf32>
%3144 = "mhlo.broadcast_in_dim"(%2081) {broadcast_dimensions = dense<2> : tensor<1xi64>} : (tensor<128xf32>) -> tensor<1x384x128xf32>
%3145 = mhlo.add %3143, %3144 : tensor<1x384x128xf32>
%3146 = "mhlo.reshape"(%3145) : (tensor<1x384x128xf32>) -> tensor<384x128xf32>
%3147 = "mhlo.dot"(%3146, %2086) : (tensor<384x128xf32>, tensor<128x512xf32>) -> tensor<384x512xf32>
%3148 = "mhlo.broadcast_in_dim"(%2085) {broadcast_dimensions = dense<1> : tensor<1xi64>} : (tensor<512xf32>) -> tensor<384x512xf32>
%3149 = mhlo.add %3147, %3148 : tensor<384x512xf32>
%3150 = "mhlo.reshape"(%3149) : (tensor<384x512xf32>) -> tensor<1x384x512xf32>
%3151 = mhlo.maximum %3150, %1119 : tensor<1x384x512xf32>
%3152 = "mhlo.reshape"(%3151) : (tensor<1x384x512xf32>) -> tensor<384x512xf32>
%3153 = "mhlo.dot"(%3152, %2094) : (tensor<384x512xf32>, tensor<512x128xf32>) -> tensor<384x128xf32>
%3154 = "mhlo.broadcast_in_dim"(%2093) {broadcast_dimensions = dense<1> : tensor<1xi64>} : (tensor<128xf32>) -> tensor<384x128xf32>
%3155 = mhlo.add %3153, %3154 : tensor<384x128xf32>
%3156 = "mhlo.reshape"(%3155) : (tensor<384x128xf32>) -> tensor<1x384x128xf32>
%3157 = mhlo.add %3156, %3145 : tensor<1x384x128xf32>
%3158 = "mhlo.broadcast_in_dim"(%2088) {broadcast_dimensions = dense<2> : tensor<1xi64>} : (tensor<128xf32>) -> tensor<1x384x128xf32>
%3159 = mhlo.multiply %3157, %3158 : tensor<1x384x128xf32>
%3160 = "mhlo.broadcast_in_dim"(%2087) {broadcast_dimensions = dense<2> : tensor<1xi64>} : (tensor<128xf32>) -> tensor<1x384x128xf32>
%3161 = mhlo.add %3159, %3160 : tensor<1x384x128xf32>
%3162 = "mhlo.reshape"(%3161) : (tensor<1x384x128xf32>) -> tensor<384x128xf32>
%3163 = "mhlo.dot"(%3162, %2092) : (tensor<384x128xf32>, tensor<128x512xf32>) -> tensor<384x512xf32>
%3164 = "mhlo.broadcast_in_dim"(%2091) {broadcast_dimensions = dense<1> : tensor<1xi64>} : (tensor<512xf32>) -> tensor<384x512xf32>
%3165 = mhlo.add %3163, %3164 : tensor<384x512xf32>
%3166 = "mhlo.reshape"(%3165) : (tensor<384x512xf32>) -> tensor<1x384x512xf32>
%3167 = mhlo.add %3166, %3041 : tensor<1x384x512xf32>
%3168 = "mhlo.broadcast_in_dim"(%2090) {broadcast_dimensions = dense<2> : tensor<1xi64>} : (tensor<512xf32>) -> tensor<1x384x512xf32>
%3169 = mhlo.multiply %3167, %3168 : tensor<1x384x512xf32>
%3170 = "mhlo.broadcast_in_dim"(%2089) {broadcast_dimensions = dense<2> : tensor<1xi64>} : (tensor<512xf32>) -> tensor<1x384x512xf32>
%3171 = mhlo.add %3169, %3170 : tensor<1x384x512xf32>
%3172 = "mhlo.reshape"(%3171) : (tensor<1x384x512xf32>) -> tensor<384x512xf32>
%3173 = "mhlo.dot"(%3172, %2104) : (tensor<384x512xf32>, tensor<512x128xf32>) -> tensor<384x128xf32>
%3174 = "mhlo.broadcast_in_dim"(%2103) {broadcast_dimensions = dense<1> : tensor<1xi64>} : (tensor<128xf32>) -> tensor<384x128xf32>
%3175 = mhlo.add %3173, %3174 : tensor<384x128xf32>
%3176 = "mhlo.reshape"(%3175) : (tensor<384x128xf32>) -> tensor<1x384x4x32xf32>
%3177 = "mhlo.transpose"(%3176) {permutation = dense<[0, 2, 1, 3]> : tensor<4xi64>} : (tensor<1x384x4x32xf32>) -> tensor<1x4x384x32xf32>
%3178 = "mhlo.dot"(%3172, %2108) : (tensor<384x512xf32>, tensor<512x128xf32>) -> tensor<384x128xf32>
%3179 = "mhlo.reshape"(%3178) : (tensor<384x128xf32>) -> tensor<1x384x128xf32>
%3180 = "mhlo.broadcast_in_dim"(%2107) {broadcast_dimensions = dense<2> : tensor<1xi64>} : (tensor<128xf32>) -> tensor<1x384x128xf32>
%3181 = mhlo.add %3179, %3180 : tensor<1x384x128xf32>
%3182 = "mhlo.broadcast_in_dim"(%2106) {broadcast_dimensions = dense<2> : tensor<1xi64>} : (tensor<128xf32>) -> tensor<1x384x128xf32>
%3183 = mhlo.multiply %3181, %3182 : tensor<1x384x128xf32>
%3184 = "mhlo.broadcast_in_dim"(%2105) {broadcast_dimensions = dense<2> : tensor<1xi64>} : (tensor<128xf32>) -> tensor<1x384x128xf32>
%3185 = mhlo.add %3183, %3184 : tensor<1x384x128xf32>
%3186 = "mhlo.reshape"(%3185) : (tensor<1x384x128xf32>) -> tensor<384x128xf32>
%3187 = "mhlo.dot"(%3186, %2100) : (tensor<384x128xf32>, tensor<128x128xf32>) -> tensor<384x128xf32>
%3188 = "mhlo.broadcast_in_dim"(%2099) {broadcast_dimensions = dense<1> : tensor<1xi64>} : (tensor<128xf32>) -> tensor<384x128xf32>
%3189 = mhlo.add %3187, %3188 : tensor<384x128xf32>
%3190 = "mhlo.reshape"(%3189) : (tensor<384x128xf32>) -> tensor<1x384x4x32xf32>
%3191 = "mhlo.transpose"(%3190) {permutation = dense<[0, 2, 1, 3]> : tensor<4xi64>} : (tensor<1x384x4x32xf32>) -> tensor<1x4x384x32xf32>
%3192 = "mhlo.dot"(%3186, %2102) : (tensor<384x128xf32>, tensor<128x128xf32>) -> tensor<384x128xf32>
%3193 = "mhlo.broadcast_in_dim"(%2101) {broadcast_dimensions = dense<1> : tensor<1xi64>} : (tensor<128xf32>) -> tensor<384x128xf32>
%3194 = mhlo.add %3192, %3193 : tensor<384x128xf32>
%3195 = "mhlo.reshape"(%3194) : (tensor<384x128xf32>) -> tensor<1x384x4x32xf32>
%3196 = "mhlo.transpose"(%3195) {permutation = dense<[0, 2, 1, 3]> : tensor<4xi64>} : (tensor<1x384x4x32xf32>) -> tensor<1x4x384x32xf32>
%3197 = "mhlo.dot_general"(%3196, %3191) {dot_dimension_numbers = #mhlo.dot<lhs_batching_dimensions = [0, 1], lhs_contracting_dimensions = [3], rhs_batching_dimensions = [0, 1], rhs_contracting_dimensions = [3]>} : (tensor<1x4x384x32xf32>, tensor<1x4x384x32xf32>) -> tensor<1x4x384x384xf32>
%3198 = mhlo.multiply %3197, %1114 : tensor<1x4x384x384xf32>
%3199 = "mhlo.broadcast_in_dim"(%2254) {broadcast_dimensions = dense<[0, 1, 2, 3]> : tensor<4xi64>} : (tensor<1x1x384x384xf32>) -> tensor<1x4x384x384xf32>
%3200 = mhlo.add %3198, %3199 : tensor<1x4x384x384xf32>
%3201 = "mhlo.reduce"(%3200, %1117) ( {
^bb0(%arg3: tensor<f32>, %arg4: tensor<f32>): // no predecessors
%5393 = mhlo.maximum %arg3, %arg4 : tensor<f32>
"mhlo.return"(%5393) : (tensor<f32>) -> ()
}) {dimensions = dense<3> : tensor<1xi64>} : (tensor<1x4x384x384xf32>, tensor<f32>) -> tensor<1x4x384xf32>
%3202 = "mhlo.broadcast_in_dim"(%3201) {broadcast_dimensions = dense<[0, 1, 2]> : tensor<3xi64>} : (tensor<1x4x384xf32>) -> tensor<1x4x384x384xf32>
%3203 = mhlo.subtract %3200, %3202 : tensor<1x4x384x384xf32>
%3204 = "mhlo.exponential"(%3203) : (tensor<1x4x384x384xf32>) -> tensor<1x4x384x384xf32>
%3205 = "mhlo.reduce"(%3204, %1118) ( {
^bb0(%arg3: tensor<f32>, %arg4: tensor<f32>): // no predecessors
%5393 = mhlo.add %arg3, %arg4 : tensor<f32>
"mhlo.return"(%5393) : (tensor<f32>) -> ()
}) {dimensions = dense<3> : tensor<1xi64>} : (tensor<1x4x384x384xf32>, tensor<f32>) -> tensor<1x4x384xf32>
%3206 = "mhlo.broadcast_in_dim"(%3205) {broadcast_dimensions = dense<[0, 1, 2]> : tensor<3xi64>} : (tensor<1x4x384xf32>) -> tensor<1x4x384x384xf32>
%3207 = mhlo.divide %3204, %3206 : tensor<1x4x384x384xf32>
%3208 = "mhlo.dot_general"(%3207, %3177) {dot_dimension_numbers = #mhlo.dot<lhs_batching_dimensions = [0, 1], lhs_contracting_dimensions = [3], rhs_batching_dimensions = [0, 1], rhs_contracting_dimensions = [2]>} : (tensor<1x4x384x384xf32>, tensor<1x4x384x32xf32>) -> tensor<1x4x384x32xf32>
%3209 = "mhlo.transpose"(%3208) {permutation = dense<[0, 2, 1, 3]> : tensor<4xi64>} : (tensor<1x4x384x32xf32>) -> tensor<1x384x4x32xf32>
%3210 = "mhlo.reshape"(%3209) : (tensor<1x384x4x32xf32>) -> tensor<384x128xf32>
%3211 = "mhlo.dot"(%3210, %2098) : (tensor<384x128xf32>, tensor<128x128xf32>) -> tensor<384x128xf32>
%3212 = "mhlo.broadcast_in_dim"(%2097) {broadcast_dimensions = dense<1> : tensor<1xi64>} : (tensor<128xf32>) -> tensor<384x128xf32>
%3213 = mhlo.add %3211, %3212 : tensor<384x128xf32>
%3214 = "mhlo.reshape"(%3213) : (tensor<384x128xf32>) -> tensor<1x384x128xf32>
%3215 = "mhlo.dot"(%3172, %2112) : (tensor<384x512xf32>, tensor<512x128xf32>) -> tensor<384x128xf32>
%3216 = "mhlo.broadcast_in_dim"(%2111) {broadcast_dimensions = dense<1> : tensor<1xi64>} : (tensor<128xf32>) -> tensor<384x128xf32>
%3217 = mhlo.add %3215, %3216 : tensor<384x128xf32>
%3218 = "mhlo.reshape"(%3217) : (tensor<384x128xf32>) -> tensor<1x384x128xf32>
%3219 = "mhlo.broadcast_in_dim"(%2110) {broadcast_dimensions = dense<2> : tensor<1xi64>} : (tensor<128xf32>) -> tensor<1x384x128xf32>
%3220 = mhlo.multiply %3218, %3219 : tensor<1x384x128xf32>
%3221 = "mhlo.broadcast_in_dim"(%2109) {broadcast_dimensions = dense<2> : tensor<1xi64>} : (tensor<128xf32>) -> tensor<1x384x128xf32>
%3222 = mhlo.add %3220, %3221 : tensor<1x384x128xf32>
%3223 = mhlo.add %3214, %3222 : tensor<1x384x128xf32>
%3224 = "mhlo.broadcast_in_dim"(%2096) {broadcast_dimensions = dense<2> : tensor<1xi64>} : (tensor<128xf32>) -> tensor<1x384x128xf32>
%3225 = mhlo.multiply %3223, %3224 : tensor<1x384x128xf32>
%3226 = "mhlo.broadcast_in_dim"(%2095) {broadcast_dimensions = dense<2> : tensor<1xi64>} : (tensor<128xf32>) -> tensor<1x384x128xf32>
%3227 = mhlo.add %3225, %3226 : tensor<1x384x128xf32>
%3228 = "mhlo.reshape"(%3227) : (tensor<1x384x128xf32>) -> tensor<384x128xf32>
%3229 = "mhlo.dot"(%3228, %2114) : (tensor<384x128xf32>, tensor<128x512xf32>) -> tensor<384x512xf32>
%3230 = "mhlo.broadcast_in_dim"(%2113) {broadcast_dimensions = dense<1> : tensor<1xi64>} : (tensor<512xf32>) -> tensor<384x512xf32>
%3231 = mhlo.add %3229, %3230 : tensor<384x512xf32>
%3232 = "mhlo.reshape"(%3231) : (tensor<384x512xf32>) -> tensor<1x384x512xf32>
%3233 = mhlo.maximum %3232, %1119 : tensor<1x384x512xf32>
%3234 = "mhlo.reshape"(%3233) : (tensor<1x384x512xf32>) -> tensor<384x512xf32>
%3235 = "mhlo.dot"(%3234, %2118) : (tensor<384x512xf32>, tensor<512x128xf32>) -> tensor<384x128xf32>
%3236 = "mhlo.broadcast_in_dim"(%2117) {broadcast_dimensions = dense<1> : tensor<1xi64>} : (tensor<128xf32>) -> tensor<384x128xf32>
%3237 = mhlo.add %3235, %3236 : tensor<384x128xf32>
%3238 = "mhlo.reshape"(%3237) : (tensor<384x128xf32>) -> tensor<1x384x128xf32>
%3239 = mhlo.add %3238, %3227 : tensor<1x384x128xf32>
%3240 = "mhlo.broadcast_in_dim"(%2116) {broadcast_dimensions = dense<2> : tensor<1xi64>} : (tensor<128xf32>) -> tensor<1x384x128xf32>
%3241 = mhlo.multiply %3239, %3240 : tensor<1x384x128xf32>
%3242 = "mhlo.broadcast_in_dim"(%2115) {broadcast_dimensions = dense<2> : tensor<1xi64>} : (tensor<128xf32>) -> tensor<1x384x128xf32>
%3243 = mhlo.add %3241, %3242 : tensor<1x384x128xf32>
%3244 = "mhlo.reshape"(%3243) : (tensor<1x384x128xf32>) -> tensor<384x128xf32>
%3245 = "mhlo.dot"(%3244, %2120) : (tensor<384x128xf32>, tensor<128x512xf32>) -> tensor<384x512xf32>
%3246 = "mhlo.broadcast_in_dim"(%2119) {broadcast_dimensions = dense<1> : tensor<1xi64>} : (tensor<512xf32>) -> tensor<384x512xf32>
%3247 = mhlo.add %3245, %3246 : tensor<384x512xf32>
%3248 = "mhlo.reshape"(%3247) : (tensor<384x512xf32>) -> tensor<1x384x512xf32>
%3249 = mhlo.maximum %3248, %1119 : tensor<1x384x512xf32>
%3250 = "mhlo.reshape"(%3249) : (tensor<1x384x512xf32>) -> tensor<384x512xf32>
%3251 = "mhlo.dot"(%3250, %2124) : (tensor<384x512xf32>, tensor<512x128xf32>) -> tensor<384x128xf32>
%3252 = "mhlo.broadcast_in_dim"(%2123) {broadcast_dimensions = dense<1> : tensor<1xi64>} : (tensor<128xf32>) -> tensor<384x128xf32>
%3253 = mhlo.add %3251, %3252 : tensor<384x128xf32>
%3254 = "mhlo.reshape"(%3253) : (tensor<384x128xf32>) -> tensor<1x384x128xf32>
%3255 = mhlo.add %3254, %3243 : tensor<1x384x128xf32>
%3256 = "mhlo.broadcast_in_dim"(%2122) {broadcast_dimensions = dense<2> : tensor<1xi64>} : (tensor<128xf32>) -> tensor<1x384x128xf32>
%3257 = mhlo.multiply %3255, %3256 : tensor<1x384x128xf32>
%3258 = "mhlo.broadcast_in_dim"(%2121) {broadcast_dimensions = dense<2> : tensor<1xi64>} : (tensor<128xf32>) -> tensor<1x384x128xf32>
%3259 = mhlo.add %3257, %3258 : tensor<1x384x128xf32>
%3260 = "mhlo.reshape"(%3259) : (tensor<1x384x128xf32>) -> tensor<384x128xf32>
%3261 = "mhlo.dot"(%3260, %2126) : (tensor<384x128xf32>, tensor<128x512xf32>) -> tensor<384x512xf32>
%3262 = "mhlo.broadcast_in_dim"(%2125) {broadcast_dimensions = dense<1> : tensor<1xi64>} : (tensor<512xf32>) -> tensor<384x512xf32>
%3263 = mhlo.add %3261, %3262 : tensor<384x512xf32>
%3264 = "mhlo.reshape"(%3263) : (tensor<384x512xf32>) -> tensor<1x384x512xf32>
%3265 = mhlo.maximum %3264, %1119 : tensor<1x384x512xf32>
%3266 = "mhlo.reshape"(%3265) : (tensor<1x384x512xf32>) -> tensor<384x512xf32>
%3267 = "mhlo.dot"(%3266, %2130) : (tensor<384x512xf32>, tensor<512x128xf32>) -> tensor<384x128xf32>
%3268 = "mhlo.broadcast_in_dim"(%2129) {broadcast_dimensions = dense<1> : tensor<1xi64>} : (tensor<128xf32>) -> tensor<384x128xf32>
%3269 = mhlo.add %3267, %3268 : tensor<384x128xf32>
%3270 = "mhlo.reshape"(%3269) : (tensor<384x128xf32>) -> tensor<1x384x128xf32>
%3271 = mhlo.add %3270, %3259 : tensor<1x384x128xf32>
%3272 = "mhlo.broadcast_in_dim"(%2128) {broadcast_dimensions = dense<2> : tensor<1xi64>} : (tensor<128xf32>) -> tensor<1x384x128xf32>
%3273 = mhlo.multiply %3271, %3272 : tensor<1x384x128xf32>
%3274 = "mhlo.broadcast_in_dim"(%2127) {broadcast_dimensions = dense<2> : tensor<1xi64>} : (tensor<128xf32>) -> tensor<1x384x128xf32>
%3275 = mhlo.add %3273, %3274 : tensor<1x384x128xf32>
%3276 = "mhlo.reshape"(%3275) : (tensor<1x384x128xf32>) -> tensor<384x128xf32>
%3277 = "mhlo.dot"(%3276, %2132) : (tensor<384x128xf32>, tensor<128x512xf32>) -> tensor<384x512xf32>
%3278 = "mhlo.broadcast_in_dim"(%2131) {broadcast_dimensions = dense<1> : tensor<1xi64>} : (tensor<512xf32>) -> tensor<384x512xf32>
%3279 = mhlo.add %3277, %3278 : tensor<384x512xf32>
%3280 = "mhlo.reshape"(%3279) : (tensor<384x512xf32>) -> tensor<1x384x512xf32>
%3281 = mhlo.maximum %3280, %1119 : tensor<1x384x512xf32>
%3282 = "mhlo.reshape"(%3281) : (tensor<1x384x512xf32>) -> tensor<384x512xf32>
%3283 = "mhlo.dot"(%3282, %2140) : (tensor<384x512xf32>, tensor<512x128xf32>) -> tensor<384x128xf32>
%3284 = "mhlo.broadcast_in_dim"(%2139) {broadcast_dimensions = dense<1> : tensor<1xi64>} : (tensor<128xf32>) -> tensor<384x128xf32>
%3285 = mhlo.add %3283, %3284 : tensor<384x128xf32>
%3286 = "mhlo.reshape"(%3285) : (tensor<384x128xf32>) -> tensor<1x384x128xf32>
%3287 = mhlo.add %3286, %3275 : tensor<1x384x128xf32>
%3288 = "mhlo.broadcast_in_dim"(%2134) {broadcast_dimensions = dense<2> : tensor<1xi64>} : (tensor<128xf32>) -> tensor<1x384x128xf32>
%3289 = mhlo.multiply %3287, %3288 : tensor<1x384x128xf32>
%3290 = "mhlo.broadcast_in_dim"(%2133) {broadcast_dimensions = dense<2> : tensor<1xi64>} : (tensor<128xf32>) -> tensor<1x384x128xf32>
%3291 = mhlo.add %3289, %3290 : tensor<1x384x128xf32>
%3292 = "mhlo.reshape"(%3291) : (tensor<1x384x128xf32>) -> tensor<384x128xf32>
%3293 = "mhlo.dot"(%3292, %2138) : (tensor<384x128xf32>, tensor<128x512xf32>) -> tensor<384x512xf32>
%3294 = "mhlo.broadcast_in_dim"(%2137) {broadcast_dimensions = dense<1> : tensor<1xi64>} : (tensor<512xf32>) -> tensor<384x512xf32>
%3295 = mhlo.add %3293, %3294 : tensor<384x512xf32>
%3296 = "mhlo.reshape"(%3295) : (tensor<384x512xf32>) -> tensor<1x384x512xf32>
%3297 = mhlo.add %3296, %3171 : tensor<1x384x512xf32>
%3298 = "mhlo.broadcast_in_dim"(%2136) {broadcast_dimensions = dense<2> : tensor<1xi64>} : (tensor<512xf32>) -> tensor<1x384x512xf32>
%3299 = mhlo.multiply %3297, %3298 : tensor<1x384x512xf32>
%3300 = "mhlo.broadcast_in_dim"(%2135) {broadcast_dimensions = dense<2> : tensor<1xi64>} : (tensor<512xf32>) -> tensor<1x384x512xf32>
%3301 = mhlo.add %3299, %3300 : tensor<1x384x512xf32>
%3302 = "mhlo.reshape"(%3301) : (tensor<1x384x512xf32>) -> tensor<384x512xf32>
%3303 = "mhlo.dot"(%3302, %2150) : (tensor<384x512xf32>, tensor<512x128xf32>) -> tensor<384x128xf32>
%3304 = "mhlo.broadcast_in_dim"(%2149) {broadcast_dimensions = dense<1> : tensor<1xi64>} : (tensor<128xf32>) -> tensor<384x128xf32>
%3305 = mhlo.add %3303, %3304 : tensor<384x128xf32>
%3306 = "mhlo.reshape"(%3305) : (tensor<384x128xf32>) -> tensor<1x384x4x32xf32>
%3307 = "mhlo.transpose"(%3306) {permutation = dense<[0, 2, 1, 3]> : tensor<4xi64>} : (tensor<1x384x4x32xf32>) -> tensor<1x4x384x32xf32>
%3308 = "mhlo.dot"(%3302, %2154) : (tensor<384x512xf32>, tensor<512x128xf32>) -> tensor<384x128xf32>
%3309 = "mhlo.reshape"(%3308) : (tensor<384x128xf32>) -> tensor<1x384x128xf32>
%3310 = "mhlo.broadcast_in_dim"(%2153) {broadcast_dimensions = dense<2> : tensor<1xi64>} : (tensor<128xf32>) -> tensor<1x384x128xf32>
%3311 = mhlo.add %3309, %3310 : tensor<1x384x128xf32>
%3312 = "mhlo.broadcast_in_dim"(%2152) {broadcast_dimensions = dense<2> : tensor<1xi64>} : (tensor<128xf32>) -> tensor<1x384x128xf32>
%3313 = mhlo.multiply %3311, %3312 : tensor<1x384x128xf32>
%3314 = "mhlo.broadcast_in_dim"(%2151) {broadcast_dimensions = dense<2> : tensor<1xi64>} : (tensor<128xf32>) -> tensor<1x384x128xf32>
%3315 = mhlo.add %3313, %3314 : tensor<1x384x128xf32>
%3316 = "mhlo.reshape"(%3315) : (tensor<1x384x128xf32>) -> tensor<384x128xf32>
%3317 = "mhlo.dot"(%3316, %2146) : (tensor<384x128xf32>, tensor<128x128xf32>) -> tensor<384x128xf32>
%3318 = "mhlo.broadcast_in_dim"(%2145) {broadcast_dimensions = dense<1> : tensor<1xi64>} : (tensor<128xf32>) -> tensor<384x128xf32>
%3319 = mhlo.add %3317, %3318 : tensor<384x128xf32>
%3320 = "mhlo.reshape"(%3319) : (tensor<384x128xf32>) -> tensor<1x384x4x32xf32>
%3321 = "mhlo.transpose"(%3320) {permutation = dense<[0, 2, 1, 3]> : tensor<4xi64>} : (tensor<1x384x4x32xf32>) -> tensor<1x4x384x32xf32>
%3322 = "mhlo.dot"(%3316, %2148) : (tensor<384x128xf32>, tensor<128x128xf32>) -> tensor<384x128xf32>
%3323 = "mhlo.broadcast_in_dim"(%2147) {broadcast_dimensions = dense<1> : tensor<1xi64>} : (tensor<128xf32>) -> tensor<384x128xf32>
%3324 = mhlo.add %3322, %3323 : tensor<384x128xf32>
%3325 = "mhlo.reshape"(%3324) : (tensor<384x128xf32>) -> tensor<1x384x4x32xf32>
%3326 = "mhlo.transpose"(%3325) {permutation = dense<[0, 2, 1, 3]> : tensor<4xi64>} : (tensor<1x384x4x32xf32>) -> tensor<1x4x384x32xf32>
%3327 = "mhlo.dot_general"(%3326, %3321) {dot_dimension_numbers = #mhlo.dot<lhs_batching_dimensions = [0, 1], lhs_contracting_dimensions = [3], rhs_batching_dimensions = [0, 1], rhs_contracting_dimensions = [3]>} : (tensor<1x4x384x32xf32>, tensor<1x4x384x32xf32>) -> tensor<1x4x384x384xf32>
%3328 = mhlo.multiply %3327, %1114 : tensor<1x4x384x384xf32>
%3329 = "mhlo.broadcast_in_dim"(%2254) {broadcast_dimensions = dense<[0, 1, 2, 3]> : tensor<4xi64>} : (tensor<1x1x384x384xf32>) -> tensor<1x4x384x384xf32>
%3330 = mhlo.add %3328, %3329 : tensor<1x4x384x384xf32>
%3331 = "mhlo.reduce"(%3330, %1117) ( {
^bb0(%arg3: tensor<f32>, %arg4: tensor<f32>): // no predecessors
%5393 = mhlo.maximum %arg3, %arg4 : tensor<f32>
"mhlo.return"(%5393) : (tensor<f32>) -> ()
}) {dimensions = dense<3> : tensor<1xi64>} : (tensor<1x4x384x384xf32>, tensor<f32>) -> tensor<1x4x384xf32>
%3332 = "mhlo.broadcast_in_dim"(%3331) {broadcast_dimensions = dense<[0, 1, 2]> : tensor<3xi64>} : (tensor<1x4x384xf32>) -> tensor<1x4x384x384xf32>
%3333 = mhlo.subtract %3330, %3332 : tensor<1x4x384x384xf32>
%3334 = "mhlo.exponential"(%3333) : (tensor<1x4x384x384xf32>) -> tensor<1x4x384x384xf32>
%3335 = "mhlo.reduce"(%3334, %1118) ( {
^bb0(%arg3: tensor<f32>, %arg4: tensor<f32>): // no predecessors
%5393 = mhlo.add %arg3, %arg4 : tensor<f32>
"mhlo.return"(%5393) : (tensor<f32>) -> ()
}) {dimensions = dense<3> : tensor<1xi64>} : (tensor<1x4x384x384xf32>, tensor<f32>) -> tensor<1x4x384xf32>
%3336 = "mhlo.broadcast_in_dim"(%3335) {broadcast_dimensions = dense<[0, 1, 2]> : tensor<3xi64>} : (tensor<1x4x384xf32>) -> tensor<1x4x384x384xf32>
%3337 = mhlo.divide %3334, %3336 : tensor<1x4x384x384xf32>
%3338 = "mhlo.dot_general"(%3337, %3307) {dot_dimension_numbers = #mhlo.dot<lhs_batching_dimensions = [0, 1], lhs_contracting_dimensions = [3], rhs_batching_dimensions = [0, 1], rhs_contracting_dimensions = [2]>} : (tensor<1x4x384x384xf32>, tensor<1x4x384x32xf32>) -> tensor<1x4x384x32xf32>
%3339 = "mhlo.transpose"(%3338) {permutation = dense<[0, 2, 1, 3]> : tensor<4xi64>} : (tensor<1x4x384x32xf32>) -> tensor<1x384x4x32xf32>
%3340 = "mhlo.reshape"(%3339) : (tensor<1x384x4x32xf32>) -> tensor<384x128xf32>
%3341 = "mhlo.dot"(%3340, %2144) : (tensor<384x128xf32>, tensor<128x128xf32>) -> tensor<384x128xf32>
%3342 = "mhlo.broadcast_in_dim"(%2143) {broadcast_dimensions = dense<1> : tensor<1xi64>} : (tensor<128xf32>) -> tensor<384x128xf32>
%3343 = mhlo.add %3341, %3342 : tensor<384x128xf32>
%3344 = "mhlo.reshape"(%3343) : (tensor<384x128xf32>) -> tensor<1x384x128xf32>
%3345 = "mhlo.dot"(%3302, %2158) : (tensor<384x512xf32>, tensor<512x128xf32>) -> tensor<384x128xf32>
%3346 = "mhlo.broadcast_in_dim"(%2157) {broadcast_dimensions = dense<1> : tensor<1xi64>} : (tensor<128xf32>) -> tensor<384x128xf32>
%3347 = mhlo.add %3345, %3346 : tensor<384x128xf32>
%3348 = "mhlo.reshape"(%3347) : (tensor<384x128xf32>) -> tensor<1x384x128xf32>
%3349 = "mhlo.broadcast_in_dim"(%2156) {broadcast_dimensions = dense<2> : tensor<1xi64>} : (tensor<128xf32>) -> tensor<1x384x128xf32>
%3350 = mhlo.multiply %3348, %3349 : tensor<1x384x128xf32>
%3351 = "mhlo.broadcast_in_dim"(%2155) {broadcast_dimensions = dense<2> : tensor<1xi64>} : (tensor<128xf32>) -> tensor<1x384x128xf32>
%3352 = mhlo.add %3350, %3351 : tensor<1x384x128xf32>
%3353 = mhlo.add %3344, %3352 : tensor<1x384x128xf32>
%3354 = "mhlo.broadcast_in_dim"(%2142) {broadcast_dimensions = dense<2> : tensor<1xi64>} : (tensor<128xf32>) -> tensor<1x384x128xf32>
%3355 = mhlo.multiply %3353, %3354 : tensor<1x384x128xf32>
%3356 = "mhlo.broadcast_in_dim"(%2141) {broadcast_dimensions = dense<2> : tensor<1xi64>} : (tensor<128xf32>) -> tensor<1x384x128xf32>
%3357 = mhlo.add %3355, %3356 : tensor<1x384x128xf32>
%3358 = "mhlo.reshape"(%3357) : (tensor<1x384x128xf32>) -> tensor<384x128xf32>
%3359 = "mhlo.dot"(%3358, %2160) : (tensor<384x128xf32>, tensor<128x512xf32>) -> tensor<384x512xf32>
%3360 = "mhlo.broadcast_in_dim"(%2159) {broadcast_dimensions = dense<1> : tensor<1xi64>} : (tensor<512xf32>) -> tensor<384x512xf32>
%3361 = mhlo.add %3359, %3360 : tensor<384x512xf32>
%3362 = "mhlo.reshape"(%3361) : (tensor<384x512xf32>) -> tensor<1x384x512xf32>
%3363 = mhlo.maximum %3362, %1119 : tensor<1x384x512xf32>
%3364 = "mhlo.reshape"(%3363) : (tensor<1x384x512xf32>) -> tensor<384x512xf32>
%3365 = "mhlo.dot"(%3364, %2164) : (tensor<384x512xf32>, tensor<512x128xf32>) -> tensor<384x128xf32>
%3366 = "mhlo.broadcast_in_dim"(%2163) {broadcast_dimensions = dense<1> : tensor<1xi64>} : (tensor<128xf32>) -> tensor<384x128xf32>
%3367 = mhlo.add %3365, %3366 : tensor<384x128xf32>
%3368 = "mhlo.reshape"(%3367) : (tensor<384x128xf32>) -> tensor<1x384x128xf32>
%3369 = mhlo.add %3368, %3357 : tensor<1x384x128xf32>
%3370 = "mhlo.broadcast_in_dim"(%2162) {broadcast_dimensions = dense<2> : tensor<1xi64>} : (tensor<128xf32>) -> tensor<1x384x128xf32>
%3371 = mhlo.multiply %3369, %3370 : tensor<1x384x128xf32>
%3372 = "mhlo.broadcast_in_dim"(%2161) {broadcast_dimensions = dense<2> : tensor<1xi64>} : (tensor<128xf32>) -> tensor<1x384x128xf32>
%3373 = mhlo.add %3371, %3372 : tensor<1x384x128xf32>
%3374 = "mhlo.reshape"(%3373) : (tensor<1x384x128xf32>) -> tensor<384x128xf32>
%3375 = "mhlo.dot"(%3374, %2166) : (tensor<384x128xf32>, tensor<128x512xf32>) -> tensor<384x512xf32>
%3376 = "mhlo.broadcast_in_dim"(%2165) {broadcast_dimensions = dense<1> : tensor<1xi64>} : (tensor<512xf32>) -> tensor<384x512xf32>
%3377 = mhlo.add %3375, %3376 : tensor<384x512xf32>
%3378 = "mhlo.reshape"(%3377) : (tensor<384x512xf32>) -> tensor<1x384x512xf32>
%3379 = mhlo.maximum %3378, %1119 : tensor<1x384x512xf32>
%3380 = "mhlo.reshape"(%3379) : (tensor<1x384x512xf32>) -> tensor<384x512xf32>
%3381 = "mhlo.dot"(%3380, %2170) : (tensor<384x512xf32>, tensor<512x128xf32>) -> tensor<384x128xf32>
%3382 = "mhlo.broadcast_in_dim"(%2169) {broadcast_dimensions = dense<1> : tensor<1xi64>} : (tensor<128xf32>) -> tensor<384x128xf32>
%3383 = mhlo.add %3381, %3382 : tensor<384x128xf32>
%3384 = "mhlo.reshape"(%3383) : (tensor<384x128xf32>) -> tensor<1x384x128xf32>
%3385 = mhlo.add %3384, %3373 : tensor<1x384x128xf32>
%3386 = "mhlo.broadcast_in_dim"(%2168) {broadcast_dimensions = dense<2> : tensor<1xi64>} : (tensor<128xf32>) -> tensor<1x384x128xf32>
%3387 = mhlo.multiply %3385, %3386 : tensor<1x384x128xf32>
%3388 = "mhlo.broadcast_in_dim"(%2167) {broadcast_dimensions = dense<2> : tensor<1xi64>} : (tensor<128xf32>) -> tensor<1x384x128xf32>
%3389 = mhlo.add %3387, %3388 : tensor<1x384x128xf32>
%3390 = "mhlo.reshape"(%3389) : (tensor<1x384x128xf32>) -> tensor<384x128xf32>
%3391 = "mhlo.dot"(%3390, %2172) : (tensor<384x128xf32>, tensor<128x512xf32>) -> tensor<384x512xf32>
%3392 = "mhlo.broadcast_in_dim"(%2171) {broadcast_dimensions = dense<1> : tensor<1xi64>} : (tensor<512xf32>) -> tensor<384x512xf32>
%3393 = mhlo.add %3391, %3392 : tensor<384x512xf32>
%3394 = "mhlo.reshape"(%3393) : (tensor<384x512xf32>) -> tensor<1x384x512xf32>
%3395 = mhlo.maximum %3394, %1119 : tensor<1x384x512xf32>
%3396 = "mhlo.reshape"(%3395) : (tensor<1x384x512xf32>) -> tensor<384x512xf32>
%3397 = "mhlo.dot"(%3396, %2176) : (tensor<384x512xf32>, tensor<512x128xf32>) -> tensor<384x128xf32>
%3398 = "mhlo.broadcast_in_dim"(%2175) {broadcast_dimensions = dense<1> : tensor<1xi64>} : (tensor<128xf32>) -> tensor<384x128xf32>
%3399 = mhlo.add %3397, %3398 : tensor<384x128xf32>
%3400 = "mhlo.reshape"(%3399) : (tensor<384x128xf32>) -> tensor<1x384x128xf32>
%3401 = mhlo.add %3400, %3389 : tensor<1x384x128xf32>
%3402 = "mhlo.broadcast_in_dim"(%2174) {broadcast_dimensions = dense<2> : tensor<1xi64>} : (tensor<128xf32>) -> tensor<1x384x128xf32>
%3403 = mhlo.multiply %3401, %3402 : tensor<1x384x128xf32>
%3404 = "mhlo.broadcast_in_dim"(%2173) {broadcast_dimensions = dense<2> : tensor<1xi64>} : (tensor<128xf32>) -> tensor<1x384x128xf32>
%3405 = mhlo.add %3403, %3404 : tensor<1x384x128xf32>
%3406 = "mhlo.reshape"(%3405) : (tensor<1x384x128xf32>) -> tensor<384x128xf32>
%3407 = "mhlo.dot"(%3406, %2178) : (tensor<384x128xf32>, tensor<128x512xf32>) -> tensor<384x512xf32>
%3408 = "mhlo.broadcast_in_dim"(%2177) {broadcast_dimensions = dense<1> : tensor<1xi64>} : (tensor<512xf32>) -> tensor<384x512xf32>
%3409 = mhlo.add %3407, %3408 : tensor<384x512xf32>
%3410 = "mhlo.reshape"(%3409) : (tensor<384x512xf32>) -> tensor<1x384x512xf32>
%3411 = mhlo.maximum %3410, %1119 : tensor<1x384x512xf32>
%3412 = "mhlo.reshape"(%3411) : (tensor<1x384x512xf32>) -> tensor<384x512xf32>
%3413 = "mhlo.dot"(%3412, %2186) : (tensor<384x512xf32>, tensor<512x128xf32>) -> tensor<384x128xf32>
%3414 = "mhlo.broadcast_in_dim"(%2185) {broadcast_dimensions = dense<1> : tensor<1xi64>} : (tensor<128xf32>) -> tensor<384x128xf32>
%3415 = mhlo.add %3413, %3414 : tensor<384x128xf32>
%3416 = "mhlo.reshape"(%3415) : (tensor<384x128xf32>) -> tensor<1x384x128xf32>
%3417 = mhlo.add %3416, %3405 : tensor<1x384x128xf32>
%3418 = "mhlo.broadcast_in_dim"(%2180) {broadcast_dimensions = dense<2> : tensor<1xi64>} : (tensor<128xf32>) -> tensor<1x384x128xf32>
%3419 = mhlo.multiply %3417, %3418 : tensor<1x384x128xf32>
%3420 = "mhlo.broadcast_in_dim"(%2179) {broadcast_dimensions = dense<2> : tensor<1xi64>} : (tensor<128xf32>) -> tensor<1x384x128xf32>
%3421 = mhlo.add %3419, %3420 : tensor<1x384x128xf32>
%3422 = "mhlo.reshape"(%3421) : (tensor<1x384x128xf32>) -> tensor<384x128xf32>
%3423 = "mhlo.dot"(%3422, %2184) : (tensor<384x128xf32>, tensor<128x512xf32>) -> tensor<384x512xf32>
%3424 = "mhlo.broadcast_in_dim"(%2183) {broadcast_dimensions = dense<1> : tensor<1xi64>} : (tensor<512xf32>) -> tensor<384x512xf32>
%3425 = mhlo.add %3423, %3424 : tensor<384x512xf32>
%3426 = "mhlo.reshape"(%3425) : (tensor<384x512xf32>) -> tensor<1x384x512xf32>
%3427 = mhlo.add %3426, %3301 : tensor<1x384x512xf32>
%3428 = "mhlo.broadcast_in_dim"(%2182) {broadcast_dimensions = dense<2> : tensor<1xi64>} : (tensor<512xf32>) -> tensor<1x384x512xf32>
%3429 = mhlo.multiply %3427, %3428 : tensor<1x384x512xf32>
%3430 = "mhlo.broadcast_in_dim"(%2181) {broadcast_dimensions = dense<2> : tensor<1xi64>} : (tensor<512xf32>) -> tensor<1x384x512xf32>
%3431 = mhlo.add %3429, %3430 : tensor<1x384x512xf32>
%3432 = "mhlo.reshape"(%3431) : (tensor<1x384x512xf32>) -> tensor<384x512xf32>
%3433 = "mhlo.dot"(%3432, %2196) : (tensor<384x512xf32>, tensor<512x128xf32>) -> tensor<384x128xf32>
%3434 = "mhlo.broadcast_in_dim"(%2195) {broadcast_dimensions = dense<1> : tensor<1xi64>} : (tensor<128xf32>) -> tensor<384x128xf32>
%3435 = mhlo.add %3433, %3434 : tensor<384x128xf32>
%3436 = "mhlo.reshape"(%3435) : (tensor<384x128xf32>) -> tensor<1x384x4x32xf32>
%3437 = "mhlo.transpose"(%3436) {permutation = dense<[0, 2, 1, 3]> : tensor<4xi64>} : (tensor<1x384x4x32xf32>) -> tensor<1x4x384x32xf32>
%3438 = "mhlo.dot"(%3432, %2200) : (tensor<384x512xf32>, tensor<512x128xf32>) -> tensor<384x128xf32>
%3439 = "mhlo.reshape"(%3438) : (tensor<384x128xf32>) -> tensor<1x384x128xf32>
%3440 = "mhlo.broadcast_in_dim"(%2199) {broadcast_dimensions = dense<2> : tensor<1xi64>} : (tensor<128xf32>) -> tensor<1x384x128xf32>
%3441 = mhlo.add %3439, %3440 : tensor<1x384x128xf32>
%3442 = "mhlo.broadcast_in_dim"(%2198) {broadcast_dimensions = dense<2> : tensor<1xi64>} : (tensor<128xf32>) -> tensor<1x384x128xf32>
%3443 = mhlo.multiply %3441, %3442 : tensor<1x384x128xf32>
%3444 = "mhlo.broadcast_in_dim"(%2197) {broadcast_dimensions = dense<2> : tensor<1xi64>} : (tensor<128xf32>) -> tensor<1x384x128xf32>
%3445 = mhlo.add %3443, %3444 : tensor<1x384x128xf32>
%3446 = "mhlo.reshape"(%3445) : (tensor<1x384x128xf32>) -> tensor<384x128xf32>
%3447 = "mhlo.dot"(%3446, %2192) : (tensor<384x128xf32>, tensor<128x128xf32>) -> tensor<384x128xf32>
%3448 = "mhlo.broadcast_in_dim"(%2191) {broadcast_dimensions = dense<1> : tensor<1xi64>} : (tensor<128xf32>) -> tensor<384x128xf32>
%3449 = mhlo.add %3447, %3448 : tensor<384x128xf32>
%3450 = "mhlo.reshape"(%3449) : (tensor<384x128xf32>) -> tensor<1x384x4x32xf32>
%3451 = "mhlo.transpose"(%3450) {permutation = dense<[0, 2, 1, 3]> : tensor<4xi64>} : (tensor<1x384x4x32xf32>) -> tensor<1x4x384x32xf32>
%3452 = "mhlo.dot"(%3446, %2194) : (tensor<384x128xf32>, tensor<128x128xf32>) -> tensor<384x128xf32>
%3453 = "mhlo.broadcast_in_dim"(%2193) {broadcast_dimensions = dense<1> : tensor<1xi64>} : (tensor<128xf32>) -> tensor<384x128xf32>
%3454 = mhlo.add %3452, %3453 : tensor<384x128xf32>
%3455 = "mhlo.reshape"(%3454) : (tensor<384x128xf32>) -> tensor<1x384x4x32xf32>
%3456 = "mhlo.transpose"(%3455) {permutation = dense<[0, 2, 1, 3]> : tensor<4xi64>} : (tensor<1x384x4x32xf32>) -> tensor<1x4x384x32xf32>
%3457 = "mhlo.dot_general"(%3456, %3451) {dot_dimension_numbers = #mhlo.dot<lhs_batching_dimensions = [0, 1], lhs_contracting_dimensions = [3], rhs_batching_dimensions = [0, 1], rhs_contracting_dimensions = [3]>} : (tensor<1x4x384x32xf32>, tensor<1x4x384x32xf32>) -> tensor<1x4x384x384xf32>
%3458 = mhlo.multiply %3457, %1114 : tensor<1x4x384x384xf32>
%3459 = "mhlo.broadcast_in_dim"(%2254) {broadcast_dimensions = dense<[0, 1, 2, 3]> : tensor<4xi64>} : (tensor<1x1x384x384xf32>) -> tensor<1x4x384x384xf32>
%3460 = mhlo.add %3458, %3459 : tensor<1x4x384x384xf32>
%3461 = "mhlo.reduce"(%3460, %1117) ( {
^bb0(%arg3: tensor<f32>, %arg4: tensor<f32>): // no predecessors
%5393 = mhlo.maximum %arg3, %arg4 : tensor<f32>
"mhlo.return"(%5393) : (tensor<f32>) -> ()
}) {dimensions = dense<3> : tensor<1xi64>} : (tensor<1x4x384x384xf32>, tensor<f32>) -> tensor<1x4x384xf32>
%3462 = "mhlo.broadcast_in_dim"(%3461) {broadcast_dimensions = dense<[0, 1, 2]> : tensor<3xi64>} : (tensor<1x4x384xf32>) -> tensor<1x4x384x384xf32>
%3463 = mhlo.subtract %3460, %3462 : tensor<1x4x384x384xf32>
%3464 = "mhlo.exponential"(%3463) : (tensor<1x4x384x384xf32>) -> tensor<1x4x384x384xf32>
%3465 = "mhlo.reduce"(%3464, %1118) ( {
^bb0(%arg3: tensor<f32>, %arg4: tensor<f32>): // no predecessors
%5393 = mhlo.add %arg3, %arg4 : tensor<f32>
"mhlo.return"(%5393) : (tensor<f32>) -> ()
}) {dimensions = dense<3> : tensor<1xi64>} : (tensor<1x4x384x384xf32>, tensor<f32>) -> tensor<1x4x384xf32>
%3466 = "mhlo.broadcast_in_dim"(%3465) {broadcast_dimensions = dense<[0, 1, 2]> : tensor<3xi64>} : (tensor<1x4x384xf32>) -> tensor<1x4x384x384xf32>
%3467 = mhlo.divide %3464, %3466 : tensor<1x4x384x384xf32>
%3468 = "mhlo.dot_general"(%3467, %3437) {dot_dimension_numbers = #mhlo.dot<lhs_batching_dimensions = [0, 1], lhs_contracting_dimensions = [3], rhs_batching_dimensions = [0, 1], rhs_contracting_dimensions = [2]>} : (tensor<1x4x384x384xf32>, tensor<1x4x384x32xf32>) -> tensor<1x4x384x32xf32>
%3469 = "mhlo.transpose"(%3468) {permutation = dense<[0, 2, 1, 3]> : tensor<4xi64>} : (tensor<1x4x384x32xf32>) -> tensor<1x384x4x32xf32>
%3470 = "mhlo.reshape"(%3469) : (tensor<1x384x4x32xf32>) -> tensor<384x128xf32>
%3471 = "mhlo.dot"(%3470, %2190) : (tensor<384x128xf32>, tensor<128x128xf32>) -> tensor<384x128xf32>
%3472 = "mhlo.broadcast_in_dim"(%2189) {broadcast_dimensions = dense<1> : tensor<1xi64>} : (tensor<128xf32>) -> tensor<384x128xf32>
%3473 = mhlo.add %3471, %3472 : tensor<384x128xf32>
%3474 = "mhlo.reshape"(%3473) : (tensor<384x128xf32>) -> tensor<1x384x128xf32>
%3475 = "mhlo.dot"(%3432, %2204) : (tensor<384x512xf32>, tensor<512x128xf32>) -> tensor<384x128xf32>
%3476 = "mhlo.broadcast_in_dim"(%2203) {broadcast_dimensions = dense<1> : tensor<1xi64>} : (tensor<128xf32>) -> tensor<384x128xf32>
%3477 = mhlo.add %3475, %3476 : tensor<384x128xf32>
%3478 = "mhlo.reshape"(%3477) : (tensor<384x128xf32>) -> tensor<1x384x128xf32>
%3479 = "mhlo.broadcast_in_dim"(%2202) {broadcast_dimensions = dense<2> : tensor<1xi64>} : (tensor<128xf32>) -> tensor<1x384x128xf32>
%3480 = mhlo.multiply %3478, %3479 : tensor<1x384x128xf32>
%3481 = "mhlo.broadcast_in_dim"(%2201) {broadcast_dimensions = dense<2> : tensor<1xi64>} : (tensor<128xf32>) -> tensor<1x384x128xf32>
%3482 = mhlo.add %3480, %3481 : tensor<1x384x128xf32>
%3483 = mhlo.add %3474, %3482 : tensor<1x384x128xf32>
%3484 = "mhlo.broadcast_in_dim"(%2188) {broadcast_dimensions = dense<2> : tensor<1xi64>} : (tensor<128xf32>) -> tensor<1x384x128xf32>
%3485 = mhlo.multiply %3483, %3484 : tensor<1x384x128xf32>
%3486 = "mhlo.broadcast_in_dim"(%2187) {broadcast_dimensions = dense<2> : tensor<1xi64>} : (tensor<128xf32>) -> tensor<1x384x128xf32>
%3487 = mhlo.add %3485, %3486 : tensor<1x384x128xf32>
%3488 = "mhlo.reshape"(%3487) : (tensor<1x384x128xf32>) -> tensor<384x128xf32>
%3489 = "mhlo.dot"(%3488, %2206) : (tensor<384x128xf32>, tensor<128x512xf32>) -> tensor<384x512xf32>
%3490 = "mhlo.broadcast_in_dim"(%2205) {broadcast_dimensions = dense<1> : tensor<1xi64>} : (tensor<512xf32>) -> tensor<384x512xf32>
%3491 = mhlo.add %3489, %3490 : tensor<384x512xf32>
%3492 = "mhlo.reshape"(%3491) : (tensor<384x512xf32>) -> tensor<1x384x512xf32>
%3493 = mhlo.maximum %3492, %1119 : tensor<1x384x512xf32>
%3494 = "mhlo.reshape"(%3493) : (tensor<1x384x512xf32>) -> tensor<384x512xf32>
%3495 = "mhlo.dot"(%3494, %2210) : (tensor<384x512xf32>, tensor<512x128xf32>) -> tensor<384x128xf32>
%3496 = "mhlo.broadcast_in_dim"(%2209) {broadcast_dimensions = dense<1> : tensor<1xi64>} : (tensor<128xf32>) -> tensor<384x128xf32>
%3497 = mhlo.add %3495, %3496 : tensor<384x128xf32>
%3498 = "mhlo.reshape"(%3497) : (tensor<384x128xf32>) -> tensor<1x384x128xf32>
%3499 = mhlo.add %3498, %3487 : tensor<1x384x128xf32>
%3500 = "mhlo.broadcast_in_dim"(%2208) {broadcast_dimensions = dense<2> : tensor<1xi64>} : (tensor<128xf32>) -> tensor<1x384x128xf32>
%3501 = mhlo.multiply %3499, %3500 : tensor<1x384x128xf32>
%3502 = "mhlo.broadcast_in_dim"(%2207) {broadcast_dimensions = dense<2> : tensor<1xi64>} : (tensor<128xf32>) -> tensor<1x384x128xf32>
%3503 = mhlo.add %3501, %3502 : tensor<1x384x128xf32>
%3504 = "mhlo.reshape"(%3503) : (tensor<1x384x128xf32>) -> tensor<384x128xf32>
%3505 = "mhlo.dot"(%3504, %2212) : (tensor<384x128xf32>, tensor<128x512xf32>) -> tensor<384x512xf32>
%3506 = "mhlo.broadcast_in_dim"(%2211) {broadcast_dimensions = dense<1> : tensor<1xi64>} : (tensor<512xf32>) -> tensor<384x512xf32>
%3507 = mhlo.add %3505, %3506 : tensor<384x512xf32>
%3508 = "mhlo.reshape"(%3507) : (tensor<384x512xf32>) -> tensor<1x384x512xf32>
%3509 = mhlo.maximum %3508, %1119 : tensor<1x384x512xf32>
%3510 = "mhlo.reshape"(%3509) : (tensor<1x384x512xf32>) -> tensor<384x512xf32>
%3511 = "mhlo.dot"(%3510, %2216) : (tensor<384x512xf32>, tensor<512x128xf32>) -> tensor<384x128xf32>
%3512 = "mhlo.broadcast_in_dim"(%2215) {broadcast_dimensions = dense<1> : tensor<1xi64>} : (tensor<128xf32>) -> tensor<384x128xf32>
%3513 = mhlo.add %3511, %3512 : tensor<384x128xf32>
%3514 = "mhlo.reshape"(%3513) : (tensor<384x128xf32>) -> tensor<1x384x128xf32>
%3515 = mhlo.add %3514, %3503 : tensor<1x384x128xf32>
%3516 = "mhlo.broadcast_in_dim"(%2214) {broadcast_dimensions = dense<2> : tensor<1xi64>} : (tensor<128xf32>) -> tensor<1x384x128xf32>
%3517 = mhlo.multiply %3515, %3516 : tensor<1x384x128xf32>
%3518 = "mhlo.broadcast_in_dim"(%2213) {broadcast_dimensions = dense<2> : tensor<1xi64>} : (tensor<128xf32>) -> tensor<1x384x128xf32>
%3519 = mhlo.add %3517, %3518 : tensor<1x384x128xf32>
%3520 = "mhlo.reshape"(%3519) : (tensor<1x384x128xf32>) -> tensor<384x128xf32>
%3521 = "mhlo.dot"(%3520, %2218) : (tensor<384x128xf32>, tensor<128x512xf32>) -> tensor<384x512xf32>
%3522 = "mhlo.broadcast_in_dim"(%2217) {broadcast_dimensions = dense<1> : tensor<1xi64>} : (tensor<512xf32>) -> tensor<384x512xf32>
%3523 = mhlo.add %3521, %3522 : tensor<384x512xf32>
%3524 = "mhlo.reshape"(%3523) : (tensor<384x512xf32>) -> tensor<1x384x512xf32>
%3525 = mhlo.maximum %3524, %1119 : tensor<1x384x512xf32>
%3526 = "mhlo.reshape"(%3525) : (tensor<1x384x512xf32>) -> tensor<384x512xf32>
%3527 = "mhlo.dot"(%3526, %2222) : (tensor<384x512xf32>, tensor<512x128xf32>) -> tensor<384x128xf32>
%3528 = "mhlo.broadcast_in_dim"(%2221) {broadcast_dimensions = dense<1> : tensor<1xi64>} : (tensor<128xf32>) -> tensor<384x128xf32>
%3529 = mhlo.add %3527, %3528 : tensor<384x128xf32>
%3530 = "mhlo.reshape"(%3529) : (tensor<384x128xf32>) -> tensor<1x384x128xf32>
%3531 = mhlo.add %3530, %3519 : tensor<1x384x128xf32>
%3532 = "mhlo.broadcast_in_dim"(%2220) {broadcast_dimensions = dense<2> : tensor<1xi64>} : (tensor<128xf32>) -> tensor<1x384x128xf32>
%3533 = mhlo.multiply %3531, %3532 : tensor<1x384x128xf32>
%3534 = "mhlo.broadcast_in_dim"(%2219) {broadcast_dimensions = dense<2> : tensor<1xi64>} : (tensor<128xf32>) -> tensor<1x384x128xf32>
%3535 = mhlo.add %3533, %3534 : tensor<1x384x128xf32>
%3536 = "mhlo.reshape"(%3535) : (tensor<1x384x128xf32>) -> tensor<384x128xf32>
%3537 = "mhlo.dot"(%3536, %2224) : (tensor<384x128xf32>, tensor<128x512xf32>) -> tensor<384x512xf32>
%3538 = "mhlo.broadcast_in_dim"(%2223) {broadcast_dimensions = dense<1> : tensor<1xi64>} : (tensor<512xf32>) -> tensor<384x512xf32>
%3539 = mhlo.add %3537, %3538 : tensor<384x512xf32>
%3540 = "mhlo.reshape"(%3539) : (tensor<384x512xf32>) -> tensor<1x384x512xf32>
%3541 = mhlo.maximum %3540, %1119 : tensor<1x384x512xf32>
%3542 = "mhlo.reshape"(%3541) : (tensor<1x384x512xf32>) -> tensor<384x512xf32>
%3543 = "mhlo.dot"(%3542, %2232) : (tensor<384x512xf32>, tensor<512x128xf32>) -> tensor<384x128xf32>
%3544 = "mhlo.broadcast_in_dim"(%2231) {broadcast_dimensions = dense<1> : tensor<1xi64>} : (tensor<128xf32>) -> tensor<384x128xf32>
%3545 = mhlo.add %3543, %3544 : tensor<384x128xf32>
%3546 = "mhlo.reshape"(%3545) : (tensor<384x128xf32>) -> tensor<1x384x128xf32>
%3547 = mhlo.add %3546, %3535 : tensor<1x384x128xf32>
%3548 = "mhlo.broadcast_in_dim"(%2226) {broadcast_dimensions = dense<2> : tensor<1xi64>} : (tensor<128xf32>) -> tensor<1x384x128xf32>
%3549 = mhlo.multiply %3547, %3548 : tensor<1x384x128xf32>
%3550 = "mhlo.broadcast_in_dim"(%2225) {broadcast_dimensions = dense<2> : tensor<1xi64>} : (tensor<128xf32>) -> tensor<1x384x128xf32>
%3551 = mhlo.add %3549, %3550 : tensor<1x384x128xf32>
%3552 = "mhlo.reshape"(%3551) : (tensor<1x384x128xf32>) -> tensor<384x128xf32>
%3553 = "mhlo.dot"(%3552, %2230) : (tensor<384x128xf32>, tensor<128x512xf32>) -> tensor<384x512xf32>
%3554 = "mhlo.broadcast_in_dim"(%2229) {broadcast_dimensions = dense<1> : tensor<1xi64>} : (tensor<512xf32>) -> tensor<384x512xf32>
%3555 = mhlo.add %3553, %3554 : tensor<384x512xf32>
%3556 = "mhlo.reshape"(%3555) : (tensor<384x512xf32>) -> tensor<1x384x512xf32>
%3557 = mhlo.add %3556, %3431 : tensor<1x384x512xf32>
%3558 = "mhlo.broadcast_in_dim"(%2228) {broadcast_dimensions = dense<2> : tensor<1xi64>} : (tensor<512xf32>) -> tensor<1x384x512xf32>
%3559 = mhlo.multiply %3557, %3558 : tensor<1x384x512xf32>
%3560 = "mhlo.broadcast_in_dim"(%2227) {broadcast_dimensions = dense<2> : tensor<1xi64>} : (tensor<512xf32>) -> tensor<1x384x512xf32>
%3561 = mhlo.add %3559, %3560 : tensor<1x384x512xf32>
%3562 = "mhlo.reshape"(%3561) : (tensor<1x384x512xf32>) -> tensor<384x512xf32>
%3563 = "mhlo.dot"(%3562, %1230) : (tensor<384x512xf32>, tensor<512x128xf32>) -> tensor<384x128xf32>
%3564 = "mhlo.broadcast_in_dim"(%1229) {broadcast_dimensions = dense<1> : tensor<1xi64>} : (tensor<128xf32>) -> tensor<384x128xf32>
%3565 = mhlo.add %3563, %3564 : tensor<384x128xf32>
%3566 = "mhlo.reshape"(%3565) : (tensor<384x128xf32>) -> tensor<1x384x4x32xf32>
%3567 = "mhlo.transpose"(%3566) {permutation = dense<[0, 2, 1, 3]> : tensor<4xi64>} : (tensor<1x384x4x32xf32>) -> tensor<1x4x384x32xf32>
%3568 = "mhlo.dot"(%3562, %1234) : (tensor<384x512xf32>, tensor<512x128xf32>) -> tensor<384x128xf32>
%3569 = "mhlo.reshape"(%3568) : (tensor<384x128xf32>) -> tensor<1x384x128xf32>
%3570 = "mhlo.broadcast_in_dim"(%1233) {broadcast_dimensions = dense<2> : tensor<1xi64>} : (tensor<128xf32>) -> tensor<1x384x128xf32>
%3571 = mhlo.add %3569, %3570 : tensor<1x384x128xf32>
%3572 = "mhlo.broadcast_in_dim"(%1232) {broadcast_dimensions = dense<2> : tensor<1xi64>} : (tensor<128xf32>) -> tensor<1x384x128xf32>
%3573 = mhlo.multiply %3571, %3572 : tensor<1x384x128xf32>
%3574 = "mhlo.broadcast_in_dim"(%1231) {broadcast_dimensions = dense<2> : tensor<1xi64>} : (tensor<128xf32>) -> tensor<1x384x128xf32>
%3575 = mhlo.add %3573, %3574 : tensor<1x384x128xf32>
%3576 = "mhlo.reshape"(%3575) : (tensor<1x384x128xf32>) -> tensor<384x128xf32>
%3577 = "mhlo.dot"(%3576, %1226) : (tensor<384x128xf32>, tensor<128x128xf32>) -> tensor<384x128xf32>
%3578 = "mhlo.broadcast_in_dim"(%1225) {broadcast_dimensions = dense<1> : tensor<1xi64>} : (tensor<128xf32>) -> tensor<384x128xf32>
%3579 = mhlo.add %3577, %3578 : tensor<384x128xf32>
%3580 = "mhlo.reshape"(%3579) : (tensor<384x128xf32>) -> tensor<1x384x4x32xf32>
%3581 = "mhlo.transpose"(%3580) {permutation = dense<[0, 2, 1, 3]> : tensor<4xi64>} : (tensor<1x384x4x32xf32>) -> tensor<1x4x384x32xf32>
%3582 = "mhlo.dot"(%3576, %1228) : (tensor<384x128xf32>, tensor<128x128xf32>) -> tensor<384x128xf32>
%3583 = "mhlo.broadcast_in_dim"(%1227) {broadcast_dimensions = dense<1> : tensor<1xi64>} : (tensor<128xf32>) -> tensor<384x128xf32>
%3584 = mhlo.add %3582, %3583 : tensor<384x128xf32>
%3585 = "mhlo.reshape"(%3584) : (tensor<384x128xf32>) -> tensor<1x384x4x32xf32>
%3586 = "mhlo.transpose"(%3585) {permutation = dense<[0, 2, 1, 3]> : tensor<4xi64>} : (tensor<1x384x4x32xf32>) -> tensor<1x4x384x32xf32>
%3587 = "mhlo.dot_general"(%3586, %3581) {dot_dimension_numbers = #mhlo.dot<lhs_batching_dimensions = [0, 1], lhs_contracting_dimensions = [3], rhs_batching_dimensions = [0, 1], rhs_contracting_dimensions = [3]>} : (tensor<1x4x384x32xf32>, tensor<1x4x384x32xf32>) -> tensor<1x4x384x384xf32>
%3588 = mhlo.multiply %3587, %1114 : tensor<1x4x384x384xf32>
%3589 = "mhlo.broadcast_in_dim"(%2254) {broadcast_dimensions = dense<[0, 1, 2, 3]> : tensor<4xi64>} : (tensor<1x1x384x384xf32>) -> tensor<1x4x384x384xf32>
%3590 = mhlo.add %3588, %3589 : tensor<1x4x384x384xf32>
%3591 = "mhlo.reduce"(%3590, %1117) ( {
^bb0(%arg3: tensor<f32>, %arg4: tensor<f32>): // no predecessors
%5393 = mhlo.maximum %arg3, %arg4 : tensor<f32>
"mhlo.return"(%5393) : (tensor<f32>) -> ()
}) {dimensions = dense<3> : tensor<1xi64>} : (tensor<1x4x384x384xf32>, tensor<f32>) -> tensor<1x4x384xf32>
%3592 = "mhlo.broadcast_in_dim"(%3591) {broadcast_dimensions = dense<[0, 1, 2]> : tensor<3xi64>} : (tensor<1x4x384xf32>) -> tensor<1x4x384x384xf32>
%3593 = mhlo.subtract %3590, %3592 : tensor<1x4x384x384xf32>
%3594 = "mhlo.exponential"(%3593) : (tensor<1x4x384x384xf32>) -> tensor<1x4x384x384xf32>
%3595 = "mhlo.reduce"(%3594, %1118) ( {
^bb0(%arg3: tensor<f32>, %arg4: tensor<f32>): // no predecessors
%5393 = mhlo.add %arg3, %arg4 : tensor<f32>
"mhlo.return"(%5393) : (tensor<f32>) -> ()
}) {dimensions = dense<3> : tensor<1xi64>} : (tensor<1x4x384x384xf32>, tensor<f32>) -> tensor<1x4x384xf32>
%3596 = "mhlo.broadcast_in_dim"(%3595) {broadcast_dimensions = dense<[0, 1, 2]> : tensor<3xi64>} : (tensor<1x4x384xf32>) -> tensor<1x4x384x384xf32>
%3597 = mhlo.divide %3594, %3596 : tensor<1x4x384x384xf32>
%3598 = "mhlo.dot_general"(%3597, %3567) {dot_dimension_numbers = #mhlo.dot<lhs_batching_dimensions = [0, 1], lhs_contracting_dimensions = [3], rhs_batching_dimensions = [0, 1], rhs_contracting_dimensions = [2]>} : (tensor<1x4x384x384xf32>, tensor<1x4x384x32xf32>) -> tensor<1x4x384x32xf32>
%3599 = "mhlo.transpose"(%3598) {permutation = dense<[0, 2, 1, 3]> : tensor<4xi64>} : (tensor<1x4x384x32xf32>) -> tensor<1x384x4x32xf32>
%3600 = "mhlo.reshape"(%3599) : (tensor<1x384x4x32xf32>) -> tensor<384x128xf32>
%3601 = "mhlo.dot"(%3600, %1224) : (tensor<384x128xf32>, tensor<128x128xf32>) -> tensor<384x128xf32>
%3602 = "mhlo.broadcast_in_dim"(%1223) {broadcast_dimensions = dense<1> : tensor<1xi64>} : (tensor<128xf32>) -> tensor<384x128xf32>
%3603 = mhlo.add %3601, %3602 : tensor<384x128xf32>
%3604 = "mhlo.reshape"(%3603) : (tensor<384x128xf32>) -> tensor<1x384x128xf32>
%3605 = "mhlo.dot"(%3562, %1238) : (tensor<384x512xf32>, tensor<512x128xf32>) -> tensor<384x128xf32>
%3606 = "mhlo.broadcast_in_dim"(%1237) {broadcast_dimensions = dense<1> : tensor<1xi64>} : (tensor<128xf32>) -> tensor<384x128xf32>
%3607 = mhlo.add %3605, %3606 : tensor<384x128xf32>
%3608 = "mhlo.reshape"(%3607) : (tensor<384x128xf32>) -> tensor<1x384x128xf32>
%3609 = "mhlo.broadcast_in_dim"(%1236) {broadcast_dimensions = dense<2> : tensor<1xi64>} : (tensor<128xf32>) -> tensor<1x384x128xf32>
%3610 = mhlo.multiply %3608, %3609 : tensor<1x384x128xf32>
%3611 = "mhlo.broadcast_in_dim"(%1235) {broadcast_dimensions = dense<2> : tensor<1xi64>} : (tensor<128xf32>) -> tensor<1x384x128xf32>
%3612 = mhlo.add %3610, %3611 : tensor<1x384x128xf32>
%3613 = mhlo.add %3604, %3612 : tensor<1x384x128xf32>
%3614 = "mhlo.broadcast_in_dim"(%1222) {broadcast_dimensions = dense<2> : tensor<1xi64>} : (tensor<128xf32>) -> tensor<1x384x128xf32>
%3615 = mhlo.multiply %3613, %3614 : tensor<1x384x128xf32>
%3616 = "mhlo.broadcast_in_dim"(%1221) {broadcast_dimensions = dense<2> : tensor<1xi64>} : (tensor<128xf32>) -> tensor<1x384x128xf32>
%3617 = mhlo.add %3615, %3616 : tensor<1x384x128xf32>
%3618 = "mhlo.reshape"(%3617) : (tensor<1x384x128xf32>) -> tensor<384x128xf32>
%3619 = "mhlo.dot"(%3618, %1240) : (tensor<384x128xf32>, tensor<128x512xf32>) -> tensor<384x512xf32>
%3620 = "mhlo.broadcast_in_dim"(%1239) {broadcast_dimensions = dense<1> : tensor<1xi64>} : (tensor<512xf32>) -> tensor<384x512xf32>
%3621 = mhlo.add %3619, %3620 : tensor<384x512xf32>
%3622 = "mhlo.reshape"(%3621) : (tensor<384x512xf32>) -> tensor<1x384x512xf32>
%3623 = mhlo.maximum %3622, %1119 : tensor<1x384x512xf32>
%3624 = "mhlo.reshape"(%3623) : (tensor<1x384x512xf32>) -> tensor<384x512xf32>
%3625 = "mhlo.dot"(%3624, %1244) : (tensor<384x512xf32>, tensor<512x128xf32>) -> tensor<384x128xf32>
%3626 = "mhlo.broadcast_in_dim"(%1243) {broadcast_dimensions = dense<1> : tensor<1xi64>} : (tensor<128xf32>) -> tensor<384x128xf32>
%3627 = mhlo.add %3625, %3626 : tensor<384x128xf32>
%3628 = "mhlo.reshape"(%3627) : (tensor<384x128xf32>) -> tensor<1x384x128xf32>
%3629 = mhlo.add %3628, %3617 : tensor<1x384x128xf32>
%3630 = "mhlo.broadcast_in_dim"(%1242) {broadcast_dimensions = dense<2> : tensor<1xi64>} : (tensor<128xf32>) -> tensor<1x384x128xf32>
%3631 = mhlo.multiply %3629, %3630 : tensor<1x384x128xf32>
%3632 = "mhlo.broadcast_in_dim"(%1241) {broadcast_dimensions = dense<2> : tensor<1xi64>} : (tensor<128xf32>) -> tensor<1x384x128xf32>
%3633 = mhlo.add %3631, %3632 : tensor<1x384x128xf32>
%3634 = "mhlo.reshape"(%3633) : (tensor<1x384x128xf32>) -> tensor<384x128xf32>
%3635 = "mhlo.dot"(%3634, %1246) : (tensor<384x128xf32>, tensor<128x512xf32>) -> tensor<384x512xf32>
%3636 = "mhlo.broadcast_in_dim"(%1245) {broadcast_dimensions = dense<1> : tensor<1xi64>} : (tensor<512xf32>) -> tensor<384x512xf32>
%3637 = mhlo.add %3635, %3636 : tensor<384x512xf32>
%3638 = "mhlo.reshape"(%3637) : (tensor<384x512xf32>) -> tensor<1x384x512xf32>
%3639 = mhlo.maximum %3638, %1119 : tensor<1x384x512xf32>
%3640 = "mhlo.reshape"(%3639) : (tensor<1x384x512xf32>) -> tensor<384x512xf32>
%3641 = "mhlo.dot"(%3640, %1250) : (tensor<384x512xf32>, tensor<512x128xf32>) -> tensor<384x128xf32>
%3642 = "mhlo.broadcast_in_dim"(%1249) {broadcast_dimensions = dense<1> : tensor<1xi64>} : (tensor<128xf32>) -> tensor<384x128xf32>
%3643 = mhlo.add %3641, %3642 : tensor<384x128xf32>
%3644 = "mhlo.reshape"(%3643) : (tensor<384x128xf32>) -> tensor<1x384x128xf32>
%3645 = mhlo.add %3644, %3633 : tensor<1x384x128xf32>
%3646 = "mhlo.broadcast_in_dim"(%1248) {broadcast_dimensions = dense<2> : tensor<1xi64>} : (tensor<128xf32>) -> tensor<1x384x128xf32>
%3647 = mhlo.multiply %3645, %3646 : tensor<1x384x128xf32>
%3648 = "mhlo.broadcast_in_dim"(%1247) {broadcast_dimensions = dense<2> : tensor<1xi64>} : (tensor<128xf32>) -> tensor<1x384x128xf32>
%3649 = mhlo.add %3647, %3648 : tensor<1x384x128xf32>
%3650 = "mhlo.reshape"(%3649) : (tensor<1x384x128xf32>) -> tensor<384x128xf32>
%3651 = "mhlo.dot"(%3650, %1252) : (tensor<384x128xf32>, tensor<128x512xf32>) -> tensor<384x512xf32>
%3652 = "mhlo.broadcast_in_dim"(%1251) {broadcast_dimensions = dense<1> : tensor<1xi64>} : (tensor<512xf32>) -> tensor<384x512xf32>
%3653 = mhlo.add %3651, %3652 : tensor<384x512xf32>
%3654 = "mhlo.reshape"(%3653) : (tensor<384x512xf32>) -> tensor<1x384x512xf32>
%3655 = mhlo.maximum %3654, %1119 : tensor<1x384x512xf32>
%3656 = "mhlo.reshape"(%3655) : (tensor<1x384x512xf32>) -> tensor<384x512xf32>
%3657 = "mhlo.dot"(%3656, %1256) : (tensor<384x512xf32>, tensor<512x128xf32>) -> tensor<384x128xf32>
%3658 = "mhlo.broadcast_in_dim"(%1255) {broadcast_dimensions = dense<1> : tensor<1xi64>} : (tensor<128xf32>) -> tensor<384x128xf32>
%3659 = mhlo.add %3657, %3658 : tensor<384x128xf32>
%3660 = "mhlo.reshape"(%3659) : (tensor<384x128xf32>) -> tensor<1x384x128xf32>
%3661 = mhlo.add %3660, %3649 : tensor<1x384x128xf32>
%3662 = "mhlo.broadcast_in_dim"(%1254) {broadcast_dimensions = dense<2> : tensor<1xi64>} : (tensor<128xf32>) -> tensor<1x384x128xf32>
%3663 = mhlo.multiply %3661, %3662 : tensor<1x384x128xf32>
%3664 = "mhlo.broadcast_in_dim"(%1253) {broadcast_dimensions = dense<2> : tensor<1xi64>} : (tensor<128xf32>) -> tensor<1x384x128xf32>
%3665 = mhlo.add %3663, %3664 : tensor<1x384x128xf32>
%3666 = "mhlo.reshape"(%3665) : (tensor<1x384x128xf32>) -> tensor<384x128xf32>
%3667 = "mhlo.dot"(%3666, %1258) : (tensor<384x128xf32>, tensor<128x512xf32>) -> tensor<384x512xf32>
%3668 = "mhlo.broadcast_in_dim"(%1257) {broadcast_dimensions = dense<1> : tensor<1xi64>} : (tensor<512xf32>) -> tensor<384x512xf32>
%3669 = mhlo.add %3667, %3668 : tensor<384x512xf32>
%3670 = "mhlo.reshape"(%3669) : (tensor<384x512xf32>) -> tensor<1x384x512xf32>
%3671 = mhlo.maximum %3670, %1119 : tensor<1x384x512xf32>
%3672 = "mhlo.reshape"(%3671) : (tensor<1x384x512xf32>) -> tensor<384x512xf32>
%3673 = "mhlo.dot"(%3672, %1266) : (tensor<384x512xf32>, tensor<512x128xf32>) -> tensor<384x128xf32>
%3674 = "mhlo.broadcast_in_dim"(%1265) {broadcast_dimensions = dense<1> : tensor<1xi64>} : (tensor<128xf32>) -> tensor<384x128xf32>
%3675 = mhlo.add %3673, %3674 : tensor<384x128xf32>
%3676 = "mhlo.reshape"(%3675) : (tensor<384x128xf32>) -> tensor<1x384x128xf32>
%3677 = mhlo.add %3676, %3665 : tensor<1x384x128xf32>
%3678 = "mhlo.broadcast_in_dim"(%1260) {broadcast_dimensions = dense<2> : tensor<1xi64>} : (tensor<128xf32>) -> tensor<1x384x128xf32>
%3679 = mhlo.multiply %3677, %3678 : tensor<1x384x128xf32>
%3680 = "mhlo.broadcast_in_dim"(%1259) {broadcast_dimensions = dense<2> : tensor<1xi64>} : (tensor<128xf32>) -> tensor<1x384x128xf32>
%3681 = mhlo.add %3679, %3680 : tensor<1x384x128xf32>
%3682 = "mhlo.reshape"(%3681) : (tensor<1x384x128xf32>) -> tensor<384x128xf32>
%3683 = "mhlo.dot"(%3682, %1264) : (tensor<384x128xf32>, tensor<128x512xf32>) -> tensor<384x512xf32>
%3684 = "mhlo.broadcast_in_dim"(%1263) {broadcast_dimensions = dense<1> : tensor<1xi64>} : (tensor<512xf32>) -> tensor<384x512xf32>
%3685 = mhlo.add %3683, %3684 : tensor<384x512xf32>
%3686 = "mhlo.reshape"(%3685) : (tensor<384x512xf32>) -> tensor<1x384x512xf32>
%3687 = mhlo.add %3686, %3561 : tensor<1x384x512xf32>
%3688 = "mhlo.broadcast_in_dim"(%1262) {broadcast_dimensions = dense<2> : tensor<1xi64>} : (tensor<512xf32>) -> tensor<1x384x512xf32>
%3689 = mhlo.multiply %3687, %3688 : tensor<1x384x512xf32>
%3690 = "mhlo.broadcast_in_dim"(%1261) {broadcast_dimensions = dense<2> : tensor<1xi64>} : (tensor<512xf32>) -> tensor<1x384x512xf32>
%3691 = mhlo.add %3689, %3690 : tensor<1x384x512xf32>
%3692 = "mhlo.reshape"(%3691) : (tensor<1x384x512xf32>) -> tensor<384x512xf32>
%3693 = "mhlo.dot"(%3692, %1276) : (tensor<384x512xf32>, tensor<512x128xf32>) -> tensor<384x128xf32>
%3694 = "mhlo.broadcast_in_dim"(%1275) {broadcast_dimensions = dense<1> : tensor<1xi64>} : (tensor<128xf32>) -> tensor<384x128xf32>
%3695 = mhlo.add %3693, %3694 : tensor<384x128xf32>
%3696 = "mhlo.reshape"(%3695) : (tensor<384x128xf32>) -> tensor<1x384x4x32xf32>
%3697 = "mhlo.transpose"(%3696) {permutation = dense<[0, 2, 1, 3]> : tensor<4xi64>} : (tensor<1x384x4x32xf32>) -> tensor<1x4x384x32xf32>
%3698 = "mhlo.dot"(%3692, %1280) : (tensor<384x512xf32>, tensor<512x128xf32>) -> tensor<384x128xf32>
%3699 = "mhlo.reshape"(%3698) : (tensor<384x128xf32>) -> tensor<1x384x128xf32>
%3700 = "mhlo.broadcast_in_dim"(%1279) {broadcast_dimensions = dense<2> : tensor<1xi64>} : (tensor<128xf32>) -> tensor<1x384x128xf32>
%3701 = mhlo.add %3699, %3700 : tensor<1x384x128xf32>
%3702 = "mhlo.broadcast_in_dim"(%1278) {broadcast_dimensions = dense<2> : tensor<1xi64>} : (tensor<128xf32>) -> tensor<1x384x128xf32>
%3703 = mhlo.multiply %3701, %3702 : tensor<1x384x128xf32>
%3704 = "mhlo.broadcast_in_dim"(%1277) {broadcast_dimensions = dense<2> : tensor<1xi64>} : (tensor<128xf32>) -> tensor<1x384x128xf32>
%3705 = mhlo.add %3703, %3704 : tensor<1x384x128xf32>
%3706 = "mhlo.reshape"(%3705) : (tensor<1x384x128xf32>) -> tensor<384x128xf32>
%3707 = "mhlo.dot"(%3706, %1272) : (tensor<384x128xf32>, tensor<128x128xf32>) -> tensor<384x128xf32>
%3708 = "mhlo.broadcast_in_dim"(%1271) {broadcast_dimensions = dense<1> : tensor<1xi64>} : (tensor<128xf32>) -> tensor<384x128xf32>
%3709 = mhlo.add %3707, %3708 : tensor<384x128xf32>
%3710 = "mhlo.reshape"(%3709) : (tensor<384x128xf32>) -> tensor<1x384x4x32xf32>
%3711 = "mhlo.transpose"(%3710) {permutation = dense<[0, 2, 1, 3]> : tensor<4xi64>} : (tensor<1x384x4x32xf32>) -> tensor<1x4x384x32xf32>
%3712 = "mhlo.dot"(%3706, %1274) : (tensor<384x128xf32>, tensor<128x128xf32>) -> tensor<384x128xf32>
%3713 = "mhlo.broadcast_in_dim"(%1273) {broadcast_dimensions = dense<1> : tensor<1xi64>} : (tensor<128xf32>) -> tensor<384x128xf32>
%3714 = mhlo.add %3712, %3713 : tensor<384x128xf32>
%3715 = "mhlo.reshape"(%3714) : (tensor<384x128xf32>) -> tensor<1x384x4x32xf32>
%3716 = "mhlo.transpose"(%3715) {permutation = dense<[0, 2, 1, 3]> : tensor<4xi64>} : (tensor<1x384x4x32xf32>) -> tensor<1x4x384x32xf32>
%3717 = "mhlo.dot_general"(%3716, %3711) {dot_dimension_numbers = #mhlo.dot<lhs_batching_dimensions = [0, 1], lhs_contracting_dimensions = [3], rhs_batching_dimensions = [0, 1], rhs_contracting_dimensions = [3]>} : (tensor<1x4x384x32xf32>, tensor<1x4x384x32xf32>) -> tensor<1x4x384x384xf32>
%3718 = mhlo.multiply %3717, %1114 : tensor<1x4x384x384xf32>
%3719 = "mhlo.broadcast_in_dim"(%2254) {broadcast_dimensions = dense<[0, 1, 2, 3]> : tensor<4xi64>} : (tensor<1x1x384x384xf32>) -> tensor<1x4x384x384xf32>
%3720 = mhlo.add %3718, %3719 : tensor<1x4x384x384xf32>
%3721 = "mhlo.reduce"(%3720, %1117) ( {
^bb0(%arg3: tensor<f32>, %arg4: tensor<f32>): // no predecessors
%5393 = mhlo.maximum %arg3, %arg4 : tensor<f32>
"mhlo.return"(%5393) : (tensor<f32>) -> ()
}) {dimensions = dense<3> : tensor<1xi64>} : (tensor<1x4x384x384xf32>, tensor<f32>) -> tensor<1x4x384xf32>
%3722 = "mhlo.broadcast_in_dim"(%3721) {broadcast_dimensions = dense<[0, 1, 2]> : tensor<3xi64>} : (tensor<1x4x384xf32>) -> tensor<1x4x384x384xf32>
%3723 = mhlo.subtract %3720, %3722 : tensor<1x4x384x384xf32>
%3724 = "mhlo.exponential"(%3723) : (tensor<1x4x384x384xf32>) -> tensor<1x4x384x384xf32>
%3725 = "mhlo.reduce"(%3724, %1118) ( {
^bb0(%arg3: tensor<f32>, %arg4: tensor<f32>): // no predecessors
%5393 = mhlo.add %arg3, %arg4 : tensor<f32>
"mhlo.return"(%5393) : (tensor<f32>) -> ()
}) {dimensions = dense<3> : tensor<1xi64>} : (tensor<1x4x384x384xf32>, tensor<f32>) -> tensor<1x4x384xf32>
%3726 = "mhlo.broadcast_in_dim"(%3725) {broadcast_dimensions = dense<[0, 1, 2]> : tensor<3xi64>} : (tensor<1x4x384xf32>) -> tensor<1x4x384x384xf32>
%3727 = mhlo.divide %3724, %3726 : tensor<1x4x384x384xf32>
%3728 = "mhlo.dot_general"(%3727, %3697) {dot_dimension_numbers = #mhlo.dot<lhs_batching_dimensions = [0, 1], lhs_contracting_dimensions = [3], rhs_batching_dimensions = [0, 1], rhs_contracting_dimensions = [2]>} : (tensor<1x4x384x384xf32>, tensor<1x4x384x32xf32>) -> tensor<1x4x384x32xf32>
%3729 = "mhlo.transpose"(%3728) {permutation = dense<[0, 2, 1, 3]> : tensor<4xi64>} : (tensor<1x4x384x32xf32>) -> tensor<1x384x4x32xf32>
%3730 = "mhlo.reshape"(%3729) : (tensor<1x384x4x32xf32>) -> tensor<384x128xf32>
%3731 = "mhlo.dot"(%3730, %1270) : (tensor<384x128xf32>, tensor<128x128xf32>) -> tensor<384x128xf32>
%3732 = "mhlo.broadcast_in_dim"(%1269) {broadcast_dimensions = dense<1> : tensor<1xi64>} : (tensor<128xf32>) -> tensor<384x128xf32>
%3733 = mhlo.add %3731, %3732 : tensor<384x128xf32>
%3734 = "mhlo.reshape"(%3733) : (tensor<384x128xf32>) -> tensor<1x384x128xf32>
%3735 = "mhlo.dot"(%3692, %1284) : (tensor<384x512xf32>, tensor<512x128xf32>) -> tensor<384x128xf32>
%3736 = "mhlo.broadcast_in_dim"(%1283) {broadcast_dimensions = dense<1> : tensor<1xi64>} : (tensor<128xf32>) -> tensor<384x128xf32>
%3737 = mhlo.add %3735, %3736 : tensor<384x128xf32>
%3738 = "mhlo.reshape"(%3737) : (tensor<384x128xf32>) -> tensor<1x384x128xf32>
%3739 = "mhlo.broadcast_in_dim"(%1282) {broadcast_dimensions = dense<2> : tensor<1xi64>} : (tensor<128xf32>) -> tensor<1x384x128xf32>
%3740 = mhlo.multiply %3738, %3739 : tensor<1x384x128xf32>
%3741 = "mhlo.broadcast_in_dim"(%1281) {broadcast_dimensions = dense<2> : tensor<1xi64>} : (tensor<128xf32>) -> tensor<1x384x128xf32>
%3742 = mhlo.add %3740, %3741 : tensor<1x384x128xf32>
%3743 = mhlo.add %3734, %3742 : tensor<1x384x128xf32>
%3744 = "mhlo.broadcast_in_dim"(%1268) {broadcast_dimensions = dense<2> : tensor<1xi64>} : (tensor<128xf32>) -> tensor<1x384x128xf32>
%3745 = mhlo.multiply %3743, %3744 : tensor<1x384x128xf32>
%3746 = "mhlo.broadcast_in_dim"(%1267) {broadcast_dimensions = dense<2> : tensor<1xi64>} : (tensor<128xf32>) -> tensor<1x384x128xf32>
%3747 = mhlo.add %3745, %3746 : tensor<1x384x128xf32>
%3748 = "mhlo.reshape"(%3747) : (tensor<1x384x128xf32>) -> tensor<384x128xf32>
%3749 = "mhlo.dot"(%3748, %1286) : (tensor<384x128xf32>, tensor<128x512xf32>) -> tensor<384x512xf32>
%3750 = "mhlo.broadcast_in_dim"(%1285) {broadcast_dimensions = dense<1> : tensor<1xi64>} : (tensor<512xf32>) -> tensor<384x512xf32>
%3751 = mhlo.add %3749, %3750 : tensor<384x512xf32>
%3752 = "mhlo.reshape"(%3751) : (tensor<384x512xf32>) -> tensor<1x384x512xf32>
%3753 = mhlo.maximum %3752, %1119 : tensor<1x384x512xf32>
%3754 = "mhlo.reshape"(%3753) : (tensor<1x384x512xf32>) -> tensor<384x512xf32>
%3755 = "mhlo.dot"(%3754, %1290) : (tensor<384x512xf32>, tensor<512x128xf32>) -> tensor<384x128xf32>
%3756 = "mhlo.broadcast_in_dim"(%1289) {broadcast_dimensions = dense<1> : tensor<1xi64>} : (tensor<128xf32>) -> tensor<384x128xf32>
%3757 = mhlo.add %3755, %3756 : tensor<384x128xf32>
%3758 = "mhlo.reshape"(%3757) : (tensor<384x128xf32>) -> tensor<1x384x128xf32>
%3759 = mhlo.add %3758, %3747 : tensor<1x384x128xf32>
%3760 = "mhlo.broadcast_in_dim"(%1288) {broadcast_dimensions = dense<2> : tensor<1xi64>} : (tensor<128xf32>) -> tensor<1x384x128xf32>
%3761 = mhlo.multiply %3759, %3760 : tensor<1x384x128xf32>
%3762 = "mhlo.broadcast_in_dim"(%1287) {broadcast_dimensions = dense<2> : tensor<1xi64>} : (tensor<128xf32>) -> tensor<1x384x128xf32>
%3763 = mhlo.add %3761, %3762 : tensor<1x384x128xf32>
%3764 = "mhlo.reshape"(%3763) : (tensor<1x384x128xf32>) -> tensor<384x128xf32>
%3765 = "mhlo.dot"(%3764, %1292) : (tensor<384x128xf32>, tensor<128x512xf32>) -> tensor<384x512xf32>
%3766 = "mhlo.broadcast_in_dim"(%1291) {broadcast_dimensions = dense<1> : tensor<1xi64>} : (tensor<512xf32>) -> tensor<384x512xf32>
%3767 = mhlo.add %3765, %3766 : tensor<384x512xf32>
%3768 = "mhlo.reshape"(%3767) : (tensor<384x512xf32>) -> tensor<1x384x512xf32>
%3769 = mhlo.maximum %3768, %1119 : tensor<1x384x512xf32>
%3770 = "mhlo.reshape"(%3769) : (tensor<1x384x512xf32>) -> tensor<384x512xf32>
%3771 = "mhlo.dot"(%3770, %1296) : (tensor<384x512xf32>, tensor<512x128xf32>) -> tensor<384x128xf32>
%3772 = "mhlo.broadcast_in_dim"(%1295) {broadcast_dimensions = dense<1> : tensor<1xi64>} : (tensor<128xf32>) -> tensor<384x128xf32>
%3773 = mhlo.add %3771, %3772 : tensor<384x128xf32>
%3774 = "mhlo.reshape"(%3773) : (tensor<384x128xf32>) -> tensor<1x384x128xf32>
%3775 = mhlo.add %3774, %3763 : tensor<1x384x128xf32>
%3776 = "mhlo.broadcast_in_dim"(%1294) {broadcast_dimensions = dense<2> : tensor<1xi64>} : (tensor<128xf32>) -> tensor<1x384x128xf32>
%3777 = mhlo.multiply %3775, %3776 : tensor<1x384x128xf32>
%3778 = "mhlo.broadcast_in_dim"(%1293) {broadcast_dimensions = dense<2> : tensor<1xi64>} : (tensor<128xf32>) -> tensor<1x384x128xf32>
%3779 = mhlo.add %3777, %3778 : tensor<1x384x128xf32>
%3780 = "mhlo.reshape"(%3779) : (tensor<1x384x128xf32>) -> tensor<384x128xf32>
%3781 = "mhlo.dot"(%3780, %1298) : (tensor<384x128xf32>, tensor<128x512xf32>) -> tensor<384x512xf32>
%3782 = "mhlo.broadcast_in_dim"(%1297) {broadcast_dimensions = dense<1> : tensor<1xi64>} : (tensor<512xf32>) -> tensor<384x512xf32>
%3783 = mhlo.add %3781, %3782 : tensor<384x512xf32>
%3784 = "mhlo.reshape"(%3783) : (tensor<384x512xf32>) -> tensor<1x384x512xf32>
%3785 = mhlo.maximum %3784, %1119 : tensor<1x384x512xf32>
%3786 = "mhlo.reshape"(%3785) : (tensor<1x384x512xf32>) -> tensor<384x512xf32>
%3787 = "mhlo.dot"(%3786, %1302) : (tensor<384x512xf32>, tensor<512x128xf32>) -> tensor<384x128xf32>
%3788 = "mhlo.broadcast_in_dim"(%1301) {broadcast_dimensions = dense<1> : tensor<1xi64>} : (tensor<128xf32>) -> tensor<384x128xf32>
%3789 = mhlo.add %3787, %3788 : tensor<384x128xf32>
%3790 = "mhlo.reshape"(%3789) : (tensor<384x128xf32>) -> tensor<1x384x128xf32>
%3791 = mhlo.add %3790, %3779 : tensor<1x384x128xf32>
%3792 = "mhlo.broadcast_in_dim"(%1300) {broadcast_dimensions = dense<2> : tensor<1xi64>} : (tensor<128xf32>) -> tensor<1x384x128xf32>
%3793 = mhlo.multiply %3791, %3792 : tensor<1x384x128xf32>
%3794 = "mhlo.broadcast_in_dim"(%1299) {broadcast_dimensions = dense<2> : tensor<1xi64>} : (tensor<128xf32>) -> tensor<1x384x128xf32>
%3795 = mhlo.add %3793, %3794 : tensor<1x384x128xf32>
%3796 = "mhlo.reshape"(%3795) : (tensor<1x384x128xf32>) -> tensor<384x128xf32>
%3797 = "mhlo.dot"(%3796, %1304) : (tensor<384x128xf32>, tensor<128x512xf32>) -> tensor<384x512xf32>
%3798 = "mhlo.broadcast_in_dim"(%1303) {broadcast_dimensions = dense<1> : tensor<1xi64>} : (tensor<512xf32>) -> tensor<384x512xf32>
%3799 = mhlo.add %3797, %3798 : tensor<384x512xf32>
%3800 = "mhlo.reshape"(%3799) : (tensor<384x512xf32>) -> tensor<1x384x512xf32>
%3801 = mhlo.maximum %3800, %1119 : tensor<1x384x512xf32>
%3802 = "mhlo.reshape"(%3801) : (tensor<1x384x512xf32>) -> tensor<384x512xf32>
%3803 = "mhlo.dot"(%3802, %1312) : (tensor<384x512xf32>, tensor<512x128xf32>) -> tensor<384x128xf32>
%3804 = "mhlo.broadcast_in_dim"(%1311) {broadcast_dimensions = dense<1> : tensor<1xi64>} : (tensor<128xf32>) -> tensor<384x128xf32>
%3805 = mhlo.add %3803, %3804 : tensor<384x128xf32>
%3806 = "mhlo.reshape"(%3805) : (tensor<384x128xf32>) -> tensor<1x384x128xf32>
%3807 = mhlo.add %3806, %3795 : tensor<1x384x128xf32>
%3808 = "mhlo.broadcast_in_dim"(%1306) {broadcast_dimensions = dense<2> : tensor<1xi64>} : (tensor<128xf32>) -> tensor<1x384x128xf32>
%3809 = mhlo.multiply %3807, %3808 : tensor<1x384x128xf32>
%3810 = "mhlo.broadcast_in_dim"(%1305) {broadcast_dimensions = dense<2> : tensor<1xi64>} : (tensor<128xf32>) -> tensor<1x384x128xf32>
%3811 = mhlo.add %3809, %3810 : tensor<1x384x128xf32>
%3812 = "mhlo.reshape"(%3811) : (tensor<1x384x128xf32>) -> tensor<384x128xf32>
%3813 = "mhlo.dot"(%3812, %1310) : (tensor<384x128xf32>, tensor<128x512xf32>) -> tensor<384x512xf32>
%3814 = "mhlo.broadcast_in_dim"(%1309) {broadcast_dimensions = dense<1> : tensor<1xi64>} : (tensor<512xf32>) -> tensor<384x512xf32>
%3815 = mhlo.add %3813, %3814 : tensor<384x512xf32>
%3816 = "mhlo.reshape"(%3815) : (tensor<384x512xf32>) -> tensor<1x384x512xf32>
%3817 = mhlo.add %3816, %3691 : tensor<1x384x512xf32>
%3818 = "mhlo.broadcast_in_dim"(%1308) {broadcast_dimensions = dense<2> : tensor<1xi64>} : (tensor<512xf32>) -> tensor<1x384x512xf32>
%3819 = mhlo.multiply %3817, %3818 : tensor<1x384x512xf32>
%3820 = "mhlo.broadcast_in_dim"(%1307) {broadcast_dimensions = dense<2> : tensor<1xi64>} : (tensor<512xf32>) -> tensor<1x384x512xf32>
%3821 = mhlo.add %3819, %3820 : tensor<1x384x512xf32>
%3822 = "mhlo.reshape"(%3821) : (tensor<1x384x512xf32>) -> tensor<384x512xf32>
%3823 = "mhlo.dot"(%3822, %1322) : (tensor<384x512xf32>, tensor<512x128xf32>) -> tensor<384x128xf32>
%3824 = "mhlo.broadcast_in_dim"(%1321) {broadcast_dimensions = dense<1> : tensor<1xi64>} : (tensor<128xf32>) -> tensor<384x128xf32>
%3825 = mhlo.add %3823, %3824 : tensor<384x128xf32>
%3826 = "mhlo.reshape"(%3825) : (tensor<384x128xf32>) -> tensor<1x384x4x32xf32>
%3827 = "mhlo.transpose"(%3826) {permutation = dense<[0, 2, 1, 3]> : tensor<4xi64>} : (tensor<1x384x4x32xf32>) -> tensor<1x4x384x32xf32>
%3828 = "mhlo.dot"(%3822, %1326) : (tensor<384x512xf32>, tensor<512x128xf32>) -> tensor<384x128xf32>
%3829 = "mhlo.reshape"(%3828) : (tensor<384x128xf32>) -> tensor<1x384x128xf32>
%3830 = "mhlo.broadcast_in_dim"(%1325) {broadcast_dimensions = dense<2> : tensor<1xi64>} : (tensor<128xf32>) -> tensor<1x384x128xf32>
%3831 = mhlo.add %3829, %3830 : tensor<1x384x128xf32>
%3832 = "mhlo.broadcast_in_dim"(%1324) {broadcast_dimensions = dense<2> : tensor<1xi64>} : (tensor<128xf32>) -> tensor<1x384x128xf32>
%3833 = mhlo.multiply %3831, %3832 : tensor<1x384x128xf32>
%3834 = "mhlo.broadcast_in_dim"(%1323) {broadcast_dimensions = dense<2> : tensor<1xi64>} : (tensor<128xf32>) -> tensor<1x384x128xf32>
%3835 = mhlo.add %3833, %3834 : tensor<1x384x128xf32>
%3836 = "mhlo.reshape"(%3835) : (tensor<1x384x128xf32>) -> tensor<384x128xf32>
%3837 = "mhlo.dot"(%3836, %1318) : (tensor<384x128xf32>, tensor<128x128xf32>) -> tensor<384x128xf32>
%3838 = "mhlo.broadcast_in_dim"(%1317) {broadcast_dimensions = dense<1> : tensor<1xi64>} : (tensor<128xf32>) -> tensor<384x128xf32>
%3839 = mhlo.add %3837, %3838 : tensor<384x128xf32>
%3840 = "mhlo.reshape"(%3839) : (tensor<384x128xf32>) -> tensor<1x384x4x32xf32>
%3841 = "mhlo.transpose"(%3840) {permutation = dense<[0, 2, 1, 3]> : tensor<4xi64>} : (tensor<1x384x4x32xf32>) -> tensor<1x4x384x32xf32>
%3842 = "mhlo.dot"(%3836, %1320) : (tensor<384x128xf32>, tensor<128x128xf32>) -> tensor<384x128xf32>
%3843 = "mhlo.broadcast_in_dim"(%1319) {broadcast_dimensions = dense<1> : tensor<1xi64>} : (tensor<128xf32>) -> tensor<384x128xf32>
%3844 = mhlo.add %3842, %3843 : tensor<384x128xf32>
%3845 = "mhlo.reshape"(%3844) : (tensor<384x128xf32>) -> tensor<1x384x4x32xf32>
%3846 = "mhlo.transpose"(%3845) {permutation = dense<[0, 2, 1, 3]> : tensor<4xi64>} : (tensor<1x384x4x32xf32>) -> tensor<1x4x384x32xf32>
%3847 = "mhlo.dot_general"(%3846, %3841) {dot_dimension_numbers = #mhlo.dot<lhs_batching_dimensions = [0, 1], lhs_contracting_dimensions = [3], rhs_batching_dimensions = [0, 1], rhs_contracting_dimensions = [3]>} : (tensor<1x4x384x32xf32>, tensor<1x4x384x32xf32>) -> tensor<1x4x384x384xf32>
%3848 = mhlo.multiply %3847, %1114 : tensor<1x4x384x384xf32>
%3849 = "mhlo.broadcast_in_dim"(%2254) {broadcast_dimensions = dense<[0, 1, 2, 3]> : tensor<4xi64>} : (tensor<1x1x384x384xf32>) -> tensor<1x4x384x384xf32>
%3850 = mhlo.add %3848, %3849 : tensor<1x4x384x384xf32>
%3851 = "mhlo.reduce"(%3850, %1117) ( {
^bb0(%arg3: tensor<f32>, %arg4: tensor<f32>): // no predecessors
%5393 = mhlo.maximum %arg3, %arg4 : tensor<f32>
"mhlo.return"(%5393) : (tensor<f32>) -> ()
}) {dimensions = dense<3> : tensor<1xi64>} : (tensor<1x4x384x384xf32>, tensor<f32>) -> tensor<1x4x384xf32>
%3852 = "mhlo.broadcast_in_dim"(%3851) {broadcast_dimensions = dense<[0, 1, 2]> : tensor<3xi64>} : (tensor<1x4x384xf32>) -> tensor<1x4x384x384xf32>
%3853 = mhlo.subtract %3850, %3852 : tensor<1x4x384x384xf32>
%3854 = "mhlo.exponential"(%3853) : (tensor<1x4x384x384xf32>) -> tensor<1x4x384x384xf32>
%3855 = "mhlo.reduce"(%3854, %1118) ( {
^bb0(%arg3: tensor<f32>, %arg4: tensor<f32>): // no predecessors
%5393 = mhlo.add %arg3, %arg4 : tensor<f32>
"mhlo.return"(%5393) : (tensor<f32>) -> ()
}) {dimensions = dense<3> : tensor<1xi64>} : (tensor<1x4x384x384xf32>, tensor<f32>) -> tensor<1x4x384xf32>
%3856 = "mhlo.broadcast_in_dim"(%3855) {broadcast_dimensions = dense<[0, 1, 2]> : tensor<3xi64>} : (tensor<1x4x384xf32>) -> tensor<1x4x384x384xf32>
%3857 = mhlo.divide %3854, %3856 : tensor<1x4x384x384xf32>
%3858 = "mhlo.dot_general"(%3857, %3827) {dot_dimension_numbers = #mhlo.dot<lhs_batching_dimensions = [0, 1], lhs_contracting_dimensions = [3], rhs_batching_dimensions = [0, 1], rhs_contracting_dimensions = [2]>} : (tensor<1x4x384x384xf32>, tensor<1x4x384x32xf32>) -> tensor<1x4x384x32xf32>
%3859 = "mhlo.transpose"(%3858) {permutation = dense<[0, 2, 1, 3]> : tensor<4xi64>} : (tensor<1x4x384x32xf32>) -> tensor<1x384x4x32xf32>
%3860 = "mhlo.reshape"(%3859) : (tensor<1x384x4x32xf32>) -> tensor<384x128xf32>
%3861 = "mhlo.dot"(%3860, %1316) : (tensor<384x128xf32>, tensor<128x128xf32>) -> tensor<384x128xf32>
%3862 = "mhlo.broadcast_in_dim"(%1315) {broadcast_dimensions = dense<1> : tensor<1xi64>} : (tensor<128xf32>) -> tensor<384x128xf32>
%3863 = mhlo.add %3861, %3862 : tensor<384x128xf32>
%3864 = "mhlo.reshape"(%3863) : (tensor<384x128xf32>) -> tensor<1x384x128xf32>
%3865 = "mhlo.dot"(%3822, %1330) : (tensor<384x512xf32>, tensor<512x128xf32>) -> tensor<384x128xf32>
%3866 = "mhlo.broadcast_in_dim"(%1329) {broadcast_dimensions = dense<1> : tensor<1xi64>} : (tensor<128xf32>) -> tensor<384x128xf32>
%3867 = mhlo.add %3865, %3866 : tensor<384x128xf32>
%3868 = "mhlo.reshape"(%3867) : (tensor<384x128xf32>) -> tensor<1x384x128xf32>
%3869 = "mhlo.broadcast_in_dim"(%1328) {broadcast_dimensions = dense<2> : tensor<1xi64>} : (tensor<128xf32>) -> tensor<1x384x128xf32>
%3870 = mhlo.multiply %3868, %3869 : tensor<1x384x128xf32>
%3871 = "mhlo.broadcast_in_dim"(%1327) {broadcast_dimensions = dense<2> : tensor<1xi64>} : (tensor<128xf32>) -> tensor<1x384x128xf32>
%3872 = mhlo.add %3870, %3871 : tensor<1x384x128xf32>
%3873 = mhlo.add %3864, %3872 : tensor<1x384x128xf32>
%3874 = "mhlo.broadcast_in_dim"(%1314) {broadcast_dimensions = dense<2> : tensor<1xi64>} : (tensor<128xf32>) -> tensor<1x384x128xf32>
%3875 = mhlo.multiply %3873, %3874 : tensor<1x384x128xf32>
%3876 = "mhlo.broadcast_in_dim"(%1313) {broadcast_dimensions = dense<2> : tensor<1xi64>} : (tensor<128xf32>) -> tensor<1x384x128xf32>
%3877 = mhlo.add %3875, %3876 : tensor<1x384x128xf32>
%3878 = "mhlo.reshape"(%3877) : (tensor<1x384x128xf32>) -> tensor<384x128xf32>
%3879 = "mhlo.dot"(%3878, %1332) : (tensor<384x128xf32>, tensor<128x512xf32>) -> tensor<384x512xf32>
%3880 = "mhlo.broadcast_in_dim"(%1331) {broadcast_dimensions = dense<1> : tensor<1xi64>} : (tensor<512xf32>) -> tensor<384x512xf32>
%3881 = mhlo.add %3879, %3880 : tensor<384x512xf32>
%3882 = "mhlo.reshape"(%3881) : (tensor<384x512xf32>) -> tensor<1x384x512xf32>
%3883 = mhlo.maximum %3882, %1119 : tensor<1x384x512xf32>
%3884 = "mhlo.reshape"(%3883) : (tensor<1x384x512xf32>) -> tensor<384x512xf32>
%3885 = "mhlo.dot"(%3884, %1336) : (tensor<384x512xf32>, tensor<512x128xf32>) -> tensor<384x128xf32>
%3886 = "mhlo.broadcast_in_dim"(%1335) {broadcast_dimensions = dense<1> : tensor<1xi64>} : (tensor<128xf32>) -> tensor<384x128xf32>
%3887 = mhlo.add %3885, %3886 : tensor<384x128xf32>
%3888 = "mhlo.reshape"(%3887) : (tensor<384x128xf32>) -> tensor<1x384x128xf32>
%3889 = mhlo.add %3888, %3877 : tensor<1x384x128xf32>
%3890 = "mhlo.broadcast_in_dim"(%1334) {broadcast_dimensions = dense<2> : tensor<1xi64>} : (tensor<128xf32>) -> tensor<1x384x128xf32>
%3891 = mhlo.multiply %3889, %3890 : tensor<1x384x128xf32>
%3892 = "mhlo.broadcast_in_dim"(%1333) {broadcast_dimensions = dense<2> : tensor<1xi64>} : (tensor<128xf32>) -> tensor<1x384x128xf32>
%3893 = mhlo.add %3891, %3892 : tensor<1x384x128xf32>
%3894 = "mhlo.reshape"(%3893) : (tensor<1x384x128xf32>) -> tensor<384x128xf32>
%3895 = "mhlo.dot"(%3894, %1338) : (tensor<384x128xf32>, tensor<128x512xf32>) -> tensor<384x512xf32>
%3896 = "mhlo.broadcast_in_dim"(%1337) {broadcast_dimensions = dense<1> : tensor<1xi64>} : (tensor<512xf32>) -> tensor<384x512xf32>
%3897 = mhlo.add %3895, %3896 : tensor<384x512xf32>
%3898 = "mhlo.reshape"(%3897) : (tensor<384x512xf32>) -> tensor<1x384x512xf32>
%3899 = mhlo.maximum %3898, %1119 : tensor<1x384x512xf32>
%3900 = "mhlo.reshape"(%3899) : (tensor<1x384x512xf32>) -> tensor<384x512xf32>
%3901 = "mhlo.dot"(%3900, %1342) : (tensor<384x512xf32>, tensor<512x128xf32>) -> tensor<384x128xf32>
%3902 = "mhlo.broadcast_in_dim"(%1341) {broadcast_dimensions = dense<1> : tensor<1xi64>} : (tensor<128xf32>) -> tensor<384x128xf32>
%3903 = mhlo.add %3901, %3902 : tensor<384x128xf32>
%3904 = "mhlo.reshape"(%3903) : (tensor<384x128xf32>) -> tensor<1x384x128xf32>
%3905 = mhlo.add %3904, %3893 : tensor<1x384x128xf32>
%3906 = "mhlo.broadcast_in_dim"(%1340) {broadcast_dimensions = dense<2> : tensor<1xi64>} : (tensor<128xf32>) -> tensor<1x384x128xf32>
%3907 = mhlo.multiply %3905, %3906 : tensor<1x384x128xf32>
%3908 = "mhlo.broadcast_in_dim"(%1339) {broadcast_dimensions = dense<2> : tensor<1xi64>} : (tensor<128xf32>) -> tensor<1x384x128xf32>
%3909 = mhlo.add %3907, %3908 : tensor<1x384x128xf32>
%3910 = "mhlo.reshape"(%3909) : (tensor<1x384x128xf32>) -> tensor<384x128xf32>
%3911 = "mhlo.dot"(%3910, %1344) : (tensor<384x128xf32>, tensor<128x512xf32>) -> tensor<384x512xf32>
%3912 = "mhlo.broadcast_in_dim"(%1343) {broadcast_dimensions = dense<1> : tensor<1xi64>} : (tensor<512xf32>) -> tensor<384x512xf32>
%3913 = mhlo.add %3911, %3912 : tensor<384x512xf32>
%3914 = "mhlo.reshape"(%3913) : (tensor<384x512xf32>) -> tensor<1x384x512xf32>
%3915 = mhlo.maximum %3914, %1119 : tensor<1x384x512xf32>
%3916 = "mhlo.reshape"(%3915) : (tensor<1x384x512xf32>) -> tensor<384x512xf32>
%3917 = "mhlo.dot"(%3916, %1348) : (tensor<384x512xf32>, tensor<512x128xf32>) -> tensor<384x128xf32>
%3918 = "mhlo.broadcast_in_dim"(%1347) {broadcast_dimensions = dense<1> : tensor<1xi64>} : (tensor<128xf32>) -> tensor<384x128xf32>
%3919 = mhlo.add %3917, %3918 : tensor<384x128xf32>
%3920 = "mhlo.reshape"(%3919) : (tensor<384x128xf32>) -> tensor<1x384x128xf32>
%3921 = mhlo.add %3920, %3909 : tensor<1x384x128xf32>
%3922 = "mhlo.broadcast_in_dim"(%1346) {broadcast_dimensions = dense<2> : tensor<1xi64>} : (tensor<128xf32>) -> tensor<1x384x128xf32>
%3923 = mhlo.multiply %3921, %3922 : tensor<1x384x128xf32>
%3924 = "mhlo.broadcast_in_dim"(%1345) {broadcast_dimensions = dense<2> : tensor<1xi64>} : (tensor<128xf32>) -> tensor<1x384x128xf32>
%3925 = mhlo.add %3923, %3924 : tensor<1x384x128xf32>
%3926 = "mhlo.reshape"(%3925) : (tensor<1x384x128xf32>) -> tensor<384x128xf32>
%3927 = "mhlo.dot"(%3926, %1350) : (tensor<384x128xf32>, tensor<128x512xf32>) -> tensor<384x512xf32>
%3928 = "mhlo.broadcast_in_dim"(%1349) {broadcast_dimensions = dense<1> : tensor<1xi64>} : (tensor<512xf32>) -> tensor<384x512xf32>
%3929 = mhlo.add %3927, %3928 : tensor<384x512xf32>
%3930 = "mhlo.reshape"(%3929) : (tensor<384x512xf32>) -> tensor<1x384x512xf32>
%3931 = mhlo.maximum %3930, %1119 : tensor<1x384x512xf32>
%3932 = "mhlo.reshape"(%3931) : (tensor<1x384x512xf32>) -> tensor<384x512xf32>
%3933 = "mhlo.dot"(%3932, %1358) : (tensor<384x512xf32>, tensor<512x128xf32>) -> tensor<384x128xf32>
%3934 = "mhlo.broadcast_in_dim"(%1357) {broadcast_dimensions = dense<1> : tensor<1xi64>} : (tensor<128xf32>) -> tensor<384x128xf32>
%3935 = mhlo.add %3933, %3934 : tensor<384x128xf32>
%3936 = "mhlo.reshape"(%3935) : (tensor<384x128xf32>) -> tensor<1x384x128xf32>
%3937 = mhlo.add %3936, %3925 : tensor<1x384x128xf32>
%3938 = "mhlo.broadcast_in_dim"(%1352) {broadcast_dimensions = dense<2> : tensor<1xi64>} : (tensor<128xf32>) -> tensor<1x384x128xf32>
%3939 = mhlo.multiply %3937, %3938 : tensor<1x384x128xf32>
%3940 = "mhlo.broadcast_in_dim"(%1351) {broadcast_dimensions = dense<2> : tensor<1xi64>} : (tensor<128xf32>) -> tensor<1x384x128xf32>
%3941 = mhlo.add %3939, %3940 : tensor<1x384x128xf32>
%3942 = "mhlo.reshape"(%3941) : (tensor<1x384x128xf32>) -> tensor<384x128xf32>
%3943 = "mhlo.dot"(%3942, %1356) : (tensor<384x128xf32>, tensor<128x512xf32>) -> tensor<384x512xf32>
%3944 = "mhlo.broadcast_in_dim"(%1355) {broadcast_dimensions = dense<1> : tensor<1xi64>} : (tensor<512xf32>) -> tensor<384x512xf32>
%3945 = mhlo.add %3943, %3944 : tensor<384x512xf32>
%3946 = "mhlo.reshape"(%3945) : (tensor<384x512xf32>) -> tensor<1x384x512xf32>
%3947 = mhlo.add %3946, %3821 : tensor<1x384x512xf32>
%3948 = "mhlo.broadcast_in_dim"(%1354) {broadcast_dimensions = dense<2> : tensor<1xi64>} : (tensor<512xf32>) -> tensor<1x384x512xf32>
%3949 = mhlo.multiply %3947, %3948 : tensor<1x384x512xf32>
%3950 = "mhlo.broadcast_in_dim"(%1353) {broadcast_dimensions = dense<2> : tensor<1xi64>} : (tensor<512xf32>) -> tensor<1x384x512xf32>
%3951 = mhlo.add %3949, %3950 : tensor<1x384x512xf32>
%3952 = "mhlo.reshape"(%3951) : (tensor<1x384x512xf32>) -> tensor<384x512xf32>
%3953 = "mhlo.dot"(%3952, %1368) : (tensor<384x512xf32>, tensor<512x128xf32>) -> tensor<384x128xf32>
%3954 = "mhlo.broadcast_in_dim"(%1367) {broadcast_dimensions = dense<1> : tensor<1xi64>} : (tensor<128xf32>) -> tensor<384x128xf32>
%3955 = mhlo.add %3953, %3954 : tensor<384x128xf32>
%3956 = "mhlo.reshape"(%3955) : (tensor<384x128xf32>) -> tensor<1x384x4x32xf32>
%3957 = "mhlo.transpose"(%3956) {permutation = dense<[0, 2, 1, 3]> : tensor<4xi64>} : (tensor<1x384x4x32xf32>) -> tensor<1x4x384x32xf32>
%3958 = "mhlo.dot"(%3952, %1372) : (tensor<384x512xf32>, tensor<512x128xf32>) -> tensor<384x128xf32>
%3959 = "mhlo.reshape"(%3958) : (tensor<384x128xf32>) -> tensor<1x384x128xf32>
%3960 = "mhlo.broadcast_in_dim"(%1371) {broadcast_dimensions = dense<2> : tensor<1xi64>} : (tensor<128xf32>) -> tensor<1x384x128xf32>
%3961 = mhlo.add %3959, %3960 : tensor<1x384x128xf32>
%3962 = "mhlo.broadcast_in_dim"(%1370) {broadcast_dimensions = dense<2> : tensor<1xi64>} : (tensor<128xf32>) -> tensor<1x384x128xf32>
%3963 = mhlo.multiply %3961, %3962 : tensor<1x384x128xf32>
%3964 = "mhlo.broadcast_in_dim"(%1369) {broadcast_dimensions = dense<2> : tensor<1xi64>} : (tensor<128xf32>) -> tensor<1x384x128xf32>
%3965 = mhlo.add %3963, %3964 : tensor<1x384x128xf32>
%3966 = "mhlo.reshape"(%3965) : (tensor<1x384x128xf32>) -> tensor<384x128xf32>
%3967 = "mhlo.dot"(%3966, %1364) : (tensor<384x128xf32>, tensor<128x128xf32>) -> tensor<384x128xf32>
%3968 = "mhlo.broadcast_in_dim"(%1363) {broadcast_dimensions = dense<1> : tensor<1xi64>} : (tensor<128xf32>) -> tensor<384x128xf32>
%3969 = mhlo.add %3967, %3968 : tensor<384x128xf32>
%3970 = "mhlo.reshape"(%3969) : (tensor<384x128xf32>) -> tensor<1x384x4x32xf32>
%3971 = "mhlo.transpose"(%3970) {permutation = dense<[0, 2, 1, 3]> : tensor<4xi64>} : (tensor<1x384x4x32xf32>) -> tensor<1x4x384x32xf32>
%3972 = "mhlo.dot"(%3966, %1366) : (tensor<384x128xf32>, tensor<128x128xf32>) -> tensor<384x128xf32>
%3973 = "mhlo.broadcast_in_dim"(%1365) {broadcast_dimensions = dense<1> : tensor<1xi64>} : (tensor<128xf32>) -> tensor<384x128xf32>
%3974 = mhlo.add %3972, %3973 : tensor<384x128xf32>
%3975 = "mhlo.reshape"(%3974) : (tensor<384x128xf32>) -> tensor<1x384x4x32xf32>
%3976 = "mhlo.transpose"(%3975) {permutation = dense<[0, 2, 1, 3]> : tensor<4xi64>} : (tensor<1x384x4x32xf32>) -> tensor<1x4x384x32xf32>
%3977 = "mhlo.dot_general"(%3976, %3971) {dot_dimension_numbers = #mhlo.dot<lhs_batching_dimensions = [0, 1], lhs_contracting_dimensions = [3], rhs_batching_dimensions = [0, 1], rhs_contracting_dimensions = [3]>} : (tensor<1x4x384x32xf32>, tensor<1x4x384x32xf32>) -> tensor<1x4x384x384xf32>
%3978 = mhlo.multiply %3977, %1114 : tensor<1x4x384x384xf32>
%3979 = "mhlo.broadcast_in_dim"(%2254) {broadcast_dimensions = dense<[0, 1, 2, 3]> : tensor<4xi64>} : (tensor<1x1x384x384xf32>) -> tensor<1x4x384x384xf32>
%3980 = mhlo.add %3978, %3979 : tensor<1x4x384x384xf32>
%3981 = "mhlo.reduce"(%3980, %1117) ( {
^bb0(%arg3: tensor<f32>, %arg4: tensor<f32>): // no predecessors
%5393 = mhlo.maximum %arg3, %arg4 : tensor<f32>
"mhlo.return"(%5393) : (tensor<f32>) -> ()
}) {dimensions = dense<3> : tensor<1xi64>} : (tensor<1x4x384x384xf32>, tensor<f32>) -> tensor<1x4x384xf32>
%3982 = "mhlo.broadcast_in_dim"(%3981) {broadcast_dimensions = dense<[0, 1, 2]> : tensor<3xi64>} : (tensor<1x4x384xf32>) -> tensor<1x4x384x384xf32>
%3983 = mhlo.subtract %3980, %3982 : tensor<1x4x384x384xf32>
%3984 = "mhlo.exponential"(%3983) : (tensor<1x4x384x384xf32>) -> tensor<1x4x384x384xf32>
%3985 = "mhlo.reduce"(%3984, %1118) ( {
^bb0(%arg3: tensor<f32>, %arg4: tensor<f32>): // no predecessors
%5393 = mhlo.add %arg3, %arg4 : tensor<f32>
"mhlo.return"(%5393) : (tensor<f32>) -> ()
}) {dimensions = dense<3> : tensor<1xi64>} : (tensor<1x4x384x384xf32>, tensor<f32>) -> tensor<1x4x384xf32>
%3986 = "mhlo.broadcast_in_dim"(%3985) {broadcast_dimensions = dense<[0, 1, 2]> : tensor<3xi64>} : (tensor<1x4x384xf32>) -> tensor<1x4x384x384xf32>
%3987 = mhlo.divide %3984, %3986 : tensor<1x4x384x384xf32>
%3988 = "mhlo.dot_general"(%3987, %3957) {dot_dimension_numbers = #mhlo.dot<lhs_batching_dimensions = [0, 1], lhs_contracting_dimensions = [3], rhs_batching_dimensions = [0, 1], rhs_contracting_dimensions = [2]>} : (tensor<1x4x384x384xf32>, tensor<1x4x384x32xf32>) -> tensor<1x4x384x32xf32>
%3989 = "mhlo.transpose"(%3988) {permutation = dense<[0, 2, 1, 3]> : tensor<4xi64>} : (tensor<1x4x384x32xf32>) -> tensor<1x384x4x32xf32>
%3990 = "mhlo.reshape"(%3989) : (tensor<1x384x4x32xf32>) -> tensor<384x128xf32>
%3991 = "mhlo.dot"(%3990, %1362) : (tensor<384x128xf32>, tensor<128x128xf32>) -> tensor<384x128xf32>
%3992 = "mhlo.broadcast_in_dim"(%1361) {broadcast_dimensions = dense<1> : tensor<1xi64>} : (tensor<128xf32>) -> tensor<384x128xf32>
%3993 = mhlo.add %3991, %3992 : tensor<384x128xf32>
%3994 = "mhlo.reshape"(%3993) : (tensor<384x128xf32>) -> tensor<1x384x128xf32>
%3995 = "mhlo.dot"(%3952, %1376) : (tensor<384x512xf32>, tensor<512x128xf32>) -> tensor<384x128xf32>
%3996 = "mhlo.broadcast_in_dim"(%1375) {broadcast_dimensions = dense<1> : tensor<1xi64>} : (tensor<128xf32>) -> tensor<384x128xf32>
%3997 = mhlo.add %3995, %3996 : tensor<384x128xf32>
%3998 = "mhlo.reshape"(%3997) : (tensor<384x128xf32>) -> tensor<1x384x128xf32>
%3999 = "mhlo.broadcast_in_dim"(%1374) {broadcast_dimensions = dense<2> : tensor<1xi64>} : (tensor<128xf32>) -> tensor<1x384x128xf32>
%4000 = mhlo.multiply %3998, %3999 : tensor<1x384x128xf32>
%4001 = "mhlo.broadcast_in_dim"(%1373) {broadcast_dimensions = dense<2> : tensor<1xi64>} : (tensor<128xf32>) -> tensor<1x384x128xf32>
%4002 = mhlo.add %4000, %4001 : tensor<1x384x128xf32>
%4003 = mhlo.add %3994, %4002 : tensor<1x384x128xf32>
%4004 = "mhlo.broadcast_in_dim"(%1360) {broadcast_dimensions = dense<2> : tensor<1xi64>} : (tensor<128xf32>) -> tensor<1x384x128xf32>
%4005 = mhlo.multiply %4003, %4004 : tensor<1x384x128xf32>
%4006 = "mhlo.broadcast_in_dim"(%1359) {broadcast_dimensions = dense<2> : tensor<1xi64>} : (tensor<128xf32>) -> tensor<1x384x128xf32>
%4007 = mhlo.add %4005, %4006 : tensor<1x384x128xf32>
%4008 = "mhlo.reshape"(%4007) : (tensor<1x384x128xf32>) -> tensor<384x128xf32>
%4009 = "mhlo.dot"(%4008, %1378) : (tensor<384x128xf32>, tensor<128x512xf32>) -> tensor<384x512xf32>
%4010 = "mhlo.broadcast_in_dim"(%1377) {broadcast_dimensions = dense<1> : tensor<1xi64>} : (tensor<512xf32>) -> tensor<384x512xf32>
%4011 = mhlo.add %4009, %4010 : tensor<384x512xf32>
%4012 = "mhlo.reshape"(%4011) : (tensor<384x512xf32>) -> tensor<1x384x512xf32>
%4013 = mhlo.maximum %4012, %1119 : tensor<1x384x512xf32>
%4014 = "mhlo.reshape"(%4013) : (tensor<1x384x512xf32>) -> tensor<384x512xf32>
%4015 = "mhlo.dot"(%4014, %1382) : (tensor<384x512xf32>, tensor<512x128xf32>) -> tensor<384x128xf32>
%4016 = "mhlo.broadcast_in_dim"(%1381) {broadcast_dimensions = dense<1> : tensor<1xi64>} : (tensor<128xf32>) -> tensor<384x128xf32>
%4017 = mhlo.add %4015, %4016 : tensor<384x128xf32>
%4018 = "mhlo.reshape"(%4017) : (tensor<384x128xf32>) -> tensor<1x384x128xf32>
%4019 = mhlo.add %4018, %4007 : tensor<1x384x128xf32>
%4020 = "mhlo.broadcast_in_dim"(%1380) {broadcast_dimensions = dense<2> : tensor<1xi64>} : (tensor<128xf32>) -> tensor<1x384x128xf32>
%4021 = mhlo.multiply %4019, %4020 : tensor<1x384x128xf32>
%4022 = "mhlo.broadcast_in_dim"(%1379) {broadcast_dimensions = dense<2> : tensor<1xi64>} : (tensor<128xf32>) -> tensor<1x384x128xf32>
%4023 = mhlo.add %4021, %4022 : tensor<1x384x128xf32>
%4024 = "mhlo.reshape"(%4023) : (tensor<1x384x128xf32>) -> tensor<384x128xf32>
%4025 = "mhlo.dot"(%4024, %1384) : (tensor<384x128xf32>, tensor<128x512xf32>) -> tensor<384x512xf32>
%4026 = "mhlo.broadcast_in_dim"(%1383) {broadcast_dimensions = dense<1> : tensor<1xi64>} : (tensor<512xf32>) -> tensor<384x512xf32>
%4027 = mhlo.add %4025, %4026 : tensor<384x512xf32>
%4028 = "mhlo.reshape"(%4027) : (tensor<384x512xf32>) -> tensor<1x384x512xf32>
%4029 = mhlo.maximum %4028, %1119 : tensor<1x384x512xf32>
%4030 = "mhlo.reshape"(%4029) : (tensor<1x384x512xf32>) -> tensor<384x512xf32>
%4031 = "mhlo.dot"(%4030, %1388) : (tensor<384x512xf32>, tensor<512x128xf32>) -> tensor<384x128xf32>
%4032 = "mhlo.broadcast_in_dim"(%1387) {broadcast_dimensions = dense<1> : tensor<1xi64>} : (tensor<128xf32>) -> tensor<384x128xf32>
%4033 = mhlo.add %4031, %4032 : tensor<384x128xf32>
%4034 = "mhlo.reshape"(%4033) : (tensor<384x128xf32>) -> tensor<1x384x128xf32>
%4035 = mhlo.add %4034, %4023 : tensor<1x384x128xf32>
%4036 = "mhlo.broadcast_in_dim"(%1386) {broadcast_dimensions = dense<2> : tensor<1xi64>} : (tensor<128xf32>) -> tensor<1x384x128xf32>
%4037 = mhlo.multiply %4035, %4036 : tensor<1x384x128xf32>
%4038 = "mhlo.broadcast_in_dim"(%1385) {broadcast_dimensions = dense<2> : tensor<1xi64>} : (tensor<128xf32>) -> tensor<1x384x128xf32>
%4039 = mhlo.add %4037, %4038 : tensor<1x384x128xf32>
%4040 = "mhlo.reshape"(%4039) : (tensor<1x384x128xf32>) -> tensor<384x128xf32>
%4041 = "mhlo.dot"(%4040, %1390) : (tensor<384x128xf32>, tensor<128x512xf32>) -> tensor<384x512xf32>
%4042 = "mhlo.broadcast_in_dim"(%1389) {broadcast_dimensions = dense<1> : tensor<1xi64>} : (tensor<512xf32>) -> tensor<384x512xf32>
%4043 = mhlo.add %4041, %4042 : tensor<384x512xf32>
%4044 = "mhlo.reshape"(%4043) : (tensor<384x512xf32>) -> tensor<1x384x512xf32>
%4045 = mhlo.maximum %4044, %1119 : tensor<1x384x512xf32>
%4046 = "mhlo.reshape"(%4045) : (tensor<1x384x512xf32>) -> tensor<384x512xf32>
%4047 = "mhlo.dot"(%4046, %1394) : (tensor<384x512xf32>, tensor<512x128xf32>) -> tensor<384x128xf32>
%4048 = "mhlo.broadcast_in_dim"(%1393) {broadcast_dimensions = dense<1> : tensor<1xi64>} : (tensor<128xf32>) -> tensor<384x128xf32>
%4049 = mhlo.add %4047, %4048 : tensor<384x128xf32>
%4050 = "mhlo.reshape"(%4049) : (tensor<384x128xf32>) -> tensor<1x384x128xf32>
%4051 = mhlo.add %4050, %4039 : tensor<1x384x128xf32>
%4052 = "mhlo.broadcast_in_dim"(%1392) {broadcast_dimensions = dense<2> : tensor<1xi64>} : (tensor<128xf32>) -> tensor<1x384x128xf32>
%4053 = mhlo.multiply %4051, %4052 : tensor<1x384x128xf32>
%4054 = "mhlo.broadcast_in_dim"(%1391) {broadcast_dimensions = dense<2> : tensor<1xi64>} : (tensor<128xf32>) -> tensor<1x384x128xf32>
%4055 = mhlo.add %4053, %4054 : tensor<1x384x128xf32>
%4056 = "mhlo.reshape"(%4055) : (tensor<1x384x128xf32>) -> tensor<384x128xf32>
%4057 = "mhlo.dot"(%4056, %1396) : (tensor<384x128xf32>, tensor<128x512xf32>) -> tensor<384x512xf32>
%4058 = "mhlo.broadcast_in_dim"(%1395) {broadcast_dimensions = dense<1> : tensor<1xi64>} : (tensor<512xf32>) -> tensor<384x512xf32>
%4059 = mhlo.add %4057, %4058 : tensor<384x512xf32>
%4060 = "mhlo.reshape"(%4059) : (tensor<384x512xf32>) -> tensor<1x384x512xf32>
%4061 = mhlo.maximum %4060, %1119 : tensor<1x384x512xf32>
%4062 = "mhlo.reshape"(%4061) : (tensor<1x384x512xf32>) -> tensor<384x512xf32>
%4063 = "mhlo.dot"(%4062, %1404) : (tensor<384x512xf32>, tensor<512x128xf32>) -> tensor<384x128xf32>
%4064 = "mhlo.broadcast_in_dim"(%1403) {broadcast_dimensions = dense<1> : tensor<1xi64>} : (tensor<128xf32>) -> tensor<384x128xf32>
%4065 = mhlo.add %4063, %4064 : tensor<384x128xf32>
%4066 = "mhlo.reshape"(%4065) : (tensor<384x128xf32>) -> tensor<1x384x128xf32>
%4067 = mhlo.add %4066, %4055 : tensor<1x384x128xf32>
%4068 = "mhlo.broadcast_in_dim"(%1398) {broadcast_dimensions = dense<2> : tensor<1xi64>} : (tensor<128xf32>) -> tensor<1x384x128xf32>
%4069 = mhlo.multiply %4067, %4068 : tensor<1x384x128xf32>
%4070 = "mhlo.broadcast_in_dim"(%1397) {broadcast_dimensions = dense<2> : tensor<1xi64>} : (tensor<128xf32>) -> tensor<1x384x128xf32>
%4071 = mhlo.add %4069, %4070 : tensor<1x384x128xf32>
%4072 = "mhlo.reshape"(%4071) : (tensor<1x384x128xf32>) -> tensor<384x128xf32>
%4073 = "mhlo.dot"(%4072, %1402) : (tensor<384x128xf32>, tensor<128x512xf32>) -> tensor<384x512xf32>
%4074 = "mhlo.broadcast_in_dim"(%1401) {broadcast_dimensions = dense<1> : tensor<1xi64>} : (tensor<512xf32>) -> tensor<384x512xf32>
%4075 = mhlo.add %4073, %4074 : tensor<384x512xf32>
%4076 = "mhlo.reshape"(%4075) : (tensor<384x512xf32>) -> tensor<1x384x512xf32>
%4077 = mhlo.add %4076, %3951 : tensor<1x384x512xf32>
%4078 = "mhlo.broadcast_in_dim"(%1400) {broadcast_dimensions = dense<2> : tensor<1xi64>} : (tensor<512xf32>) -> tensor<1x384x512xf32>
%4079 = mhlo.multiply %4077, %4078 : tensor<1x384x512xf32>
%4080 = "mhlo.broadcast_in_dim"(%1399) {broadcast_dimensions = dense<2> : tensor<1xi64>} : (tensor<512xf32>) -> tensor<1x384x512xf32>
%4081 = mhlo.add %4079, %4080 : tensor<1x384x512xf32>
%4082 = "mhlo.reshape"(%4081) : (tensor<1x384x512xf32>) -> tensor<384x512xf32>
%4083 = "mhlo.dot"(%4082, %1414) : (tensor<384x512xf32>, tensor<512x128xf32>) -> tensor<384x128xf32>
%4084 = "mhlo.broadcast_in_dim"(%1413) {broadcast_dimensions = dense<1> : tensor<1xi64>} : (tensor<128xf32>) -> tensor<384x128xf32>
%4085 = mhlo.add %4083, %4084 : tensor<384x128xf32>
%4086 = "mhlo.reshape"(%4085) : (tensor<384x128xf32>) -> tensor<1x384x4x32xf32>
%4087 = "mhlo.transpose"(%4086) {permutation = dense<[0, 2, 1, 3]> : tensor<4xi64>} : (tensor<1x384x4x32xf32>) -> tensor<1x4x384x32xf32>
%4088 = "mhlo.dot"(%4082, %1418) : (tensor<384x512xf32>, tensor<512x128xf32>) -> tensor<384x128xf32>
%4089 = "mhlo.reshape"(%4088) : (tensor<384x128xf32>) -> tensor<1x384x128xf32>
%4090 = "mhlo.broadcast_in_dim"(%1417) {broadcast_dimensions = dense<2> : tensor<1xi64>} : (tensor<128xf32>) -> tensor<1x384x128xf32>
%4091 = mhlo.add %4089, %4090 : tensor<1x384x128xf32>
%4092 = "mhlo.broadcast_in_dim"(%1416) {broadcast_dimensions = dense<2> : tensor<1xi64>} : (tensor<128xf32>) -> tensor<1x384x128xf32>
%4093 = mhlo.multiply %4091, %4092 : tensor<1x384x128xf32>
%4094 = "mhlo.broadcast_in_dim"(%1415) {broadcast_dimensions = dense<2> : tensor<1xi64>} : (tensor<128xf32>) -> tensor<1x384x128xf32>
%4095 = mhlo.add %4093, %4094 : tensor<1x384x128xf32>
%4096 = "mhlo.reshape"(%4095) : (tensor<1x384x128xf32>) -> tensor<384x128xf32>
%4097 = "mhlo.dot"(%4096, %1410) : (tensor<384x128xf32>, tensor<128x128xf32>) -> tensor<384x128xf32>
%4098 = "mhlo.broadcast_in_dim"(%1409) {broadcast_dimensions = dense<1> : tensor<1xi64>} : (tensor<128xf32>) -> tensor<384x128xf32>
%4099 = mhlo.add %4097, %4098 : tensor<384x128xf32>
%4100 = "mhlo.reshape"(%4099) : (tensor<384x128xf32>) -> tensor<1x384x4x32xf32>
%4101 = "mhlo.transpose"(%4100) {permutation = dense<[0, 2, 1, 3]> : tensor<4xi64>} : (tensor<1x384x4x32xf32>) -> tensor<1x4x384x32xf32>
%4102 = "mhlo.dot"(%4096, %1412) : (tensor<384x128xf32>, tensor<128x128xf32>) -> tensor<384x128xf32>
%4103 = "mhlo.broadcast_in_dim"(%1411) {broadcast_dimensions = dense<1> : tensor<1xi64>} : (tensor<128xf32>) -> tensor<384x128xf32>
%4104 = mhlo.add %4102, %4103 : tensor<384x128xf32>
%4105 = "mhlo.reshape"(%4104) : (tensor<384x128xf32>) -> tensor<1x384x4x32xf32>
%4106 = "mhlo.transpose"(%4105) {permutation = dense<[0, 2, 1, 3]> : tensor<4xi64>} : (tensor<1x384x4x32xf32>) -> tensor<1x4x384x32xf32>
%4107 = "mhlo.dot_general"(%4106, %4101) {dot_dimension_numbers = #mhlo.dot<lhs_batching_dimensions = [0, 1], lhs_contracting_dimensions = [3], rhs_batching_dimensions = [0, 1], rhs_contracting_dimensions = [3]>} : (tensor<1x4x384x32xf32>, tensor<1x4x384x32xf32>) -> tensor<1x4x384x384xf32>
%4108 = mhlo.multiply %4107, %1114 : tensor<1x4x384x384xf32>
%4109 = "mhlo.broadcast_in_dim"(%2254) {broadcast_dimensions = dense<[0, 1, 2, 3]> : tensor<4xi64>} : (tensor<1x1x384x384xf32>) -> tensor<1x4x384x384xf32>
%4110 = mhlo.add %4108, %4109 : tensor<1x4x384x384xf32>
%4111 = "mhlo.reduce"(%4110, %1117) ( {
^bb0(%arg3: tensor<f32>, %arg4: tensor<f32>): // no predecessors
%5393 = mhlo.maximum %arg3, %arg4 : tensor<f32>
"mhlo.return"(%5393) : (tensor<f32>) -> ()
}) {dimensions = dense<3> : tensor<1xi64>} : (tensor<1x4x384x384xf32>, tensor<f32>) -> tensor<1x4x384xf32>
%4112 = "mhlo.broadcast_in_dim"(%4111) {broadcast_dimensions = dense<[0, 1, 2]> : tensor<3xi64>} : (tensor<1x4x384xf32>) -> tensor<1x4x384x384xf32>
%4113 = mhlo.subtract %4110, %4112 : tensor<1x4x384x384xf32>
%4114 = "mhlo.exponential"(%4113) : (tensor<1x4x384x384xf32>) -> tensor<1x4x384x384xf32>
%4115 = "mhlo.reduce"(%4114, %1118) ( {
^bb0(%arg3: tensor<f32>, %arg4: tensor<f32>): // no predecessors
%5393 = mhlo.add %arg3, %arg4 : tensor<f32>
"mhlo.return"(%5393) : (tensor<f32>) -> ()
}) {dimensions = dense<3> : tensor<1xi64>} : (tensor<1x4x384x384xf32>, tensor<f32>) -> tensor<1x4x384xf32>
%4116 = "mhlo.broadcast_in_dim"(%4115) {broadcast_dimensions = dense<[0, 1, 2]> : tensor<3xi64>} : (tensor<1x4x384xf32>) -> tensor<1x4x384x384xf32>
%4117 = mhlo.divide %4114, %4116 : tensor<1x4x384x384xf32>
%4118 = "mhlo.dot_general"(%4117, %4087) {dot_dimension_numbers = #mhlo.dot<lhs_batching_dimensions = [0, 1], lhs_contracting_dimensions = [3], rhs_batching_dimensions = [0, 1], rhs_contracting_dimensions = [2]>} : (tensor<1x4x384x384xf32>, tensor<1x4x384x32xf32>) -> tensor<1x4x384x32xf32>
%4119 = "mhlo.transpose"(%4118) {permutation = dense<[0, 2, 1, 3]> : tensor<4xi64>} : (tensor<1x4x384x32xf32>) -> tensor<1x384x4x32xf32>
%4120 = "mhlo.reshape"(%4119) : (tensor<1x384x4x32xf32>) -> tensor<384x128xf32>
%4121 = "mhlo.dot"(%4120, %1408) : (tensor<384x128xf32>, tensor<128x128xf32>) -> tensor<384x128xf32>
%4122 = "mhlo.broadcast_in_dim"(%1407) {broadcast_dimensions = dense<1> : tensor<1xi64>} : (tensor<128xf32>) -> tensor<384x128xf32>
%4123 = mhlo.add %4121, %4122 : tensor<384x128xf32>
%4124 = "mhlo.reshape"(%4123) : (tensor<384x128xf32>) -> tensor<1x384x128xf32>
%4125 = "mhlo.dot"(%4082, %1422) : (tensor<384x512xf32>, tensor<512x128xf32>) -> tensor<384x128xf32>
%4126 = "mhlo.broadcast_in_dim"(%1421) {broadcast_dimensions = dense<1> : tensor<1xi64>} : (tensor<128xf32>) -> tensor<384x128xf32>
%4127 = mhlo.add %4125, %4126 : tensor<384x128xf32>
%4128 = "mhlo.reshape"(%4127) : (tensor<384x128xf32>) -> tensor<1x384x128xf32>
%4129 = "mhlo.broadcast_in_dim"(%1420) {broadcast_dimensions = dense<2> : tensor<1xi64>} : (tensor<128xf32>) -> tensor<1x384x128xf32>
%4130 = mhlo.multiply %4128, %4129 : tensor<1x384x128xf32>
%4131 = "mhlo.broadcast_in_dim"(%1419) {broadcast_dimensions = dense<2> : tensor<1xi64>} : (tensor<128xf32>) -> tensor<1x384x128xf32>
%4132 = mhlo.add %4130, %4131 : tensor<1x384x128xf32>
%4133 = mhlo.add %4124, %4132 : tensor<1x384x128xf32>
%4134 = "mhlo.broadcast_in_dim"(%1406) {broadcast_dimensions = dense<2> : tensor<1xi64>} : (tensor<128xf32>) -> tensor<1x384x128xf32>
%4135 = mhlo.multiply %4133, %4134 : tensor<1x384x128xf32>
%4136 = "mhlo.broadcast_in_dim"(%1405) {broadcast_dimensions = dense<2> : tensor<1xi64>} : (tensor<128xf32>) -> tensor<1x384x128xf32>
%4137 = mhlo.add %4135, %4136 : tensor<1x384x128xf32>
%4138 = "mhlo.reshape"(%4137) : (tensor<1x384x128xf32>) -> tensor<384x128xf32>
%4139 = "mhlo.dot"(%4138, %1424) : (tensor<384x128xf32>, tensor<128x512xf32>) -> tensor<384x512xf32>
%4140 = "mhlo.broadcast_in_dim"(%1423) {broadcast_dimensions = dense<1> : tensor<1xi64>} : (tensor<512xf32>) -> tensor<384x512xf32>
%4141 = mhlo.add %4139, %4140 : tensor<384x512xf32>
%4142 = "mhlo.reshape"(%4141) : (tensor<384x512xf32>) -> tensor<1x384x512xf32>
%4143 = mhlo.maximum %4142, %1119 : tensor<1x384x512xf32>
%4144 = "mhlo.reshape"(%4143) : (tensor<1x384x512xf32>) -> tensor<384x512xf32>
%4145 = "mhlo.dot"(%4144, %1428) : (tensor<384x512xf32>, tensor<512x128xf32>) -> tensor<384x128xf32>
%4146 = "mhlo.broadcast_in_dim"(%1427) {broadcast_dimensions = dense<1> : tensor<1xi64>} : (tensor<128xf32>) -> tensor<384x128xf32>
%4147 = mhlo.add %4145, %4146 : tensor<384x128xf32>
%4148 = "mhlo.reshape"(%4147) : (tensor<384x128xf32>) -> tensor<1x384x128xf32>
%4149 = mhlo.add %4148, %4137 : tensor<1x384x128xf32>
%4150 = "mhlo.broadcast_in_dim"(%1426) {broadcast_dimensions = dense<2> : tensor<1xi64>} : (tensor<128xf32>) -> tensor<1x384x128xf32>
%4151 = mhlo.multiply %4149, %4150 : tensor<1x384x128xf32>
%4152 = "mhlo.broadcast_in_dim"(%1425) {broadcast_dimensions = dense<2> : tensor<1xi64>} : (tensor<128xf32>) -> tensor<1x384x128xf32>
%4153 = mhlo.add %4151, %4152 : tensor<1x384x128xf32>
%4154 = "mhlo.reshape"(%4153) : (tensor<1x384x128xf32>) -> tensor<384x128xf32>
%4155 = "mhlo.dot"(%4154, %1430) : (tensor<384x128xf32>, tensor<128x512xf32>) -> tensor<384x512xf32>
%4156 = "mhlo.broadcast_in_dim"(%1429) {broadcast_dimensions = dense<1> : tensor<1xi64>} : (tensor<512xf32>) -> tensor<384x512xf32>
%4157 = mhlo.add %4155, %4156 : tensor<384x512xf32>
%4158 = "mhlo.reshape"(%4157) : (tensor<384x512xf32>) -> tensor<1x384x512xf32>
%4159 = mhlo.maximum %4158, %1119 : tensor<1x384x512xf32>
%4160 = "mhlo.reshape"(%4159) : (tensor<1x384x512xf32>) -> tensor<384x512xf32>
%4161 = "mhlo.dot"(%4160, %1434) : (tensor<384x512xf32>, tensor<512x128xf32>) -> tensor<384x128xf32>
%4162 = "mhlo.broadcast_in_dim"(%1433) {broadcast_dimensions = dense<1> : tensor<1xi64>} : (tensor<128xf32>) -> tensor<384x128xf32>
%4163 = mhlo.add %4161, %4162 : tensor<384x128xf32>
%4164 = "mhlo.reshape"(%4163) : (tensor<384x128xf32>) -> tensor<1x384x128xf32>
%4165 = mhlo.add %4164, %4153 : tensor<1x384x128xf32>
%4166 = "mhlo.broadcast_in_dim"(%1432) {broadcast_dimensions = dense<2> : tensor<1xi64>} : (tensor<128xf32>) -> tensor<1x384x128xf32>
%4167 = mhlo.multiply %4165, %4166 : tensor<1x384x128xf32>
%4168 = "mhlo.broadcast_in_dim"(%1431) {broadcast_dimensions = dense<2> : tensor<1xi64>} : (tensor<128xf32>) -> tensor<1x384x128xf32>
%4169 = mhlo.add %4167, %4168 : tensor<1x384x128xf32>
%4170 = "mhlo.reshape"(%4169) : (tensor<1x384x128xf32>) -> tensor<384x128xf32>
%4171 = "mhlo.dot"(%4170, %1436) : (tensor<384x128xf32>, tensor<128x512xf32>) -> tensor<384x512xf32>
%4172 = "mhlo.broadcast_in_dim"(%1435) {broadcast_dimensions = dense<1> : tensor<1xi64>} : (tensor<512xf32>) -> tensor<384x512xf32>
%4173 = mhlo.add %4171, %4172 : tensor<384x512xf32>
%4174 = "mhlo.reshape"(%4173) : (tensor<384x512xf32>) -> tensor<1x384x512xf32>
%4175 = mhlo.maximum %4174, %1119 : tensor<1x384x512xf32>
%4176 = "mhlo.reshape"(%4175) : (tensor<1x384x512xf32>) -> tensor<384x512xf32>
%4177 = "mhlo.dot"(%4176, %1440) : (tensor<384x512xf32>, tensor<512x128xf32>) -> tensor<384x128xf32>
%4178 = "mhlo.broadcast_in_dim"(%1439) {broadcast_dimensions = dense<1> : tensor<1xi64>} : (tensor<128xf32>) -> tensor<384x128xf32>
%4179 = mhlo.add %4177, %4178 : tensor<384x128xf32>
%4180 = "mhlo.reshape"(%4179) : (tensor<384x128xf32>) -> tensor<1x384x128xf32>
%4181 = mhlo.add %4180, %4169 : tensor<1x384x128xf32>
%4182 = "mhlo.broadcast_in_dim"(%1438) {broadcast_dimensions = dense<2> : tensor<1xi64>} : (tensor<128xf32>) -> tensor<1x384x128xf32>
%4183 = mhlo.multiply %4181, %4182 : tensor<1x384x128xf32>
%4184 = "mhlo.broadcast_in_dim"(%1437) {broadcast_dimensions = dense<2> : tensor<1xi64>} : (tensor<128xf32>) -> tensor<1x384x128xf32>
%4185 = mhlo.add %4183, %4184 : tensor<1x384x128xf32>
%4186 = "mhlo.reshape"(%4185) : (tensor<1x384x128xf32>) -> tensor<384x128xf32>
%4187 = "mhlo.dot"(%4186, %1442) : (tensor<384x128xf32>, tensor<128x512xf32>) -> tensor<384x512xf32>
%4188 = "mhlo.broadcast_in_dim"(%1441) {broadcast_dimensions = dense<1> : tensor<1xi64>} : (tensor<512xf32>) -> tensor<384x512xf32>
%4189 = mhlo.add %4187, %4188 : tensor<384x512xf32>
%4190 = "mhlo.reshape"(%4189) : (tensor<384x512xf32>) -> tensor<1x384x512xf32>
%4191 = mhlo.maximum %4190, %1119 : tensor<1x384x512xf32>
%4192 = "mhlo.reshape"(%4191) : (tensor<1x384x512xf32>) -> tensor<384x512xf32>
%4193 = "mhlo.dot"(%4192, %1450) : (tensor<384x512xf32>, tensor<512x128xf32>) -> tensor<384x128xf32>
%4194 = "mhlo.broadcast_in_dim"(%1449) {broadcast_dimensions = dense<1> : tensor<1xi64>} : (tensor<128xf32>) -> tensor<384x128xf32>
%4195 = mhlo.add %4193, %4194 : tensor<384x128xf32>
%4196 = "mhlo.reshape"(%4195) : (tensor<384x128xf32>) -> tensor<1x384x128xf32>
%4197 = mhlo.add %4196, %4185 : tensor<1x384x128xf32>
%4198 = "mhlo.broadcast_in_dim"(%1444) {broadcast_dimensions = dense<2> : tensor<1xi64>} : (tensor<128xf32>) -> tensor<1x384x128xf32>
%4199 = mhlo.multiply %4197, %4198 : tensor<1x384x128xf32>
%4200 = "mhlo.broadcast_in_dim"(%1443) {broadcast_dimensions = dense<2> : tensor<1xi64>} : (tensor<128xf32>) -> tensor<1x384x128xf32>
%4201 = mhlo.add %4199, %4200 : tensor<1x384x128xf32>
%4202 = "mhlo.reshape"(%4201) : (tensor<1x384x128xf32>) -> tensor<384x128xf32>
%4203 = "mhlo.dot"(%4202, %1448) : (tensor<384x128xf32>, tensor<128x512xf32>) -> tensor<384x512xf32>
%4204 = "mhlo.broadcast_in_dim"(%1447) {broadcast_dimensions = dense<1> : tensor<1xi64>} : (tensor<512xf32>) -> tensor<384x512xf32>
%4205 = mhlo.add %4203, %4204 : tensor<384x512xf32>
%4206 = "mhlo.reshape"(%4205) : (tensor<384x512xf32>) -> tensor<1x384x512xf32>
%4207 = mhlo.add %4206, %4081 : tensor<1x384x512xf32>
%4208 = "mhlo.broadcast_in_dim"(%1446) {broadcast_dimensions = dense<2> : tensor<1xi64>} : (tensor<512xf32>) -> tensor<1x384x512xf32>
%4209 = mhlo.multiply %4207, %4208 : tensor<1x384x512xf32>
%4210 = "mhlo.broadcast_in_dim"(%1445) {broadcast_dimensions = dense<2> : tensor<1xi64>} : (tensor<512xf32>) -> tensor<1x384x512xf32>
%4211 = mhlo.add %4209, %4210 : tensor<1x384x512xf32>
%4212 = "mhlo.reshape"(%4211) : (tensor<1x384x512xf32>) -> tensor<384x512xf32>
%4213 = "mhlo.dot"(%4212, %1460) : (tensor<384x512xf32>, tensor<512x128xf32>) -> tensor<384x128xf32>
%4214 = "mhlo.broadcast_in_dim"(%1459) {broadcast_dimensions = dense<1> : tensor<1xi64>} : (tensor<128xf32>) -> tensor<384x128xf32>
%4215 = mhlo.add %4213, %4214 : tensor<384x128xf32>
%4216 = "mhlo.reshape"(%4215) : (tensor<384x128xf32>) -> tensor<1x384x4x32xf32>
%4217 = "mhlo.transpose"(%4216) {permutation = dense<[0, 2, 1, 3]> : tensor<4xi64>} : (tensor<1x384x4x32xf32>) -> tensor<1x4x384x32xf32>
%4218 = "mhlo.dot"(%4212, %1464) : (tensor<384x512xf32>, tensor<512x128xf32>) -> tensor<384x128xf32>
%4219 = "mhlo.reshape"(%4218) : (tensor<384x128xf32>) -> tensor<1x384x128xf32>
%4220 = "mhlo.broadcast_in_dim"(%1463) {broadcast_dimensions = dense<2> : tensor<1xi64>} : (tensor<128xf32>) -> tensor<1x384x128xf32>
%4221 = mhlo.add %4219, %4220 : tensor<1x384x128xf32>
%4222 = "mhlo.broadcast_in_dim"(%1462) {broadcast_dimensions = dense<2> : tensor<1xi64>} : (tensor<128xf32>) -> tensor<1x384x128xf32>
%4223 = mhlo.multiply %4221, %4222 : tensor<1x384x128xf32>
%4224 = "mhlo.broadcast_in_dim"(%1461) {broadcast_dimensions = dense<2> : tensor<1xi64>} : (tensor<128xf32>) -> tensor<1x384x128xf32>
%4225 = mhlo.add %4223, %4224 : tensor<1x384x128xf32>
%4226 = "mhlo.reshape"(%4225) : (tensor<1x384x128xf32>) -> tensor<384x128xf32>
%4227 = "mhlo.dot"(%4226, %1456) : (tensor<384x128xf32>, tensor<128x128xf32>) -> tensor<384x128xf32>
%4228 = "mhlo.broadcast_in_dim"(%1455) {broadcast_dimensions = dense<1> : tensor<1xi64>} : (tensor<128xf32>) -> tensor<384x128xf32>
%4229 = mhlo.add %4227, %4228 : tensor<384x128xf32>
%4230 = "mhlo.reshape"(%4229) : (tensor<384x128xf32>) -> tensor<1x384x4x32xf32>
%4231 = "mhlo.transpose"(%4230) {permutation = dense<[0, 2, 1, 3]> : tensor<4xi64>} : (tensor<1x384x4x32xf32>) -> tensor<1x4x384x32xf32>
%4232 = "mhlo.dot"(%4226, %1458) : (tensor<384x128xf32>, tensor<128x128xf32>) -> tensor<384x128xf32>
%4233 = "mhlo.broadcast_in_dim"(%1457) {broadcast_dimensions = dense<1> : tensor<1xi64>} : (tensor<128xf32>) -> tensor<384x128xf32>
%4234 = mhlo.add %4232, %4233 : tensor<384x128xf32>
%4235 = "mhlo.reshape"(%4234) : (tensor<384x128xf32>) -> tensor<1x384x4x32xf32>
%4236 = "mhlo.transpose"(%4235) {permutation = dense<[0, 2, 1, 3]> : tensor<4xi64>} : (tensor<1x384x4x32xf32>) -> tensor<1x4x384x32xf32>
%4237 = "mhlo.dot_general"(%4236, %4231) {dot_dimension_numbers = #mhlo.dot<lhs_batching_dimensions = [0, 1], lhs_contracting_dimensions = [3], rhs_batching_dimensions = [0, 1], rhs_contracting_dimensions = [3]>} : (tensor<1x4x384x32xf32>, tensor<1x4x384x32xf32>) -> tensor<1x4x384x384xf32>
%4238 = mhlo.multiply %4237, %1114 : tensor<1x4x384x384xf32>
%4239 = "mhlo.broadcast_in_dim"(%2254) {broadcast_dimensions = dense<[0, 1, 2, 3]> : tensor<4xi64>} : (tensor<1x1x384x384xf32>) -> tensor<1x4x384x384xf32>
%4240 = mhlo.add %4238, %4239 : tensor<1x4x384x384xf32>
%4241 = "mhlo.reduce"(%4240, %1117) ( {
^bb0(%arg3: tensor<f32>, %arg4: tensor<f32>): // no predecessors
%5393 = mhlo.maximum %arg3, %arg4 : tensor<f32>
"mhlo.return"(%5393) : (tensor<f32>) -> ()
}) {dimensions = dense<3> : tensor<1xi64>} : (tensor<1x4x384x384xf32>, tensor<f32>) -> tensor<1x4x384xf32>
%4242 = "mhlo.broadcast_in_dim"(%4241) {broadcast_dimensions = dense<[0, 1, 2]> : tensor<3xi64>} : (tensor<1x4x384xf32>) -> tensor<1x4x384x384xf32>
%4243 = mhlo.subtract %4240, %4242 : tensor<1x4x384x384xf32>
%4244 = "mhlo.exponential"(%4243) : (tensor<1x4x384x384xf32>) -> tensor<1x4x384x384xf32>
%4245 = "mhlo.reduce"(%4244, %1118) ( {
^bb0(%arg3: tensor<f32>, %arg4: tensor<f32>): // no predecessors
%5393 = mhlo.add %arg3, %arg4 : tensor<f32>
"mhlo.return"(%5393) : (tensor<f32>) -> ()
}) {dimensions = dense<3> : tensor<1xi64>} : (tensor<1x4x384x384xf32>, tensor<f32>) -> tensor<1x4x384xf32>
%4246 = "mhlo.broadcast_in_dim"(%4245) {broadcast_dimensions = dense<[0, 1, 2]> : tensor<3xi64>} : (tensor<1x4x384xf32>) -> tensor<1x4x384x384xf32>
%4247 = mhlo.divide %4244, %4246 : tensor<1x4x384x384xf32>
%4248 = "mhlo.dot_general"(%4247, %4217) {dot_dimension_numbers = #mhlo.dot<lhs_batching_dimensions = [0, 1], lhs_contracting_dimensions = [3], rhs_batching_dimensions = [0, 1], rhs_contracting_dimensions = [2]>} : (tensor<1x4x384x384xf32>, tensor<1x4x384x32xf32>) -> tensor<1x4x384x32xf32>
%4249 = "mhlo.transpose"(%4248) {permutation = dense<[0, 2, 1, 3]> : tensor<4xi64>} : (tensor<1x4x384x32xf32>) -> tensor<1x384x4x32xf32>
%4250 = "mhlo.reshape"(%4249) : (tensor<1x384x4x32xf32>) -> tensor<384x128xf32>
%4251 = "mhlo.dot"(%4250, %1454) : (tensor<384x128xf32>, tensor<128x128xf32>) -> tensor<384x128xf32>
%4252 = "mhlo.broadcast_in_dim"(%1453) {broadcast_dimensions = dense<1> : tensor<1xi64>} : (tensor<128xf32>) -> tensor<384x128xf32>
%4253 = mhlo.add %4251, %4252 : tensor<384x128xf32>
%4254 = "mhlo.reshape"(%4253) : (tensor<384x128xf32>) -> tensor<1x384x128xf32>
%4255 = "mhlo.dot"(%4212, %1468) : (tensor<384x512xf32>, tensor<512x128xf32>) -> tensor<384x128xf32>
%4256 = "mhlo.broadcast_in_dim"(%1467) {broadcast_dimensions = dense<1> : tensor<1xi64>} : (tensor<128xf32>) -> tensor<384x128xf32>
%4257 = mhlo.add %4255, %4256 : tensor<384x128xf32>
%4258 = "mhlo.reshape"(%4257) : (tensor<384x128xf32>) -> tensor<1x384x128xf32>
%4259 = "mhlo.broadcast_in_dim"(%1466) {broadcast_dimensions = dense<2> : tensor<1xi64>} : (tensor<128xf32>) -> tensor<1x384x128xf32>
%4260 = mhlo.multiply %4258, %4259 : tensor<1x384x128xf32>
%4261 = "mhlo.broadcast_in_dim"(%1465) {broadcast_dimensions = dense<2> : tensor<1xi64>} : (tensor<128xf32>) -> tensor<1x384x128xf32>
%4262 = mhlo.add %4260, %4261 : tensor<1x384x128xf32>
%4263 = mhlo.add %4254, %4262 : tensor<1x384x128xf32>
%4264 = "mhlo.broadcast_in_dim"(%1452) {broadcast_dimensions = dense<2> : tensor<1xi64>} : (tensor<128xf32>) -> tensor<1x384x128xf32>
%4265 = mhlo.multiply %4263, %4264 : tensor<1x384x128xf32>
%4266 = "mhlo.broadcast_in_dim"(%1451) {broadcast_dimensions = dense<2> : tensor<1xi64>} : (tensor<128xf32>) -> tensor<1x384x128xf32>
%4267 = mhlo.add %4265, %4266 : tensor<1x384x128xf32>
%4268 = "mhlo.reshape"(%4267) : (tensor<1x384x128xf32>) -> tensor<384x128xf32>
%4269 = "mhlo.dot"(%4268, %1470) : (tensor<384x128xf32>, tensor<128x512xf32>) -> tensor<384x512xf32>
%4270 = "mhlo.broadcast_in_dim"(%1469) {broadcast_dimensions = dense<1> : tensor<1xi64>} : (tensor<512xf32>) -> tensor<384x512xf32>
%4271 = mhlo.add %4269, %4270 : tensor<384x512xf32>
%4272 = "mhlo.reshape"(%4271) : (tensor<384x512xf32>) -> tensor<1x384x512xf32>
%4273 = mhlo.maximum %4272, %1119 : tensor<1x384x512xf32>
%4274 = "mhlo.reshape"(%4273) : (tensor<1x384x512xf32>) -> tensor<384x512xf32>
%4275 = "mhlo.dot"(%4274, %1474) : (tensor<384x512xf32>, tensor<512x128xf32>) -> tensor<384x128xf32>
%4276 = "mhlo.broadcast_in_dim"(%1473) {broadcast_dimensions = dense<1> : tensor<1xi64>} : (tensor<128xf32>) -> tensor<384x128xf32>
%4277 = mhlo.add %4275, %4276 : tensor<384x128xf32>
%4278 = "mhlo.reshape"(%4277) : (tensor<384x128xf32>) -> tensor<1x384x128xf32>
%4279 = mhlo.add %4278, %4267 : tensor<1x384x128xf32>
%4280 = "mhlo.broadcast_in_dim"(%1472) {broadcast_dimensions = dense<2> : tensor<1xi64>} : (tensor<128xf32>) -> tensor<1x384x128xf32>
%4281 = mhlo.multiply %4279, %4280 : tensor<1x384x128xf32>
%4282 = "mhlo.broadcast_in_dim"(%1471) {broadcast_dimensions = dense<2> : tensor<1xi64>} : (tensor<128xf32>) -> tensor<1x384x128xf32>
%4283 = mhlo.add %4281, %4282 : tensor<1x384x128xf32>
%4284 = "mhlo.reshape"(%4283) : (tensor<1x384x128xf32>) -> tensor<384x128xf32>
%4285 = "mhlo.dot"(%4284, %1476) : (tensor<384x128xf32>, tensor<128x512xf32>) -> tensor<384x512xf32>
%4286 = "mhlo.broadcast_in_dim"(%1475) {broadcast_dimensions = dense<1> : tensor<1xi64>} : (tensor<512xf32>) -> tensor<384x512xf32>
%4287 = mhlo.add %4285, %4286 : tensor<384x512xf32>
%4288 = "mhlo.reshape"(%4287) : (tensor<384x512xf32>) -> tensor<1x384x512xf32>
%4289 = mhlo.maximum %4288, %1119 : tensor<1x384x512xf32>
%4290 = "mhlo.reshape"(%4289) : (tensor<1x384x512xf32>) -> tensor<384x512xf32>
%4291 = "mhlo.dot"(%4290, %1480) : (tensor<384x512xf32>, tensor<512x128xf32>) -> tensor<384x128xf32>
%4292 = "mhlo.broadcast_in_dim"(%1479) {broadcast_dimensions = dense<1> : tensor<1xi64>} : (tensor<128xf32>) -> tensor<384x128xf32>
%4293 = mhlo.add %4291, %4292 : tensor<384x128xf32>
%4294 = "mhlo.reshape"(%4293) : (tensor<384x128xf32>) -> tensor<1x384x128xf32>
%4295 = mhlo.add %4294, %4283 : tensor<1x384x128xf32>
%4296 = "mhlo.broadcast_in_dim"(%1478) {broadcast_dimensions = dense<2> : tensor<1xi64>} : (tensor<128xf32>) -> tensor<1x384x128xf32>
%4297 = mhlo.multiply %4295, %4296 : tensor<1x384x128xf32>
%4298 = "mhlo.broadcast_in_dim"(%1477) {broadcast_dimensions = dense<2> : tensor<1xi64>} : (tensor<128xf32>) -> tensor<1x384x128xf32>
%4299 = mhlo.add %4297, %4298 : tensor<1x384x128xf32>
%4300 = "mhlo.reshape"(%4299) : (tensor<1x384x128xf32>) -> tensor<384x128xf32>
%4301 = "mhlo.dot"(%4300, %1482) : (tensor<384x128xf32>, tensor<128x512xf32>) -> tensor<384x512xf32>
%4302 = "mhlo.broadcast_in_dim"(%1481) {broadcast_dimensions = dense<1> : tensor<1xi64>} : (tensor<512xf32>) -> tensor<384x512xf32>
%4303 = mhlo.add %4301, %4302 : tensor<384x512xf32>
%4304 = "mhlo.reshape"(%4303) : (tensor<384x512xf32>) -> tensor<1x384x512xf32>
%4305 = mhlo.maximum %4304, %1119 : tensor<1x384x512xf32>
%4306 = "mhlo.reshape"(%4305) : (tensor<1x384x512xf32>) -> tensor<384x512xf32>
%4307 = "mhlo.dot"(%4306, %1486) : (tensor<384x512xf32>, tensor<512x128xf32>) -> tensor<384x128xf32>
%4308 = "mhlo.broadcast_in_dim"(%1485) {broadcast_dimensions = dense<1> : tensor<1xi64>} : (tensor<128xf32>) -> tensor<384x128xf32>
%4309 = mhlo.add %4307, %4308 : tensor<384x128xf32>
%4310 = "mhlo.reshape"(%4309) : (tensor<384x128xf32>) -> tensor<1x384x128xf32>
%4311 = mhlo.add %4310, %4299 : tensor<1x384x128xf32>
%4312 = "mhlo.broadcast_in_dim"(%1484) {broadcast_dimensions = dense<2> : tensor<1xi64>} : (tensor<128xf32>) -> tensor<1x384x128xf32>
%4313 = mhlo.multiply %4311, %4312 : tensor<1x384x128xf32>
%4314 = "mhlo.broadcast_in_dim"(%1483) {broadcast_dimensions = dense<2> : tensor<1xi64>} : (tensor<128xf32>) -> tensor<1x384x128xf32>
%4315 = mhlo.add %4313, %4314 : tensor<1x384x128xf32>
%4316 = "mhlo.reshape"(%4315) : (tensor<1x384x128xf32>) -> tensor<384x128xf32>
%4317 = "mhlo.dot"(%4316, %1488) : (tensor<384x128xf32>, tensor<128x512xf32>) -> tensor<384x512xf32>
%4318 = "mhlo.broadcast_in_dim"(%1487) {broadcast_dimensions = dense<1> : tensor<1xi64>} : (tensor<512xf32>) -> tensor<384x512xf32>
%4319 = mhlo.add %4317, %4318 : tensor<384x512xf32>
%4320 = "mhlo.reshape"(%4319) : (tensor<384x512xf32>) -> tensor<1x384x512xf32>
%4321 = mhlo.maximum %4320, %1119 : tensor<1x384x512xf32>
%4322 = "mhlo.reshape"(%4321) : (tensor<1x384x512xf32>) -> tensor<384x512xf32>
%4323 = "mhlo.dot"(%4322, %1496) : (tensor<384x512xf32>, tensor<512x128xf32>) -> tensor<384x128xf32>
%4324 = "mhlo.broadcast_in_dim"(%1495) {broadcast_dimensions = dense<1> : tensor<1xi64>} : (tensor<128xf32>) -> tensor<384x128xf32>
%4325 = mhlo.add %4323, %4324 : tensor<384x128xf32>
%4326 = "mhlo.reshape"(%4325) : (tensor<384x128xf32>) -> tensor<1x384x128xf32>
%4327 = mhlo.add %4326, %4315 : tensor<1x384x128xf32>
%4328 = "mhlo.broadcast_in_dim"(%1490) {broadcast_dimensions = dense<2> : tensor<1xi64>} : (tensor<128xf32>) -> tensor<1x384x128xf32>
%4329 = mhlo.multiply %4327, %4328 : tensor<1x384x128xf32>
%4330 = "mhlo.broadcast_in_dim"(%1489) {broadcast_dimensions = dense<2> : tensor<1xi64>} : (tensor<128xf32>) -> tensor<1x384x128xf32>
%4331 = mhlo.add %4329, %4330 : tensor<1x384x128xf32>
%4332 = "mhlo.reshape"(%4331) : (tensor<1x384x128xf32>) -> tensor<384x128xf32>
%4333 = "mhlo.dot"(%4332, %1494) : (tensor<384x128xf32>, tensor<128x512xf32>) -> tensor<384x512xf32>
%4334 = "mhlo.broadcast_in_dim"(%1493) {broadcast_dimensions = dense<1> : tensor<1xi64>} : (tensor<512xf32>) -> tensor<384x512xf32>
%4335 = mhlo.add %4333, %4334 : tensor<384x512xf32>
%4336 = "mhlo.reshape"(%4335) : (tensor<384x512xf32>) -> tensor<1x384x512xf32>
%4337 = mhlo.add %4336, %4211 : tensor<1x384x512xf32>
%4338 = "mhlo.broadcast_in_dim"(%1492) {broadcast_dimensions = dense<2> : tensor<1xi64>} : (tensor<512xf32>) -> tensor<1x384x512xf32>
%4339 = mhlo.multiply %4337, %4338 : tensor<1x384x512xf32>
%4340 = "mhlo.broadcast_in_dim"(%1491) {broadcast_dimensions = dense<2> : tensor<1xi64>} : (tensor<512xf32>) -> tensor<1x384x512xf32>
%4341 = mhlo.add %4339, %4340 : tensor<1x384x512xf32>
%4342 = "mhlo.reshape"(%4341) : (tensor<1x384x512xf32>) -> tensor<384x512xf32>
%4343 = "mhlo.dot"(%4342, %1506) : (tensor<384x512xf32>, tensor<512x128xf32>) -> tensor<384x128xf32>
%4344 = "mhlo.broadcast_in_dim"(%1505) {broadcast_dimensions = dense<1> : tensor<1xi64>} : (tensor<128xf32>) -> tensor<384x128xf32>
%4345 = mhlo.add %4343, %4344 : tensor<384x128xf32>
%4346 = "mhlo.reshape"(%4345) : (tensor<384x128xf32>) -> tensor<1x384x4x32xf32>
%4347 = "mhlo.transpose"(%4346) {permutation = dense<[0, 2, 1, 3]> : tensor<4xi64>} : (tensor<1x384x4x32xf32>) -> tensor<1x4x384x32xf32>
%4348 = "mhlo.dot"(%4342, %1510) : (tensor<384x512xf32>, tensor<512x128xf32>) -> tensor<384x128xf32>
%4349 = "mhlo.reshape"(%4348) : (tensor<384x128xf32>) -> tensor<1x384x128xf32>
%4350 = "mhlo.broadcast_in_dim"(%1509) {broadcast_dimensions = dense<2> : tensor<1xi64>} : (tensor<128xf32>) -> tensor<1x384x128xf32>
%4351 = mhlo.add %4349, %4350 : tensor<1x384x128xf32>
%4352 = "mhlo.broadcast_in_dim"(%1508) {broadcast_dimensions = dense<2> : tensor<1xi64>} : (tensor<128xf32>) -> tensor<1x384x128xf32>
%4353 = mhlo.multiply %4351, %4352 : tensor<1x384x128xf32>
%4354 = "mhlo.broadcast_in_dim"(%1507) {broadcast_dimensions = dense<2> : tensor<1xi64>} : (tensor<128xf32>) -> tensor<1x384x128xf32>
%4355 = mhlo.add %4353, %4354 : tensor<1x384x128xf32>
%4356 = "mhlo.reshape"(%4355) : (tensor<1x384x128xf32>) -> tensor<384x128xf32>
%4357 = "mhlo.dot"(%4356, %1502) : (tensor<384x128xf32>, tensor<128x128xf32>) -> tensor<384x128xf32>
%4358 = "mhlo.broadcast_in_dim"(%1501) {broadcast_dimensions = dense<1> : tensor<1xi64>} : (tensor<128xf32>) -> tensor<384x128xf32>
%4359 = mhlo.add %4357, %4358 : tensor<384x128xf32>
%4360 = "mhlo.reshape"(%4359) : (tensor<384x128xf32>) -> tensor<1x384x4x32xf32>
%4361 = "mhlo.transpose"(%4360) {permutation = dense<[0, 2, 1, 3]> : tensor<4xi64>} : (tensor<1x384x4x32xf32>) -> tensor<1x4x384x32xf32>
%4362 = "mhlo.dot"(%4356, %1504) : (tensor<384x128xf32>, tensor<128x128xf32>) -> tensor<384x128xf32>
%4363 = "mhlo.broadcast_in_dim"(%1503) {broadcast_dimensions = dense<1> : tensor<1xi64>} : (tensor<128xf32>) -> tensor<384x128xf32>
%4364 = mhlo.add %4362, %4363 : tensor<384x128xf32>
%4365 = "mhlo.reshape"(%4364) : (tensor<384x128xf32>) -> tensor<1x384x4x32xf32>
%4366 = "mhlo.transpose"(%4365) {permutation = dense<[0, 2, 1, 3]> : tensor<4xi64>} : (tensor<1x384x4x32xf32>) -> tensor<1x4x384x32xf32>
%4367 = "mhlo.dot_general"(%4366, %4361) {dot_dimension_numbers = #mhlo.dot<lhs_batching_dimensions = [0, 1], lhs_contracting_dimensions = [3], rhs_batching_dimensions = [0, 1], rhs_contracting_dimensions = [3]>} : (tensor<1x4x384x32xf32>, tensor<1x4x384x32xf32>) -> tensor<1x4x384x384xf32>
%4368 = mhlo.multiply %4367, %1114 : tensor<1x4x384x384xf32>
%4369 = "mhlo.broadcast_in_dim"(%2254) {broadcast_dimensions = dense<[0, 1, 2, 3]> : tensor<4xi64>} : (tensor<1x1x384x384xf32>) -> tensor<1x4x384x384xf32>
%4370 = mhlo.add %4368, %4369 : tensor<1x4x384x384xf32>
%4371 = "mhlo.reduce"(%4370, %1117) ( {
^bb0(%arg3: tensor<f32>, %arg4: tensor<f32>): // no predecessors
%5393 = mhlo.maximum %arg3, %arg4 : tensor<f32>
"mhlo.return"(%5393) : (tensor<f32>) -> ()
}) {dimensions = dense<3> : tensor<1xi64>} : (tensor<1x4x384x384xf32>, tensor<f32>) -> tensor<1x4x384xf32>
%4372 = "mhlo.broadcast_in_dim"(%4371) {broadcast_dimensions = dense<[0, 1, 2]> : tensor<3xi64>} : (tensor<1x4x384xf32>) -> tensor<1x4x384x384xf32>
%4373 = mhlo.subtract %4370, %4372 : tensor<1x4x384x384xf32>
%4374 = "mhlo.exponential"(%4373) : (tensor<1x4x384x384xf32>) -> tensor<1x4x384x384xf32>
%4375 = "mhlo.reduce"(%4374, %1118) ( {
^bb0(%arg3: tensor<f32>, %arg4: tensor<f32>): // no predecessors
%5393 = mhlo.add %arg3, %arg4 : tensor<f32>
"mhlo.return"(%5393) : (tensor<f32>) -> ()
}) {dimensions = dense<3> : tensor<1xi64>} : (tensor<1x4x384x384xf32>, tensor<f32>) -> tensor<1x4x384xf32>
%4376 = "mhlo.broadcast_in_dim"(%4375) {broadcast_dimensions = dense<[0, 1, 2]> : tensor<3xi64>} : (tensor<1x4x384xf32>) -> tensor<1x4x384x384xf32>
%4377 = mhlo.divide %4374, %4376 : tensor<1x4x384x384xf32>
%4378 = "mhlo.dot_general"(%4377, %4347) {dot_dimension_numbers = #mhlo.dot<lhs_batching_dimensions = [0, 1], lhs_contracting_dimensions = [3], rhs_batching_dimensions = [0, 1], rhs_contracting_dimensions = [2]>} : (tensor<1x4x384x384xf32>, tensor<1x4x384x32xf32>) -> tensor<1x4x384x32xf32>
%4379 = "mhlo.transpose"(%4378) {permutation = dense<[0, 2, 1, 3]> : tensor<4xi64>} : (tensor<1x4x384x32xf32>) -> tensor<1x384x4x32xf32>
%4380 = "mhlo.reshape"(%4379) : (tensor<1x384x4x32xf32>) -> tensor<384x128xf32>
%4381 = "mhlo.dot"(%4380, %1500) : (tensor<384x128xf32>, tensor<128x128xf32>) -> tensor<384x128xf32>
%4382 = "mhlo.broadcast_in_dim"(%1499) {broadcast_dimensions = dense<1> : tensor<1xi64>} : (tensor<128xf32>) -> tensor<384x128xf32>
%4383 = mhlo.add %4381, %4382 : tensor<384x128xf32>
%4384 = "mhlo.reshape"(%4383) : (tensor<384x128xf32>) -> tensor<1x384x128xf32>
%4385 = "mhlo.dot"(%4342, %1514) : (tensor<384x512xf32>, tensor<512x128xf32>) -> tensor<384x128xf32>
%4386 = "mhlo.broadcast_in_dim"(%1513) {broadcast_dimensions = dense<1> : tensor<1xi64>} : (tensor<128xf32>) -> tensor<384x128xf32>
%4387 = mhlo.add %4385, %4386 : tensor<384x128xf32>
%4388 = "mhlo.reshape"(%4387) : (tensor<384x128xf32>) -> tensor<1x384x128xf32>
%4389 = "mhlo.broadcast_in_dim"(%1512) {broadcast_dimensions = dense<2> : tensor<1xi64>} : (tensor<128xf32>) -> tensor<1x384x128xf32>
%4390 = mhlo.multiply %4388, %4389 : tensor<1x384x128xf32>
%4391 = "mhlo.broadcast_in_dim"(%1511) {broadcast_dimensions = dense<2> : tensor<1xi64>} : (tensor<128xf32>) -> tensor<1x384x128xf32>
%4392 = mhlo.add %4390, %4391 : tensor<1x384x128xf32>
%4393 = mhlo.add %4384, %4392 : tensor<1x384x128xf32>
%4394 = "mhlo.broadcast_in_dim"(%1498) {broadcast_dimensions = dense<2> : tensor<1xi64>} : (tensor<128xf32>) -> tensor<1x384x128xf32>
%4395 = mhlo.multiply %4393, %4394 : tensor<1x384x128xf32>
%4396 = "mhlo.broadcast_in_dim"(%1497) {broadcast_dimensions = dense<2> : tensor<1xi64>} : (tensor<128xf32>) -> tensor<1x384x128xf32>
%4397 = mhlo.add %4395, %4396 : tensor<1x384x128xf32>
%4398 = "mhlo.reshape"(%4397) : (tensor<1x384x128xf32>) -> tensor<384x128xf32>
%4399 = "mhlo.dot"(%4398, %1516) : (tensor<384x128xf32>, tensor<128x512xf32>) -> tensor<384x512xf32>
%4400 = "mhlo.broadcast_in_dim"(%1515) {broadcast_dimensions = dense<1> : tensor<1xi64>} : (tensor<512xf32>) -> tensor<384x512xf32>
%4401 = mhlo.add %4399, %4400 : tensor<384x512xf32>
%4402 = "mhlo.reshape"(%4401) : (tensor<384x512xf32>) -> tensor<1x384x512xf32>
%4403 = mhlo.maximum %4402, %1119 : tensor<1x384x512xf32>
%4404 = "mhlo.reshape"(%4403) : (tensor<1x384x512xf32>) -> tensor<384x512xf32>
%4405 = "mhlo.dot"(%4404, %1520) : (tensor<384x512xf32>, tensor<512x128xf32>) -> tensor<384x128xf32>
%4406 = "mhlo.broadcast_in_dim"(%1519) {broadcast_dimensions = dense<1> : tensor<1xi64>} : (tensor<128xf32>) -> tensor<384x128xf32>
%4407 = mhlo.add %4405, %4406 : tensor<384x128xf32>
%4408 = "mhlo.reshape"(%4407) : (tensor<384x128xf32>) -> tensor<1x384x128xf32>
%4409 = mhlo.add %4408, %4397 : tensor<1x384x128xf32>
%4410 = "mhlo.broadcast_in_dim"(%1518) {broadcast_dimensions = dense<2> : tensor<1xi64>} : (tensor<128xf32>) -> tensor<1x384x128xf32>
%4411 = mhlo.multiply %4409, %4410 : tensor<1x384x128xf32>
%4412 = "mhlo.broadcast_in_dim"(%1517) {broadcast_dimensions = dense<2> : tensor<1xi64>} : (tensor<128xf32>) -> tensor<1x384x128xf32>
%4413 = mhlo.add %4411, %4412 : tensor<1x384x128xf32>
%4414 = "mhlo.reshape"(%4413) : (tensor<1x384x128xf32>) -> tensor<384x128xf32>
%4415 = "mhlo.dot"(%4414, %1522) : (tensor<384x128xf32>, tensor<128x512xf32>) -> tensor<384x512xf32>
%4416 = "mhlo.broadcast_in_dim"(%1521) {broadcast_dimensions = dense<1> : tensor<1xi64>} : (tensor<512xf32>) -> tensor<384x512xf32>
%4417 = mhlo.add %4415, %4416 : tensor<384x512xf32>
%4418 = "mhlo.reshape"(%4417) : (tensor<384x512xf32>) -> tensor<1x384x512xf32>
%4419 = mhlo.maximum %4418, %1119 : tensor<1x384x512xf32>
%4420 = "mhlo.reshape"(%4419) : (tensor<1x384x512xf32>) -> tensor<384x512xf32>
%4421 = "mhlo.dot"(%4420, %1526) : (tensor<384x512xf32>, tensor<512x128xf32>) -> tensor<384x128xf32>
%4422 = "mhlo.broadcast_in_dim"(%1525) {broadcast_dimensions = dense<1> : tensor<1xi64>} : (tensor<128xf32>) -> tensor<384x128xf32>
%4423 = mhlo.add %4421, %4422 : tensor<384x128xf32>
%4424 = "mhlo.reshape"(%4423) : (tensor<384x128xf32>) -> tensor<1x384x128xf32>
%4425 = mhlo.add %4424, %4413 : tensor<1x384x128xf32>
%4426 = "mhlo.broadcast_in_dim"(%1524) {broadcast_dimensions = dense<2> : tensor<1xi64>} : (tensor<128xf32>) -> tensor<1x384x128xf32>
%4427 = mhlo.multiply %4425, %4426 : tensor<1x384x128xf32>
%4428 = "mhlo.broadcast_in_dim"(%1523) {broadcast_dimensions = dense<2> : tensor<1xi64>} : (tensor<128xf32>) -> tensor<1x384x128xf32>
%4429 = mhlo.add %4427, %4428 : tensor<1x384x128xf32>
%4430 = "mhlo.reshape"(%4429) : (tensor<1x384x128xf32>) -> tensor<384x128xf32>
%4431 = "mhlo.dot"(%4430, %1528) : (tensor<384x128xf32>, tensor<128x512xf32>) -> tensor<384x512xf32>
%4432 = "mhlo.broadcast_in_dim"(%1527) {broadcast_dimensions = dense<1> : tensor<1xi64>} : (tensor<512xf32>) -> tensor<384x512xf32>
%4433 = mhlo.add %4431, %4432 : tensor<384x512xf32>
%4434 = "mhlo.reshape"(%4433) : (tensor<384x512xf32>) -> tensor<1x384x512xf32>
%4435 = mhlo.maximum %4434, %1119 : tensor<1x384x512xf32>
%4436 = "mhlo.reshape"(%4435) : (tensor<1x384x512xf32>) -> tensor<384x512xf32>
%4437 = "mhlo.dot"(%4436, %1532) : (tensor<384x512xf32>, tensor<512x128xf32>) -> tensor<384x128xf32>
%4438 = "mhlo.broadcast_in_dim"(%1531) {broadcast_dimensions = dense<1> : tensor<1xi64>} : (tensor<128xf32>) -> tensor<384x128xf32>
%4439 = mhlo.add %4437, %4438 : tensor<384x128xf32>
%4440 = "mhlo.reshape"(%4439) : (tensor<384x128xf32>) -> tensor<1x384x128xf32>
%4441 = mhlo.add %4440, %4429 : tensor<1x384x128xf32>
%4442 = "mhlo.broadcast_in_dim"(%1530) {broadcast_dimensions = dense<2> : tensor<1xi64>} : (tensor<128xf32>) -> tensor<1x384x128xf32>
%4443 = mhlo.multiply %4441, %4442 : tensor<1x384x128xf32>
%4444 = "mhlo.broadcast_in_dim"(%1529) {broadcast_dimensions = dense<2> : tensor<1xi64>} : (tensor<128xf32>) -> tensor<1x384x128xf32>
%4445 = mhlo.add %4443, %4444 : tensor<1x384x128xf32>
%4446 = "mhlo.reshape"(%4445) : (tensor<1x384x128xf32>) -> tensor<384x128xf32>
%4447 = "mhlo.dot"(%4446, %1534) : (tensor<384x128xf32>, tensor<128x512xf32>) -> tensor<384x512xf32>
%4448 = "mhlo.broadcast_in_dim"(%1533) {broadcast_dimensions = dense<1> : tensor<1xi64>} : (tensor<512xf32>) -> tensor<384x512xf32>
%4449 = mhlo.add %4447, %4448 : tensor<384x512xf32>
%4450 = "mhlo.reshape"(%4449) : (tensor<384x512xf32>) -> tensor<1x384x512xf32>
%4451 = mhlo.maximum %4450, %1119 : tensor<1x384x512xf32>
%4452 = "mhlo.reshape"(%4451) : (tensor<1x384x512xf32>) -> tensor<384x512xf32>
%4453 = "mhlo.dot"(%4452, %1542) : (tensor<384x512xf32>, tensor<512x128xf32>) -> tensor<384x128xf32>
%4454 = "mhlo.broadcast_in_dim"(%1541) {broadcast_dimensions = dense<1> : tensor<1xi64>} : (tensor<128xf32>) -> tensor<384x128xf32>
%4455 = mhlo.add %4453, %4454 : tensor<384x128xf32>
%4456 = "mhlo.reshape"(%4455) : (tensor<384x128xf32>) -> tensor<1x384x128xf32>
%4457 = mhlo.add %4456, %4445 : tensor<1x384x128xf32>
%4458 = "mhlo.broadcast_in_dim"(%1536) {broadcast_dimensions = dense<2> : tensor<1xi64>} : (tensor<128xf32>) -> tensor<1x384x128xf32>
%4459 = mhlo.multiply %4457, %4458 : tensor<1x384x128xf32>
%4460 = "mhlo.broadcast_in_dim"(%1535) {broadcast_dimensions = dense<2> : tensor<1xi64>} : (tensor<128xf32>) -> tensor<1x384x128xf32>
%4461 = mhlo.add %4459, %4460 : tensor<1x384x128xf32>
%4462 = "mhlo.reshape"(%4461) : (tensor<1x384x128xf32>) -> tensor<384x128xf32>
%4463 = "mhlo.dot"(%4462, %1540) : (tensor<384x128xf32>, tensor<128x512xf32>) -> tensor<384x512xf32>
%4464 = "mhlo.broadcast_in_dim"(%1539) {broadcast_dimensions = dense<1> : tensor<1xi64>} : (tensor<512xf32>) -> tensor<384x512xf32>
%4465 = mhlo.add %4463, %4464 : tensor<384x512xf32>
%4466 = "mhlo.reshape"(%4465) : (tensor<384x512xf32>) -> tensor<1x384x512xf32>
%4467 = mhlo.add %4466, %4341 : tensor<1x384x512xf32>
%4468 = "mhlo.broadcast_in_dim"(%1538) {broadcast_dimensions = dense<2> : tensor<1xi64>} : (tensor<512xf32>) -> tensor<1x384x512xf32>
%4469 = mhlo.multiply %4467, %4468 : tensor<1x384x512xf32>
%4470 = "mhlo.broadcast_in_dim"(%1537) {broadcast_dimensions = dense<2> : tensor<1xi64>} : (tensor<512xf32>) -> tensor<1x384x512xf32>
%4471 = mhlo.add %4469, %4470 : tensor<1x384x512xf32>
%4472 = "mhlo.reshape"(%4471) : (tensor<1x384x512xf32>) -> tensor<384x512xf32>
%4473 = "mhlo.dot"(%4472, %1552) : (tensor<384x512xf32>, tensor<512x128xf32>) -> tensor<384x128xf32>
%4474 = "mhlo.broadcast_in_dim"(%1551) {broadcast_dimensions = dense<1> : tensor<1xi64>} : (tensor<128xf32>) -> tensor<384x128xf32>
%4475 = mhlo.add %4473, %4474 : tensor<384x128xf32>
%4476 = "mhlo.reshape"(%4475) : (tensor<384x128xf32>) -> tensor<1x384x4x32xf32>
%4477 = "mhlo.transpose"(%4476) {permutation = dense<[0, 2, 1, 3]> : tensor<4xi64>} : (tensor<1x384x4x32xf32>) -> tensor<1x4x384x32xf32>
%4478 = "mhlo.dot"(%4472, %1556) : (tensor<384x512xf32>, tensor<512x128xf32>) -> tensor<384x128xf32>
%4479 = "mhlo.reshape"(%4478) : (tensor<384x128xf32>) -> tensor<1x384x128xf32>
%4480 = "mhlo.broadcast_in_dim"(%1555) {broadcast_dimensions = dense<2> : tensor<1xi64>} : (tensor<128xf32>) -> tensor<1x384x128xf32>
%4481 = mhlo.add %4479, %4480 : tensor<1x384x128xf32>
%4482 = "mhlo.broadcast_in_dim"(%1554) {broadcast_dimensions = dense<2> : tensor<1xi64>} : (tensor<128xf32>) -> tensor<1x384x128xf32>
%4483 = mhlo.multiply %4481, %4482 : tensor<1x384x128xf32>
%4484 = "mhlo.broadcast_in_dim"(%1553) {broadcast_dimensions = dense<2> : tensor<1xi64>} : (tensor<128xf32>) -> tensor<1x384x128xf32>
%4485 = mhlo.add %4483, %4484 : tensor<1x384x128xf32>
%4486 = "mhlo.reshape"(%4485) : (tensor<1x384x128xf32>) -> tensor<384x128xf32>
%4487 = "mhlo.dot"(%4486, %1548) : (tensor<384x128xf32>, tensor<128x128xf32>) -> tensor<384x128xf32>
%4488 = "mhlo.broadcast_in_dim"(%1547) {broadcast_dimensions = dense<1> : tensor<1xi64>} : (tensor<128xf32>) -> tensor<384x128xf32>
%4489 = mhlo.add %4487, %4488 : tensor<384x128xf32>
%4490 = "mhlo.reshape"(%4489) : (tensor<384x128xf32>) -> tensor<1x384x4x32xf32>
%4491 = "mhlo.transpose"(%4490) {permutation = dense<[0, 2, 1, 3]> : tensor<4xi64>} : (tensor<1x384x4x32xf32>) -> tensor<1x4x384x32xf32>
%4492 = "mhlo.dot"(%4486, %1550) : (tensor<384x128xf32>, tensor<128x128xf32>) -> tensor<384x128xf32>
%4493 = "mhlo.broadcast_in_dim"(%1549) {broadcast_dimensions = dense<1> : tensor<1xi64>} : (tensor<128xf32>) -> tensor<384x128xf32>
%4494 = mhlo.add %4492, %4493 : tensor<384x128xf32>
%4495 = "mhlo.reshape"(%4494) : (tensor<384x128xf32>) -> tensor<1x384x4x32xf32>
%4496 = "mhlo.transpose"(%4495) {permutation = dense<[0, 2, 1, 3]> : tensor<4xi64>} : (tensor<1x384x4x32xf32>) -> tensor<1x4x384x32xf32>
%4497 = "mhlo.dot_general"(%4496, %4491) {dot_dimension_numbers = #mhlo.dot<lhs_batching_dimensions = [0, 1], lhs_contracting_dimensions = [3], rhs_batching_dimensions = [0, 1], rhs_contracting_dimensions = [3]>} : (tensor<1x4x384x32xf32>, tensor<1x4x384x32xf32>) -> tensor<1x4x384x384xf32>
%4498 = mhlo.multiply %4497, %1114 : tensor<1x4x384x384xf32>
%4499 = "mhlo.broadcast_in_dim"(%2254) {broadcast_dimensions = dense<[0, 1, 2, 3]> : tensor<4xi64>} : (tensor<1x1x384x384xf32>) -> tensor<1x4x384x384xf32>
%4500 = mhlo.add %4498, %4499 : tensor<1x4x384x384xf32>
%4501 = "mhlo.reduce"(%4500, %1117) ( {
^bb0(%arg3: tensor<f32>, %arg4: tensor<f32>): // no predecessors
%5393 = mhlo.maximum %arg3, %arg4 : tensor<f32>
"mhlo.return"(%5393) : (tensor<f32>) -> ()
}) {dimensions = dense<3> : tensor<1xi64>} : (tensor<1x4x384x384xf32>, tensor<f32>) -> tensor<1x4x384xf32>
%4502 = "mhlo.broadcast_in_dim"(%4501) {broadcast_dimensions = dense<[0, 1, 2]> : tensor<3xi64>} : (tensor<1x4x384xf32>) -> tensor<1x4x384x384xf32>
%4503 = mhlo.subtract %4500, %4502 : tensor<1x4x384x384xf32>
%4504 = "mhlo.exponential"(%4503) : (tensor<1x4x384x384xf32>) -> tensor<1x4x384x384xf32>
%4505 = "mhlo.reduce"(%4504, %1118) ( {
^bb0(%arg3: tensor<f32>, %arg4: tensor<f32>): // no predecessors
%5393 = mhlo.add %arg3, %arg4 : tensor<f32>
"mhlo.return"(%5393) : (tensor<f32>) -> ()
}) {dimensions = dense<3> : tensor<1xi64>} : (tensor<1x4x384x384xf32>, tensor<f32>) -> tensor<1x4x384xf32>
%4506 = "mhlo.broadcast_in_dim"(%4505) {broadcast_dimensions = dense<[0, 1, 2]> : tensor<3xi64>} : (tensor<1x4x384xf32>) -> tensor<1x4x384x384xf32>
%4507 = mhlo.divide %4504, %4506 : tensor<1x4x384x384xf32>
%4508 = "mhlo.dot_general"(%4507, %4477) {dot_dimension_numbers = #mhlo.dot<lhs_batching_dimensions = [0, 1], lhs_contracting_dimensions = [3], rhs_batching_dimensions = [0, 1], rhs_contracting_dimensions = [2]>} : (tensor<1x4x384x384xf32>, tensor<1x4x384x32xf32>) -> tensor<1x4x384x32xf32>
%4509 = "mhlo.transpose"(%4508) {permutation = dense<[0, 2, 1, 3]> : tensor<4xi64>} : (tensor<1x4x384x32xf32>) -> tensor<1x384x4x32xf32>
%4510 = "mhlo.reshape"(%4509) : (tensor<1x384x4x32xf32>) -> tensor<384x128xf32>
%4511 = "mhlo.dot"(%4510, %1546) : (tensor<384x128xf32>, tensor<128x128xf32>) -> tensor<384x128xf32>
%4512 = "mhlo.broadcast_in_dim"(%1545) {broadcast_dimensions = dense<1> : tensor<1xi64>} : (tensor<128xf32>) -> tensor<384x128xf32>
%4513 = mhlo.add %4511, %4512 : tensor<384x128xf32>
%4514 = "mhlo.reshape"(%4513) : (tensor<384x128xf32>) -> tensor<1x384x128xf32>
%4515 = "mhlo.dot"(%4472, %1560) : (tensor<384x512xf32>, tensor<512x128xf32>) -> tensor<384x128xf32>
%4516 = "mhlo.broadcast_in_dim"(%1559) {broadcast_dimensions = dense<1> : tensor<1xi64>} : (tensor<128xf32>) -> tensor<384x128xf32>
%4517 = mhlo.add %4515, %4516 : tensor<384x128xf32>
%4518 = "mhlo.reshape"(%4517) : (tensor<384x128xf32>) -> tensor<1x384x128xf32>
%4519 = "mhlo.broadcast_in_dim"(%1558) {broadcast_dimensions = dense<2> : tensor<1xi64>} : (tensor<128xf32>) -> tensor<1x384x128xf32>
%4520 = mhlo.multiply %4518, %4519 : tensor<1x384x128xf32>
%4521 = "mhlo.broadcast_in_dim"(%1557) {broadcast_dimensions = dense<2> : tensor<1xi64>} : (tensor<128xf32>) -> tensor<1x384x128xf32>
%4522 = mhlo.add %4520, %4521 : tensor<1x384x128xf32>
%4523 = mhlo.add %4514, %4522 : tensor<1x384x128xf32>
%4524 = "mhlo.broadcast_in_dim"(%1544) {broadcast_dimensions = dense<2> : tensor<1xi64>} : (tensor<128xf32>) -> tensor<1x384x128xf32>
%4525 = mhlo.multiply %4523, %4524 : tensor<1x384x128xf32>
%4526 = "mhlo.broadcast_in_dim"(%1543) {broadcast_dimensions = dense<2> : tensor<1xi64>} : (tensor<128xf32>) -> tensor<1x384x128xf32>
%4527 = mhlo.add %4525, %4526 : tensor<1x384x128xf32>
%4528 = "mhlo.reshape"(%4527) : (tensor<1x384x128xf32>) -> tensor<384x128xf32>
%4529 = "mhlo.dot"(%4528, %1562) : (tensor<384x128xf32>, tensor<128x512xf32>) -> tensor<384x512xf32>
%4530 = "mhlo.broadcast_in_dim"(%1561) {broadcast_dimensions = dense<1> : tensor<1xi64>} : (tensor<512xf32>) -> tensor<384x512xf32>
%4531 = mhlo.add %4529, %4530 : tensor<384x512xf32>
%4532 = "mhlo.reshape"(%4531) : (tensor<384x512xf32>) -> tensor<1x384x512xf32>
%4533 = mhlo.maximum %4532, %1119 : tensor<1x384x512xf32>
%4534 = "mhlo.reshape"(%4533) : (tensor<1x384x512xf32>) -> tensor<384x512xf32>
%4535 = "mhlo.dot"(%4534, %1566) : (tensor<384x512xf32>, tensor<512x128xf32>) -> tensor<384x128xf32>
%4536 = "mhlo.broadcast_in_dim"(%1565) {broadcast_dimensions = dense<1> : tensor<1xi64>} : (tensor<128xf32>) -> tensor<384x128xf32>
%4537 = mhlo.add %4535, %4536 : tensor<384x128xf32>
%4538 = "mhlo.reshape"(%4537) : (tensor<384x128xf32>) -> tensor<1x384x128xf32>
%4539 = mhlo.add %4538, %4527 : tensor<1x384x128xf32>
%4540 = "mhlo.broadcast_in_dim"(%1564) {broadcast_dimensions = dense<2> : tensor<1xi64>} : (tensor<128xf32>) -> tensor<1x384x128xf32>
%4541 = mhlo.multiply %4539, %4540 : tensor<1x384x128xf32>
%4542 = "mhlo.broadcast_in_dim"(%1563) {broadcast_dimensions = dense<2> : tensor<1xi64>} : (tensor<128xf32>) -> tensor<1x384x128xf32>
%4543 = mhlo.add %4541, %4542 : tensor<1x384x128xf32>
%4544 = "mhlo.reshape"(%4543) : (tensor<1x384x128xf32>) -> tensor<384x128xf32>
%4545 = "mhlo.dot"(%4544, %1568) : (tensor<384x128xf32>, tensor<128x512xf32>) -> tensor<384x512xf32>
%4546 = "mhlo.broadcast_in_dim"(%1567) {broadcast_dimensions = dense<1> : tensor<1xi64>} : (tensor<512xf32>) -> tensor<384x512xf32>
%4547 = mhlo.add %4545, %4546 : tensor<384x512xf32>
%4548 = "mhlo.reshape"(%4547) : (tensor<384x512xf32>) -> tensor<1x384x512xf32>
%4549 = mhlo.maximum %4548, %1119 : tensor<1x384x512xf32>
%4550 = "mhlo.reshape"(%4549) : (tensor<1x384x512xf32>) -> tensor<384x512xf32>
%4551 = "mhlo.dot"(%4550, %1572) : (tensor<384x512xf32>, tensor<512x128xf32>) -> tensor<384x128xf32>
%4552 = "mhlo.broadcast_in_dim"(%1571) {broadcast_dimensions = dense<1> : tensor<1xi64>} : (tensor<128xf32>) -> tensor<384x128xf32>
%4553 = mhlo.add %4551, %4552 : tensor<384x128xf32>
%4554 = "mhlo.reshape"(%4553) : (tensor<384x128xf32>) -> tensor<1x384x128xf32>
%4555 = mhlo.add %4554, %4543 : tensor<1x384x128xf32>
%4556 = "mhlo.broadcast_in_dim"(%1570) {broadcast_dimensions = dense<2> : tensor<1xi64>} : (tensor<128xf32>) -> tensor<1x384x128xf32>
%4557 = mhlo.multiply %4555, %4556 : tensor<1x384x128xf32>
%4558 = "mhlo.broadcast_in_dim"(%1569) {broadcast_dimensions = dense<2> : tensor<1xi64>} : (tensor<128xf32>) -> tensor<1x384x128xf32>
%4559 = mhlo.add %4557, %4558 : tensor<1x384x128xf32>
%4560 = "mhlo.reshape"(%4559) : (tensor<1x384x128xf32>) -> tensor<384x128xf32>
%4561 = "mhlo.dot"(%4560, %1574) : (tensor<384x128xf32>, tensor<128x512xf32>) -> tensor<384x512xf32>
%4562 = "mhlo.broadcast_in_dim"(%1573) {broadcast_dimensions = dense<1> : tensor<1xi64>} : (tensor<512xf32>) -> tensor<384x512xf32>
%4563 = mhlo.add %4561, %4562 : tensor<384x512xf32>
%4564 = "mhlo.reshape"(%4563) : (tensor<384x512xf32>) -> tensor<1x384x512xf32>
%4565 = mhlo.maximum %4564, %1119 : tensor<1x384x512xf32>
%4566 = "mhlo.reshape"(%4565) : (tensor<1x384x512xf32>) -> tensor<384x512xf32>
%4567 = "mhlo.dot"(%4566, %1578) : (tensor<384x512xf32>, tensor<512x128xf32>) -> tensor<384x128xf32>
%4568 = "mhlo.broadcast_in_dim"(%1577) {broadcast_dimensions = dense<1> : tensor<1xi64>} : (tensor<128xf32>) -> tensor<384x128xf32>
%4569 = mhlo.add %4567, %4568 : tensor<384x128xf32>
%4570 = "mhlo.reshape"(%4569) : (tensor<384x128xf32>) -> tensor<1x384x128xf32>
%4571 = mhlo.add %4570, %4559 : tensor<1x384x128xf32>
%4572 = "mhlo.broadcast_in_dim"(%1576) {broadcast_dimensions = dense<2> : tensor<1xi64>} : (tensor<128xf32>) -> tensor<1x384x128xf32>
%4573 = mhlo.multiply %4571, %4572 : tensor<1x384x128xf32>
%4574 = "mhlo.broadcast_in_dim"(%1575) {broadcast_dimensions = dense<2> : tensor<1xi64>} : (tensor<128xf32>) -> tensor<1x384x128xf32>
%4575 = mhlo.add %4573, %4574 : tensor<1x384x128xf32>
%4576 = "mhlo.reshape"(%4575) : (tensor<1x384x128xf32>) -> tensor<384x128xf32>
%4577 = "mhlo.dot"(%4576, %1580) : (tensor<384x128xf32>, tensor<128x512xf32>) -> tensor<384x512xf32>
%4578 = "mhlo.broadcast_in_dim"(%1579) {broadcast_dimensions = dense<1> : tensor<1xi64>} : (tensor<512xf32>) -> tensor<384x512xf32>
%4579 = mhlo.add %4577, %4578 : tensor<384x512xf32>
%4580 = "mhlo.reshape"(%4579) : (tensor<384x512xf32>) -> tensor<1x384x512xf32>
%4581 = mhlo.maximum %4580, %1119 : tensor<1x384x512xf32>
%4582 = "mhlo.reshape"(%4581) : (tensor<1x384x512xf32>) -> tensor<384x512xf32>
%4583 = "mhlo.dot"(%4582, %1588) : (tensor<384x512xf32>, tensor<512x128xf32>) -> tensor<384x128xf32>
%4584 = "mhlo.broadcast_in_dim"(%1587) {broadcast_dimensions = dense<1> : tensor<1xi64>} : (tensor<128xf32>) -> tensor<384x128xf32>
%4585 = mhlo.add %4583, %4584 : tensor<384x128xf32>
%4586 = "mhlo.reshape"(%4585) : (tensor<384x128xf32>) -> tensor<1x384x128xf32>
%4587 = mhlo.add %4586, %4575 : tensor<1x384x128xf32>
%4588 = "mhlo.broadcast_in_dim"(%1582) {broadcast_dimensions = dense<2> : tensor<1xi64>} : (tensor<128xf32>) -> tensor<1x384x128xf32>
%4589 = mhlo.multiply %4587, %4588 : tensor<1x384x128xf32>
%4590 = "mhlo.broadcast_in_dim"(%1581) {broadcast_dimensions = dense<2> : tensor<1xi64>} : (tensor<128xf32>) -> tensor<1x384x128xf32>
%4591 = mhlo.add %4589, %4590 : tensor<1x384x128xf32>
%4592 = "mhlo.reshape"(%4591) : (tensor<1x384x128xf32>) -> tensor<384x128xf32>
%4593 = "mhlo.dot"(%4592, %1586) : (tensor<384x128xf32>, tensor<128x512xf32>) -> tensor<384x512xf32>
%4594 = "mhlo.broadcast_in_dim"(%1585) {broadcast_dimensions = dense<1> : tensor<1xi64>} : (tensor<512xf32>) -> tensor<384x512xf32>
%4595 = mhlo.add %4593, %4594 : tensor<384x512xf32>
%4596 = "mhlo.reshape"(%4595) : (tensor<384x512xf32>) -> tensor<1x384x512xf32>
%4597 = mhlo.add %4596, %4471 : tensor<1x384x512xf32>
%4598 = "mhlo.broadcast_in_dim"(%1584) {broadcast_dimensions = dense<2> : tensor<1xi64>} : (tensor<512xf32>) -> tensor<1x384x512xf32>
%4599 = mhlo.multiply %4597, %4598 : tensor<1x384x512xf32>
%4600 = "mhlo.broadcast_in_dim"(%1583) {broadcast_dimensions = dense<2> : tensor<1xi64>} : (tensor<512xf32>) -> tensor<1x384x512xf32>
%4601 = mhlo.add %4599, %4600 : tensor<1x384x512xf32>
%4602 = "mhlo.reshape"(%4601) : (tensor<1x384x512xf32>) -> tensor<384x512xf32>
%4603 = "mhlo.dot"(%4602, %1598) : (tensor<384x512xf32>, tensor<512x128xf32>) -> tensor<384x128xf32>
%4604 = "mhlo.broadcast_in_dim"(%1597) {broadcast_dimensions = dense<1> : tensor<1xi64>} : (tensor<128xf32>) -> tensor<384x128xf32>
%4605 = mhlo.add %4603, %4604 : tensor<384x128xf32>
%4606 = "mhlo.reshape"(%4605) : (tensor<384x128xf32>) -> tensor<1x384x4x32xf32>
%4607 = "mhlo.transpose"(%4606) {permutation = dense<[0, 2, 1, 3]> : tensor<4xi64>} : (tensor<1x384x4x32xf32>) -> tensor<1x4x384x32xf32>
%4608 = "mhlo.dot"(%4602, %1602) : (tensor<384x512xf32>, tensor<512x128xf32>) -> tensor<384x128xf32>
%4609 = "mhlo.reshape"(%4608) : (tensor<384x128xf32>) -> tensor<1x384x128xf32>
%4610 = "mhlo.broadcast_in_dim"(%1601) {broadcast_dimensions = dense<2> : tensor<1xi64>} : (tensor<128xf32>) -> tensor<1x384x128xf32>
%4611 = mhlo.add %4609, %4610 : tensor<1x384x128xf32>
%4612 = "mhlo.broadcast_in_dim"(%1600) {broadcast_dimensions = dense<2> : tensor<1xi64>} : (tensor<128xf32>) -> tensor<1x384x128xf32>
%4613 = mhlo.multiply %4611, %4612 : tensor<1x384x128xf32>
%4614 = "mhlo.broadcast_in_dim"(%1599) {broadcast_dimensions = dense<2> : tensor<1xi64>} : (tensor<128xf32>) -> tensor<1x384x128xf32>
%4615 = mhlo.add %4613, %4614 : tensor<1x384x128xf32>
%4616 = "mhlo.reshape"(%4615) : (tensor<1x384x128xf32>) -> tensor<384x128xf32>
%4617 = "mhlo.dot"(%4616, %1594) : (tensor<384x128xf32>, tensor<128x128xf32>) -> tensor<384x128xf32>
%4618 = "mhlo.broadcast_in_dim"(%1593) {broadcast_dimensions = dense<1> : tensor<1xi64>} : (tensor<128xf32>) -> tensor<384x128xf32>
%4619 = mhlo.add %4617, %4618 : tensor<384x128xf32>
%4620 = "mhlo.reshape"(%4619) : (tensor<384x128xf32>) -> tensor<1x384x4x32xf32>
%4621 = "mhlo.transpose"(%4620) {permutation = dense<[0, 2, 1, 3]> : tensor<4xi64>} : (tensor<1x384x4x32xf32>) -> tensor<1x4x384x32xf32>
%4622 = "mhlo.dot"(%4616, %1596) : (tensor<384x128xf32>, tensor<128x128xf32>) -> tensor<384x128xf32>
%4623 = "mhlo.broadcast_in_dim"(%1595) {broadcast_dimensions = dense<1> : tensor<1xi64>} : (tensor<128xf32>) -> tensor<384x128xf32>
%4624 = mhlo.add %4622, %4623 : tensor<384x128xf32>
%4625 = "mhlo.reshape"(%4624) : (tensor<384x128xf32>) -> tensor<1x384x4x32xf32>
%4626 = "mhlo.transpose"(%4625) {permutation = dense<[0, 2, 1, 3]> : tensor<4xi64>} : (tensor<1x384x4x32xf32>) -> tensor<1x4x384x32xf32>
%4627 = "mhlo.dot_general"(%4626, %4621) {dot_dimension_numbers = #mhlo.dot<lhs_batching_dimensions = [0, 1], lhs_contracting_dimensions = [3], rhs_batching_dimensions = [0, 1], rhs_contracting_dimensions = [3]>} : (tensor<1x4x384x32xf32>, tensor<1x4x384x32xf32>) -> tensor<1x4x384x384xf32>
%4628 = mhlo.multiply %4627, %1114 : tensor<1x4x384x384xf32>
%4629 = "mhlo.broadcast_in_dim"(%2254) {broadcast_dimensions = dense<[0, 1, 2, 3]> : tensor<4xi64>} : (tensor<1x1x384x384xf32>) -> tensor<1x4x384x384xf32>
%4630 = mhlo.add %4628, %4629 : tensor<1x4x384x384xf32>
%4631 = "mhlo.reduce"(%4630, %1117) ( {
^bb0(%arg3: tensor<f32>, %arg4: tensor<f32>): // no predecessors
%5393 = mhlo.maximum %arg3, %arg4 : tensor<f32>
"mhlo.return"(%5393) : (tensor<f32>) -> ()
}) {dimensions = dense<3> : tensor<1xi64>} : (tensor<1x4x384x384xf32>, tensor<f32>) -> tensor<1x4x384xf32>
%4632 = "mhlo.broadcast_in_dim"(%4631) {broadcast_dimensions = dense<[0, 1, 2]> : tensor<3xi64>} : (tensor<1x4x384xf32>) -> tensor<1x4x384x384xf32>
%4633 = mhlo.subtract %4630, %4632 : tensor<1x4x384x384xf32>
%4634 = "mhlo.exponential"(%4633) : (tensor<1x4x384x384xf32>) -> tensor<1x4x384x384xf32>
%4635 = "mhlo.reduce"(%4634, %1118) ( {
^bb0(%arg3: tensor<f32>, %arg4: tensor<f32>): // no predecessors
%5393 = mhlo.add %arg3, %arg4 : tensor<f32>
"mhlo.return"(%5393) : (tensor<f32>) -> ()
}) {dimensions = dense<3> : tensor<1xi64>} : (tensor<1x4x384x384xf32>, tensor<f32>) -> tensor<1x4x384xf32>
%4636 = "mhlo.broadcast_in_dim"(%4635) {broadcast_dimensions = dense<[0, 1, 2]> : tensor<3xi64>} : (tensor<1x4x384xf32>) -> tensor<1x4x384x384xf32>
%4637 = mhlo.divide %4634, %4636 : tensor<1x4x384x384xf32>
%4638 = "mhlo.dot_general"(%4637, %4607) {dot_dimension_numbers = #mhlo.dot<lhs_batching_dimensions = [0, 1], lhs_contracting_dimensions = [3], rhs_batching_dimensions = [0, 1], rhs_contracting_dimensions = [2]>} : (tensor<1x4x384x384xf32>, tensor<1x4x384x32xf32>) -> tensor<1x4x384x32xf32>
%4639 = "mhlo.transpose"(%4638) {permutation = dense<[0, 2, 1, 3]> : tensor<4xi64>} : (tensor<1x4x384x32xf32>) -> tensor<1x384x4x32xf32>
%4640 = "mhlo.reshape"(%4639) : (tensor<1x384x4x32xf32>) -> tensor<384x128xf32>
%4641 = "mhlo.dot"(%4640, %1592) : (tensor<384x128xf32>, tensor<128x128xf32>) -> tensor<384x128xf32>
%4642 = "mhlo.broadcast_in_dim"(%1591) {broadcast_dimensions = dense<1> : tensor<1xi64>} : (tensor<128xf32>) -> tensor<384x128xf32>
%4643 = mhlo.add %4641, %4642 : tensor<384x128xf32>
%4644 = "mhlo.reshape"(%4643) : (tensor<384x128xf32>) -> tensor<1x384x128xf32>
%4645 = "mhlo.dot"(%4602, %1606) : (tensor<384x512xf32>, tensor<512x128xf32>) -> tensor<384x128xf32>
%4646 = "mhlo.broadcast_in_dim"(%1605) {broadcast_dimensions = dense<1> : tensor<1xi64>} : (tensor<128xf32>) -> tensor<384x128xf32>
%4647 = mhlo.add %4645, %4646 : tensor<384x128xf32>
%4648 = "mhlo.reshape"(%4647) : (tensor<384x128xf32>) -> tensor<1x384x128xf32>
%4649 = "mhlo.broadcast_in_dim"(%1604) {broadcast_dimensions = dense<2> : tensor<1xi64>} : (tensor<128xf32>) -> tensor<1x384x128xf32>
%4650 = mhlo.multiply %4648, %4649 : tensor<1x384x128xf32>
%4651 = "mhlo.broadcast_in_dim"(%1603) {broadcast_dimensions = dense<2> : tensor<1xi64>} : (tensor<128xf32>) -> tensor<1x384x128xf32>
%4652 = mhlo.add %4650, %4651 : tensor<1x384x128xf32>
%4653 = mhlo.add %4644, %4652 : tensor<1x384x128xf32>
%4654 = "mhlo.broadcast_in_dim"(%1590) {broadcast_dimensions = dense<2> : tensor<1xi64>} : (tensor<128xf32>) -> tensor<1x384x128xf32>
%4655 = mhlo.multiply %4653, %4654 : tensor<1x384x128xf32>
%4656 = "mhlo.broadcast_in_dim"(%1589) {broadcast_dimensions = dense<2> : tensor<1xi64>} : (tensor<128xf32>) -> tensor<1x384x128xf32>
%4657 = mhlo.add %4655, %4656 : tensor<1x384x128xf32>
%4658 = "mhlo.reshape"(%4657) : (tensor<1x384x128xf32>) -> tensor<384x128xf32>
%4659 = "mhlo.dot"(%4658, %1608) : (tensor<384x128xf32>, tensor<128x512xf32>) -> tensor<384x512xf32>
%4660 = "mhlo.broadcast_in_dim"(%1607) {broadcast_dimensions = dense<1> : tensor<1xi64>} : (tensor<512xf32>) -> tensor<384x512xf32>
%4661 = mhlo.add %4659, %4660 : tensor<384x512xf32>
%4662 = "mhlo.reshape"(%4661) : (tensor<384x512xf32>) -> tensor<1x384x512xf32>
%4663 = mhlo.maximum %4662, %1119 : tensor<1x384x512xf32>
%4664 = "mhlo.reshape"(%4663) : (tensor<1x384x512xf32>) -> tensor<384x512xf32>
%4665 = "mhlo.dot"(%4664, %1612) : (tensor<384x512xf32>, tensor<512x128xf32>) -> tensor<384x128xf32>
%4666 = "mhlo.broadcast_in_dim"(%1611) {broadcast_dimensions = dense<1> : tensor<1xi64>} : (tensor<128xf32>) -> tensor<384x128xf32>
%4667 = mhlo.add %4665, %4666 : tensor<384x128xf32>
%4668 = "mhlo.reshape"(%4667) : (tensor<384x128xf32>) -> tensor<1x384x128xf32>
%4669 = mhlo.add %4668, %4657 : tensor<1x384x128xf32>
%4670 = "mhlo.broadcast_in_dim"(%1610) {broadcast_dimensions = dense<2> : tensor<1xi64>} : (tensor<128xf32>) -> tensor<1x384x128xf32>
%4671 = mhlo.multiply %4669, %4670 : tensor<1x384x128xf32>
%4672 = "mhlo.broadcast_in_dim"(%1609) {broadcast_dimensions = dense<2> : tensor<1xi64>} : (tensor<128xf32>) -> tensor<1x384x128xf32>
%4673 = mhlo.add %4671, %4672 : tensor<1x384x128xf32>
%4674 = "mhlo.reshape"(%4673) : (tensor<1x384x128xf32>) -> tensor<384x128xf32>
%4675 = "mhlo.dot"(%4674, %1614) : (tensor<384x128xf32>, tensor<128x512xf32>) -> tensor<384x512xf32>
%4676 = "mhlo.broadcast_in_dim"(%1613) {broadcast_dimensions = dense<1> : tensor<1xi64>} : (tensor<512xf32>) -> tensor<384x512xf32>
%4677 = mhlo.add %4675, %4676 : tensor<384x512xf32>
%4678 = "mhlo.reshape"(%4677) : (tensor<384x512xf32>) -> tensor<1x384x512xf32>
%4679 = mhlo.maximum %4678, %1119 : tensor<1x384x512xf32>
%4680 = "mhlo.reshape"(%4679) : (tensor<1x384x512xf32>) -> tensor<384x512xf32>
%4681 = "mhlo.dot"(%4680, %1618) : (tensor<384x512xf32>, tensor<512x128xf32>) -> tensor<384x128xf32>
%4682 = "mhlo.broadcast_in_dim"(%1617) {broadcast_dimensions = dense<1> : tensor<1xi64>} : (tensor<128xf32>) -> tensor<384x128xf32>
%4683 = mhlo.add %4681, %4682 : tensor<384x128xf32>
%4684 = "mhlo.reshape"(%4683) : (tensor<384x128xf32>) -> tensor<1x384x128xf32>
%4685 = mhlo.add %4684, %4673 : tensor<1x384x128xf32>
%4686 = "mhlo.broadcast_in_dim"(%1616) {broadcast_dimensions = dense<2> : tensor<1xi64>} : (tensor<128xf32>) -> tensor<1x384x128xf32>
%4687 = mhlo.multiply %4685, %4686 : tensor<1x384x128xf32>
%4688 = "mhlo.broadcast_in_dim"(%1615) {broadcast_dimensions = dense<2> : tensor<1xi64>} : (tensor<128xf32>) -> tensor<1x384x128xf32>
%4689 = mhlo.add %4687, %4688 : tensor<1x384x128xf32>
%4690 = "mhlo.reshape"(%4689) : (tensor<1x384x128xf32>) -> tensor<384x128xf32>
%4691 = "mhlo.dot"(%4690, %1620) : (tensor<384x128xf32>, tensor<128x512xf32>) -> tensor<384x512xf32>
%4692 = "mhlo.broadcast_in_dim"(%1619) {broadcast_dimensions = dense<1> : tensor<1xi64>} : (tensor<512xf32>) -> tensor<384x512xf32>
%4693 = mhlo.add %4691, %4692 : tensor<384x512xf32>
%4694 = "mhlo.reshape"(%4693) : (tensor<384x512xf32>) -> tensor<1x384x512xf32>
%4695 = mhlo.maximum %4694, %1119 : tensor<1x384x512xf32>
%4696 = "mhlo.reshape"(%4695) : (tensor<1x384x512xf32>) -> tensor<384x512xf32>
%4697 = "mhlo.dot"(%4696, %1624) : (tensor<384x512xf32>, tensor<512x128xf32>) -> tensor<384x128xf32>
%4698 = "mhlo.broadcast_in_dim"(%1623) {broadcast_dimensions = dense<1> : tensor<1xi64>} : (tensor<128xf32>) -> tensor<384x128xf32>
%4699 = mhlo.add %4697, %4698 : tensor<384x128xf32>
%4700 = "mhlo.reshape"(%4699) : (tensor<384x128xf32>) -> tensor<1x384x128xf32>
%4701 = mhlo.add %4700, %4689 : tensor<1x384x128xf32>
%4702 = "mhlo.broadcast_in_dim"(%1622) {broadcast_dimensions = dense<2> : tensor<1xi64>} : (tensor<128xf32>) -> tensor<1x384x128xf32>
%4703 = mhlo.multiply %4701, %4702 : tensor<1x384x128xf32>
%4704 = "mhlo.broadcast_in_dim"(%1621) {broadcast_dimensions = dense<2> : tensor<1xi64>} : (tensor<128xf32>) -> tensor<1x384x128xf32>
%4705 = mhlo.add %4703, %4704 : tensor<1x384x128xf32>
%4706 = "mhlo.reshape"(%4705) : (tensor<1x384x128xf32>) -> tensor<384x128xf32>
%4707 = "mhlo.dot"(%4706, %1626) : (tensor<384x128xf32>, tensor<128x512xf32>) -> tensor<384x512xf32>
%4708 = "mhlo.broadcast_in_dim"(%1625) {broadcast_dimensions = dense<1> : tensor<1xi64>} : (tensor<512xf32>) -> tensor<384x512xf32>
%4709 = mhlo.add %4707, %4708 : tensor<384x512xf32>
%4710 = "mhlo.reshape"(%4709) : (tensor<384x512xf32>) -> tensor<1x384x512xf32>
%4711 = mhlo.maximum %4710, %1119 : tensor<1x384x512xf32>
%4712 = "mhlo.reshape"(%4711) : (tensor<1x384x512xf32>) -> tensor<384x512xf32>
%4713 = "mhlo.dot"(%4712, %1634) : (tensor<384x512xf32>, tensor<512x128xf32>) -> tensor<384x128xf32>
%4714 = "mhlo.broadcast_in_dim"(%1633) {broadcast_dimensions = dense<1> : tensor<1xi64>} : (tensor<128xf32>) -> tensor<384x128xf32>
%4715 = mhlo.add %4713, %4714 : tensor<384x128xf32>
%4716 = "mhlo.reshape"(%4715) : (tensor<384x128xf32>) -> tensor<1x384x128xf32>
%4717 = mhlo.add %4716, %4705 : tensor<1x384x128xf32>
%4718 = "mhlo.broadcast_in_dim"(%1628) {broadcast_dimensions = dense<2> : tensor<1xi64>} : (tensor<128xf32>) -> tensor<1x384x128xf32>
%4719 = mhlo.multiply %4717, %4718 : tensor<1x384x128xf32>
%4720 = "mhlo.broadcast_in_dim"(%1627) {broadcast_dimensions = dense<2> : tensor<1xi64>} : (tensor<128xf32>) -> tensor<1x384x128xf32>
%4721 = mhlo.add %4719, %4720 : tensor<1x384x128xf32>
%4722 = "mhlo.reshape"(%4721) : (tensor<1x384x128xf32>) -> tensor<384x128xf32>
%4723 = "mhlo.dot"(%4722, %1632) : (tensor<384x128xf32>, tensor<128x512xf32>) -> tensor<384x512xf32>
%4724 = "mhlo.broadcast_in_dim"(%1631) {broadcast_dimensions = dense<1> : tensor<1xi64>} : (tensor<512xf32>) -> tensor<384x512xf32>
%4725 = mhlo.add %4723, %4724 : tensor<384x512xf32>
%4726 = "mhlo.reshape"(%4725) : (tensor<384x512xf32>) -> tensor<1x384x512xf32>
%4727 = mhlo.add %4726, %4601 : tensor<1x384x512xf32>
%4728 = "mhlo.broadcast_in_dim"(%1630) {broadcast_dimensions = dense<2> : tensor<1xi64>} : (tensor<512xf32>) -> tensor<1x384x512xf32>
%4729 = mhlo.multiply %4727, %4728 : tensor<1x384x512xf32>
%4730 = "mhlo.broadcast_in_dim"(%1629) {broadcast_dimensions = dense<2> : tensor<1xi64>} : (tensor<512xf32>) -> tensor<1x384x512xf32>
%4731 = mhlo.add %4729, %4730 : tensor<1x384x512xf32>
%4732 = "mhlo.reshape"(%4731) : (tensor<1x384x512xf32>) -> tensor<384x512xf32>
%4733 = "mhlo.dot"(%4732, %1644) : (tensor<384x512xf32>, tensor<512x128xf32>) -> tensor<384x128xf32>
%4734 = "mhlo.broadcast_in_dim"(%1643) {broadcast_dimensions = dense<1> : tensor<1xi64>} : (tensor<128xf32>) -> tensor<384x128xf32>
%4735 = mhlo.add %4733, %4734 : tensor<384x128xf32>
%4736 = "mhlo.reshape"(%4735) : (tensor<384x128xf32>) -> tensor<1x384x4x32xf32>
%4737 = "mhlo.transpose"(%4736) {permutation = dense<[0, 2, 1, 3]> : tensor<4xi64>} : (tensor<1x384x4x32xf32>) -> tensor<1x4x384x32xf32>
%4738 = "mhlo.dot"(%4732, %1648) : (tensor<384x512xf32>, tensor<512x128xf32>) -> tensor<384x128xf32>
%4739 = "mhlo.reshape"(%4738) : (tensor<384x128xf32>) -> tensor<1x384x128xf32>
%4740 = "mhlo.broadcast_in_dim"(%1647) {broadcast_dimensions = dense<2> : tensor<1xi64>} : (tensor<128xf32>) -> tensor<1x384x128xf32>
%4741 = mhlo.add %4739, %4740 : tensor<1x384x128xf32>
%4742 = "mhlo.broadcast_in_dim"(%1646) {broadcast_dimensions = dense<2> : tensor<1xi64>} : (tensor<128xf32>) -> tensor<1x384x128xf32>
%4743 = mhlo.multiply %4741, %4742 : tensor<1x384x128xf32>
%4744 = "mhlo.broadcast_in_dim"(%1645) {broadcast_dimensions = dense<2> : tensor<1xi64>} : (tensor<128xf32>) -> tensor<1x384x128xf32>
%4745 = mhlo.add %4743, %4744 : tensor<1x384x128xf32>
%4746 = "mhlo.reshape"(%4745) : (tensor<1x384x128xf32>) -> tensor<384x128xf32>
%4747 = "mhlo.dot"(%4746, %1640) : (tensor<384x128xf32>, tensor<128x128xf32>) -> tensor<384x128xf32>
%4748 = "mhlo.broadcast_in_dim"(%1639) {broadcast_dimensions = dense<1> : tensor<1xi64>} : (tensor<128xf32>) -> tensor<384x128xf32>
%4749 = mhlo.add %4747, %4748 : tensor<384x128xf32>
%4750 = "mhlo.reshape"(%4749) : (tensor<384x128xf32>) -> tensor<1x384x4x32xf32>
%4751 = "mhlo.transpose"(%4750) {permutation = dense<[0, 2, 1, 3]> : tensor<4xi64>} : (tensor<1x384x4x32xf32>) -> tensor<1x4x384x32xf32>
%4752 = "mhlo.dot"(%4746, %1642) : (tensor<384x128xf32>, tensor<128x128xf32>) -> tensor<384x128xf32>
%4753 = "mhlo.broadcast_in_dim"(%1641) {broadcast_dimensions = dense<1> : tensor<1xi64>} : (tensor<128xf32>) -> tensor<384x128xf32>
%4754 = mhlo.add %4752, %4753 : tensor<384x128xf32>
%4755 = "mhlo.reshape"(%4754) : (tensor<384x128xf32>) -> tensor<1x384x4x32xf32>
%4756 = "mhlo.transpose"(%4755) {permutation = dense<[0, 2, 1, 3]> : tensor<4xi64>} : (tensor<1x384x4x32xf32>) -> tensor<1x4x384x32xf32>
%4757 = "mhlo.dot_general"(%4756, %4751) {dot_dimension_numbers = #mhlo.dot<lhs_batching_dimensions = [0, 1], lhs_contracting_dimensions = [3], rhs_batching_dimensions = [0, 1], rhs_contracting_dimensions = [3]>} : (tensor<1x4x384x32xf32>, tensor<1x4x384x32xf32>) -> tensor<1x4x384x384xf32>
%4758 = mhlo.multiply %4757, %1114 : tensor<1x4x384x384xf32>
%4759 = "mhlo.broadcast_in_dim"(%2254) {broadcast_dimensions = dense<[0, 1, 2, 3]> : tensor<4xi64>} : (tensor<1x1x384x384xf32>) -> tensor<1x4x384x384xf32>
%4760 = mhlo.add %4758, %4759 : tensor<1x4x384x384xf32>
%4761 = "mhlo.reduce"(%4760, %1117) ( {
^bb0(%arg3: tensor<f32>, %arg4: tensor<f32>): // no predecessors
%5393 = mhlo.maximum %arg3, %arg4 : tensor<f32>
"mhlo.return"(%5393) : (tensor<f32>) -> ()
}) {dimensions = dense<3> : tensor<1xi64>} : (tensor<1x4x384x384xf32>, tensor<f32>) -> tensor<1x4x384xf32>
%4762 = "mhlo.broadcast_in_dim"(%4761) {broadcast_dimensions = dense<[0, 1, 2]> : tensor<3xi64>} : (tensor<1x4x384xf32>) -> tensor<1x4x384x384xf32>
%4763 = mhlo.subtract %4760, %4762 : tensor<1x4x384x384xf32>
%4764 = "mhlo.exponential"(%4763) : (tensor<1x4x384x384xf32>) -> tensor<1x4x384x384xf32>
%4765 = "mhlo.reduce"(%4764, %1118) ( {
^bb0(%arg3: tensor<f32>, %arg4: tensor<f32>): // no predecessors
%5393 = mhlo.add %arg3, %arg4 : tensor<f32>
"mhlo.return"(%5393) : (tensor<f32>) -> ()
}) {dimensions = dense<3> : tensor<1xi64>} : (tensor<1x4x384x384xf32>, tensor<f32>) -> tensor<1x4x384xf32>
%4766 = "mhlo.broadcast_in_dim"(%4765) {broadcast_dimensions = dense<[0, 1, 2]> : tensor<3xi64>} : (tensor<1x4x384xf32>) -> tensor<1x4x384x384xf32>
%4767 = mhlo.divide %4764, %4766 : tensor<1x4x384x384xf32>
%4768 = "mhlo.dot_general"(%4767, %4737) {dot_dimension_numbers = #mhlo.dot<lhs_batching_dimensions = [0, 1], lhs_contracting_dimensions = [3], rhs_batching_dimensions = [0, 1], rhs_contracting_dimensions = [2]>} : (tensor<1x4x384x384xf32>, tensor<1x4x384x32xf32>) -> tensor<1x4x384x32xf32>
%4769 = "mhlo.transpose"(%4768) {permutation = dense<[0, 2, 1, 3]> : tensor<4xi64>} : (tensor<1x4x384x32xf32>) -> tensor<1x384x4x32xf32>
%4770 = "mhlo.reshape"(%4769) : (tensor<1x384x4x32xf32>) -> tensor<384x128xf32>
%4771 = "mhlo.dot"(%4770, %1638) : (tensor<384x128xf32>, tensor<128x128xf32>) -> tensor<384x128xf32>
%4772 = "mhlo.broadcast_in_dim"(%1637) {broadcast_dimensions = dense<1> : tensor<1xi64>} : (tensor<128xf32>) -> tensor<384x128xf32>
%4773 = mhlo.add %4771, %4772 : tensor<384x128xf32>
%4774 = "mhlo.reshape"(%4773) : (tensor<384x128xf32>) -> tensor<1x384x128xf32>
%4775 = "mhlo.dot"(%4732, %1652) : (tensor<384x512xf32>, tensor<512x128xf32>) -> tensor<384x128xf32>
%4776 = "mhlo.broadcast_in_dim"(%1651) {broadcast_dimensions = dense<1> : tensor<1xi64>} : (tensor<128xf32>) -> tensor<384x128xf32>
%4777 = mhlo.add %4775, %4776 : tensor<384x128xf32>
%4778 = "mhlo.reshape"(%4777) : (tensor<384x128xf32>) -> tensor<1x384x128xf32>
%4779 = "mhlo.broadcast_in_dim"(%1650) {broadcast_dimensions = dense<2> : tensor<1xi64>} : (tensor<128xf32>) -> tensor<1x384x128xf32>
%4780 = mhlo.multiply %4778, %4779 : tensor<1x384x128xf32>
%4781 = "mhlo.broadcast_in_dim"(%1649) {broadcast_dimensions = dense<2> : tensor<1xi64>} : (tensor<128xf32>) -> tensor<1x384x128xf32>
%4782 = mhlo.add %4780, %4781 : tensor<1x384x128xf32>
%4783 = mhlo.add %4774, %4782 : tensor<1x384x128xf32>
%4784 = "mhlo.broadcast_in_dim"(%1636) {broadcast_dimensions = dense<2> : tensor<1xi64>} : (tensor<128xf32>) -> tensor<1x384x128xf32>
%4785 = mhlo.multiply %4783, %4784 : tensor<1x384x128xf32>
%4786 = "mhlo.broadcast_in_dim"(%1635) {broadcast_dimensions = dense<2> : tensor<1xi64>} : (tensor<128xf32>) -> tensor<1x384x128xf32>
%4787 = mhlo.add %4785, %4786 : tensor<1x384x128xf32>
%4788 = "mhlo.reshape"(%4787) : (tensor<1x384x128xf32>) -> tensor<384x128xf32>
%4789 = "mhlo.dot"(%4788, %1654) : (tensor<384x128xf32>, tensor<128x512xf32>) -> tensor<384x512xf32>
%4790 = "mhlo.broadcast_in_dim"(%1653) {broadcast_dimensions = dense<1> : tensor<1xi64>} : (tensor<512xf32>) -> tensor<384x512xf32>
%4791 = mhlo.add %4789, %4790 : tensor<384x512xf32>
%4792 = "mhlo.reshape"(%4791) : (tensor<384x512xf32>) -> tensor<1x384x512xf32>
%4793 = mhlo.maximum %4792, %1119 : tensor<1x384x512xf32>
%4794 = "mhlo.reshape"(%4793) : (tensor<1x384x512xf32>) -> tensor<384x512xf32>
%4795 = "mhlo.dot"(%4794, %1658) : (tensor<384x512xf32>, tensor<512x128xf32>) -> tensor<384x128xf32>
%4796 = "mhlo.broadcast_in_dim"(%1657) {broadcast_dimensions = dense<1> : tensor<1xi64>} : (tensor<128xf32>) -> tensor<384x128xf32>
%4797 = mhlo.add %4795, %4796 : tensor<384x128xf32>
%4798 = "mhlo.reshape"(%4797) : (tensor<384x128xf32>) -> tensor<1x384x128xf32>
%4799 = mhlo.add %4798, %4787 : tensor<1x384x128xf32>
%4800 = "mhlo.broadcast_in_dim"(%1656) {broadcast_dimensions = dense<2> : tensor<1xi64>} : (tensor<128xf32>) -> tensor<1x384x128xf32>
%4801 = mhlo.multiply %4799, %4800 : tensor<1x384x128xf32>
%4802 = "mhlo.broadcast_in_dim"(%1655) {broadcast_dimensions = dense<2> : tensor<1xi64>} : (tensor<128xf32>) -> tensor<1x384x128xf32>
%4803 = mhlo.add %4801, %4802 : tensor<1x384x128xf32>
%4804 = "mhlo.reshape"(%4803) : (tensor<1x384x128xf32>) -> tensor<384x128xf32>
%4805 = "mhlo.dot"(%4804, %1660) : (tensor<384x128xf32>, tensor<128x512xf32>) -> tensor<384x512xf32>
%4806 = "mhlo.broadcast_in_dim"(%1659) {broadcast_dimensions = dense<1> : tensor<1xi64>} : (tensor<512xf32>) -> tensor<384x512xf32>
%4807 = mhlo.add %4805, %4806 : tensor<384x512xf32>
%4808 = "mhlo.reshape"(%4807) : (tensor<384x512xf32>) -> tensor<1x384x512xf32>
%4809 = mhlo.maximum %4808, %1119 : tensor<1x384x512xf32>
%4810 = "mhlo.reshape"(%4809) : (tensor<1x384x512xf32>) -> tensor<384x512xf32>
%4811 = "mhlo.dot"(%4810, %1664) : (tensor<384x512xf32>, tensor<512x128xf32>) -> tensor<384x128xf32>
%4812 = "mhlo.broadcast_in_dim"(%1663) {broadcast_dimensions = dense<1> : tensor<1xi64>} : (tensor<128xf32>) -> tensor<384x128xf32>
%4813 = mhlo.add %4811, %4812 : tensor<384x128xf32>
%4814 = "mhlo.reshape"(%4813) : (tensor<384x128xf32>) -> tensor<1x384x128xf32>
%4815 = mhlo.add %4814, %4803 : tensor<1x384x128xf32>
%4816 = "mhlo.broadcast_in_dim"(%1662) {broadcast_dimensions = dense<2> : tensor<1xi64>} : (tensor<128xf32>) -> tensor<1x384x128xf32>
%4817 = mhlo.multiply %4815, %4816 : tensor<1x384x128xf32>
%4818 = "mhlo.broadcast_in_dim"(%1661) {broadcast_dimensions = dense<2> : tensor<1xi64>} : (tensor<128xf32>) -> tensor<1x384x128xf32>
%4819 = mhlo.add %4817, %4818 : tensor<1x384x128xf32>
%4820 = "mhlo.reshape"(%4819) : (tensor<1x384x128xf32>) -> tensor<384x128xf32>
%4821 = "mhlo.dot"(%4820, %1666) : (tensor<384x128xf32>, tensor<128x512xf32>) -> tensor<384x512xf32>
%4822 = "mhlo.broadcast_in_dim"(%1665) {broadcast_dimensions = dense<1> : tensor<1xi64>} : (tensor<512xf32>) -> tensor<384x512xf32>
%4823 = mhlo.add %4821, %4822 : tensor<384x512xf32>
%4824 = "mhlo.reshape"(%4823) : (tensor<384x512xf32>) -> tensor<1x384x512xf32>
%4825 = mhlo.maximum %4824, %1119 : tensor<1x384x512xf32>
%4826 = "mhlo.reshape"(%4825) : (tensor<1x384x512xf32>) -> tensor<384x512xf32>
%4827 = "mhlo.dot"(%4826, %1670) : (tensor<384x512xf32>, tensor<512x128xf32>) -> tensor<384x128xf32>
%4828 = "mhlo.broadcast_in_dim"(%1669) {broadcast_dimensions = dense<1> : tensor<1xi64>} : (tensor<128xf32>) -> tensor<384x128xf32>
%4829 = mhlo.add %4827, %4828 : tensor<384x128xf32>
%4830 = "mhlo.reshape"(%4829) : (tensor<384x128xf32>) -> tensor<1x384x128xf32>
%4831 = mhlo.add %4830, %4819 : tensor<1x384x128xf32>
%4832 = "mhlo.broadcast_in_dim"(%1668) {broadcast_dimensions = dense<2> : tensor<1xi64>} : (tensor<128xf32>) -> tensor<1x384x128xf32>
%4833 = mhlo.multiply %4831, %4832 : tensor<1x384x128xf32>
%4834 = "mhlo.broadcast_in_dim"(%1667) {broadcast_dimensions = dense<2> : tensor<1xi64>} : (tensor<128xf32>) -> tensor<1x384x128xf32>
%4835 = mhlo.add %4833, %4834 : tensor<1x384x128xf32>
%4836 = "mhlo.reshape"(%4835) : (tensor<1x384x128xf32>) -> tensor<384x128xf32>
%4837 = "mhlo.dot"(%4836, %1672) : (tensor<384x128xf32>, tensor<128x512xf32>) -> tensor<384x512xf32>
%4838 = "mhlo.broadcast_in_dim"(%1671) {broadcast_dimensions = dense<1> : tensor<1xi64>} : (tensor<512xf32>) -> tensor<384x512xf32>
%4839 = mhlo.add %4837, %4838 : tensor<384x512xf32>
%4840 = "mhlo.reshape"(%4839) : (tensor<384x512xf32>) -> tensor<1x384x512xf32>
%4841 = mhlo.maximum %4840, %1119 : tensor<1x384x512xf32>
%4842 = "mhlo.reshape"(%4841) : (tensor<1x384x512xf32>) -> tensor<384x512xf32>
%4843 = "mhlo.dot"(%4842, %1680) : (tensor<384x512xf32>, tensor<512x128xf32>) -> tensor<384x128xf32>
%4844 = "mhlo.broadcast_in_dim"(%1679) {broadcast_dimensions = dense<1> : tensor<1xi64>} : (tensor<128xf32>) -> tensor<384x128xf32>
%4845 = mhlo.add %4843, %4844 : tensor<384x128xf32>
%4846 = "mhlo.reshape"(%4845) : (tensor<384x128xf32>) -> tensor<1x384x128xf32>
%4847 = mhlo.add %4846, %4835 : tensor<1x384x128xf32>
%4848 = "mhlo.broadcast_in_dim"(%1674) {broadcast_dimensions = dense<2> : tensor<1xi64>} : (tensor<128xf32>) -> tensor<1x384x128xf32>
%4849 = mhlo.multiply %4847, %4848 : tensor<1x384x128xf32>
%4850 = "mhlo.broadcast_in_dim"(%1673) {broadcast_dimensions = dense<2> : tensor<1xi64>} : (tensor<128xf32>) -> tensor<1x384x128xf32>
%4851 = mhlo.add %4849, %4850 : tensor<1x384x128xf32>
%4852 = "mhlo.reshape"(%4851) : (tensor<1x384x128xf32>) -> tensor<384x128xf32>
%4853 = "mhlo.dot"(%4852, %1678) : (tensor<384x128xf32>, tensor<128x512xf32>) -> tensor<384x512xf32>
%4854 = "mhlo.broadcast_in_dim"(%1677) {broadcast_dimensions = dense<1> : tensor<1xi64>} : (tensor<512xf32>) -> tensor<384x512xf32>
%4855 = mhlo.add %4853, %4854 : tensor<384x512xf32>
%4856 = "mhlo.reshape"(%4855) : (tensor<384x512xf32>) -> tensor<1x384x512xf32>
%4857 = mhlo.add %4856, %4731 : tensor<1x384x512xf32>
%4858 = "mhlo.broadcast_in_dim"(%1676) {broadcast_dimensions = dense<2> : tensor<1xi64>} : (tensor<512xf32>) -> tensor<1x384x512xf32>
%4859 = mhlo.multiply %4857, %4858 : tensor<1x384x512xf32>
%4860 = "mhlo.broadcast_in_dim"(%1675) {broadcast_dimensions = dense<2> : tensor<1xi64>} : (tensor<512xf32>) -> tensor<1x384x512xf32>
%4861 = mhlo.add %4859, %4860 : tensor<1x384x512xf32>
%4862 = "mhlo.reshape"(%4861) : (tensor<1x384x512xf32>) -> tensor<384x512xf32>
%4863 = "mhlo.dot"(%4862, %1736) : (tensor<384x512xf32>, tensor<512x128xf32>) -> tensor<384x128xf32>
%4864 = "mhlo.broadcast_in_dim"(%1735) {broadcast_dimensions = dense<1> : tensor<1xi64>} : (tensor<128xf32>) -> tensor<384x128xf32>
%4865 = mhlo.add %4863, %4864 : tensor<384x128xf32>
%4866 = "mhlo.reshape"(%4865) : (tensor<384x128xf32>) -> tensor<1x384x4x32xf32>
%4867 = "mhlo.transpose"(%4866) {permutation = dense<[0, 2, 1, 3]> : tensor<4xi64>} : (tensor<1x384x4x32xf32>) -> tensor<1x4x384x32xf32>
%4868 = "mhlo.dot"(%4862, %1740) : (tensor<384x512xf32>, tensor<512x128xf32>) -> tensor<384x128xf32>
%4869 = "mhlo.reshape"(%4868) : (tensor<384x128xf32>) -> tensor<1x384x128xf32>
%4870 = "mhlo.broadcast_in_dim"(%1739) {broadcast_dimensions = dense<2> : tensor<1xi64>} : (tensor<128xf32>) -> tensor<1x384x128xf32>
%4871 = mhlo.add %4869, %4870 : tensor<1x384x128xf32>
%4872 = "mhlo.broadcast_in_dim"(%1738) {broadcast_dimensions = dense<2> : tensor<1xi64>} : (tensor<128xf32>) -> tensor<1x384x128xf32>
%4873 = mhlo.multiply %4871, %4872 : tensor<1x384x128xf32>
%4874 = "mhlo.broadcast_in_dim"(%1737) {broadcast_dimensions = dense<2> : tensor<1xi64>} : (tensor<128xf32>) -> tensor<1x384x128xf32>
%4875 = mhlo.add %4873, %4874 : tensor<1x384x128xf32>
%4876 = "mhlo.reshape"(%4875) : (tensor<1x384x128xf32>) -> tensor<384x128xf32>
%4877 = "mhlo.dot"(%4876, %1732) : (tensor<384x128xf32>, tensor<128x128xf32>) -> tensor<384x128xf32>
%4878 = "mhlo.broadcast_in_dim"(%1731) {broadcast_dimensions = dense<1> : tensor<1xi64>} : (tensor<128xf32>) -> tensor<384x128xf32>
%4879 = mhlo.add %4877, %4878 : tensor<384x128xf32>
%4880 = "mhlo.reshape"(%4879) : (tensor<384x128xf32>) -> tensor<1x384x4x32xf32>
%4881 = "mhlo.transpose"(%4880) {permutation = dense<[0, 2, 1, 3]> : tensor<4xi64>} : (tensor<1x384x4x32xf32>) -> tensor<1x4x384x32xf32>
%4882 = "mhlo.dot"(%4876, %1734) : (tensor<384x128xf32>, tensor<128x128xf32>) -> tensor<384x128xf32>
%4883 = "mhlo.broadcast_in_dim"(%1733) {broadcast_dimensions = dense<1> : tensor<1xi64>} : (tensor<128xf32>) -> tensor<384x128xf32>
%4884 = mhlo.add %4882, %4883 : tensor<384x128xf32>
%4885 = "mhlo.reshape"(%4884) : (tensor<384x128xf32>) -> tensor<1x384x4x32xf32>
%4886 = "mhlo.transpose"(%4885) {permutation = dense<[0, 2, 1, 3]> : tensor<4xi64>} : (tensor<1x384x4x32xf32>) -> tensor<1x4x384x32xf32>
%4887 = "mhlo.dot_general"(%4886, %4881) {dot_dimension_numbers = #mhlo.dot<lhs_batching_dimensions = [0, 1], lhs_contracting_dimensions = [3], rhs_batching_dimensions = [0, 1], rhs_contracting_dimensions = [3]>} : (tensor<1x4x384x32xf32>, tensor<1x4x384x32xf32>) -> tensor<1x4x384x384xf32>
%4888 = mhlo.multiply %4887, %1114 : tensor<1x4x384x384xf32>
%4889 = "mhlo.broadcast_in_dim"(%2254) {broadcast_dimensions = dense<[0, 1, 2, 3]> : tensor<4xi64>} : (tensor<1x1x384x384xf32>) -> tensor<1x4x384x384xf32>
%4890 = mhlo.add %4888, %4889 : tensor<1x4x384x384xf32>
%4891 = "mhlo.reduce"(%4890, %1117) ( {
^bb0(%arg3: tensor<f32>, %arg4: tensor<f32>): // no predecessors
%5393 = mhlo.maximum %arg3, %arg4 : tensor<f32>
"mhlo.return"(%5393) : (tensor<f32>) -> ()
}) {dimensions = dense<3> : tensor<1xi64>} : (tensor<1x4x384x384xf32>, tensor<f32>) -> tensor<1x4x384xf32>
%4892 = "mhlo.broadcast_in_dim"(%4891) {broadcast_dimensions = dense<[0, 1, 2]> : tensor<3xi64>} : (tensor<1x4x384xf32>) -> tensor<1x4x384x384xf32>
%4893 = mhlo.subtract %4890, %4892 : tensor<1x4x384x384xf32>
%4894 = "mhlo.exponential"(%4893) : (tensor<1x4x384x384xf32>) -> tensor<1x4x384x384xf32>
%4895 = "mhlo.reduce"(%4894, %1118) ( {
^bb0(%arg3: tensor<f32>, %arg4: tensor<f32>): // no predecessors
%5393 = mhlo.add %arg3, %arg4 : tensor<f32>
"mhlo.return"(%5393) : (tensor<f32>) -> ()
}) {dimensions = dense<3> : tensor<1xi64>} : (tensor<1x4x384x384xf32>, tensor<f32>) -> tensor<1x4x384xf32>
%4896 = "mhlo.broadcast_in_dim"(%4895) {broadcast_dimensions = dense<[0, 1, 2]> : tensor<3xi64>} : (tensor<1x4x384xf32>) -> tensor<1x4x384x384xf32>
%4897 = mhlo.divide %4894, %4896 : tensor<1x4x384x384xf32>
%4898 = "mhlo.dot_general"(%4897, %4867) {dot_dimension_numbers = #mhlo.dot<lhs_batching_dimensions = [0, 1], lhs_contracting_dimensions = [3], rhs_batching_dimensions = [0, 1], rhs_contracting_dimensions = [2]>} : (tensor<1x4x384x384xf32>, tensor<1x4x384x32xf32>) -> tensor<1x4x384x32xf32>
%4899 = "mhlo.transpose"(%4898) {permutation = dense<[0, 2, 1, 3]> : tensor<4xi64>} : (tensor<1x4x384x32xf32>) -> tensor<1x384x4x32xf32>
%4900 = "mhlo.reshape"(%4899) : (tensor<1x384x4x32xf32>) -> tensor<384x128xf32>
%4901 = "mhlo.dot"(%4900, %1730) : (tensor<384x128xf32>, tensor<128x128xf32>) -> tensor<384x128xf32>
%4902 = "mhlo.broadcast_in_dim"(%1729) {broadcast_dimensions = dense<1> : tensor<1xi64>} : (tensor<128xf32>) -> tensor<384x128xf32>
%4903 = mhlo.add %4901, %4902 : tensor<384x128xf32>
%4904 = "mhlo.reshape"(%4903) : (tensor<384x128xf32>) -> tensor<1x384x128xf32>
%4905 = "mhlo.dot"(%4862, %1744) : (tensor<384x512xf32>, tensor<512x128xf32>) -> tensor<384x128xf32>
%4906 = "mhlo.broadcast_in_dim"(%1743) {broadcast_dimensions = dense<1> : tensor<1xi64>} : (tensor<128xf32>) -> tensor<384x128xf32>
%4907 = mhlo.add %4905, %4906 : tensor<384x128xf32>
%4908 = "mhlo.reshape"(%4907) : (tensor<384x128xf32>) -> tensor<1x384x128xf32>
%4909 = "mhlo.broadcast_in_dim"(%1742) {broadcast_dimensions = dense<2> : tensor<1xi64>} : (tensor<128xf32>) -> tensor<1x384x128xf32>
%4910 = mhlo.multiply %4908, %4909 : tensor<1x384x128xf32>
%4911 = "mhlo.broadcast_in_dim"(%1741) {broadcast_dimensions = dense<2> : tensor<1xi64>} : (tensor<128xf32>) -> tensor<1x384x128xf32>
%4912 = mhlo.add %4910, %4911 : tensor<1x384x128xf32>
%4913 = mhlo.add %4904, %4912 : tensor<1x384x128xf32>
%4914 = "mhlo.broadcast_in_dim"(%1728) {broadcast_dimensions = dense<2> : tensor<1xi64>} : (tensor<128xf32>) -> tensor<1x384x128xf32>
%4915 = mhlo.multiply %4913, %4914 : tensor<1x384x128xf32>
%4916 = "mhlo.broadcast_in_dim"(%1727) {broadcast_dimensions = dense<2> : tensor<1xi64>} : (tensor<128xf32>) -> tensor<1x384x128xf32>
%4917 = mhlo.add %4915, %4916 : tensor<1x384x128xf32>
%4918 = "mhlo.reshape"(%4917) : (tensor<1x384x128xf32>) -> tensor<384x128xf32>
%4919 = "mhlo.dot"(%4918, %1746) : (tensor<384x128xf32>, tensor<128x512xf32>) -> tensor<384x512xf32>
%4920 = "mhlo.broadcast_in_dim"(%1745) {broadcast_dimensions = dense<1> : tensor<1xi64>} : (tensor<512xf32>) -> tensor<384x512xf32>
%4921 = mhlo.add %4919, %4920 : tensor<384x512xf32>
%4922 = "mhlo.reshape"(%4921) : (tensor<384x512xf32>) -> tensor<1x384x512xf32>
%4923 = mhlo.maximum %4922, %1119 : tensor<1x384x512xf32>
%4924 = "mhlo.reshape"(%4923) : (tensor<1x384x512xf32>) -> tensor<384x512xf32>
%4925 = "mhlo.dot"(%4924, %1750) : (tensor<384x512xf32>, tensor<512x128xf32>) -> tensor<384x128xf32>
%4926 = "mhlo.broadcast_in_dim"(%1749) {broadcast_dimensions = dense<1> : tensor<1xi64>} : (tensor<128xf32>) -> tensor<384x128xf32>
%4927 = mhlo.add %4925, %4926 : tensor<384x128xf32>
%4928 = "mhlo.reshape"(%4927) : (tensor<384x128xf32>) -> tensor<1x384x128xf32>
%4929 = mhlo.add %4928, %4917 : tensor<1x384x128xf32>
%4930 = "mhlo.broadcast_in_dim"(%1748) {broadcast_dimensions = dense<2> : tensor<1xi64>} : (tensor<128xf32>) -> tensor<1x384x128xf32>
%4931 = mhlo.multiply %4929, %4930 : tensor<1x384x128xf32>
%4932 = "mhlo.broadcast_in_dim"(%1747) {broadcast_dimensions = dense<2> : tensor<1xi64>} : (tensor<128xf32>) -> tensor<1x384x128xf32>
%4933 = mhlo.add %4931, %4932 : tensor<1x384x128xf32>
%4934 = "mhlo.reshape"(%4933) : (tensor<1x384x128xf32>) -> tensor<384x128xf32>
%4935 = "mhlo.dot"(%4934, %1752) : (tensor<384x128xf32>, tensor<128x512xf32>) -> tensor<384x512xf32>
%4936 = "mhlo.broadcast_in_dim"(%1751) {broadcast_dimensions = dense<1> : tensor<1xi64>} : (tensor<512xf32>) -> tensor<384x512xf32>
%4937 = mhlo.add %4935, %4936 : tensor<384x512xf32>
%4938 = "mhlo.reshape"(%4937) : (tensor<384x512xf32>) -> tensor<1x384x512xf32>
%4939 = mhlo.maximum %4938, %1119 : tensor<1x384x512xf32>
%4940 = "mhlo.reshape"(%4939) : (tensor<1x384x512xf32>) -> tensor<384x512xf32>
%4941 = "mhlo.dot"(%4940, %1756) : (tensor<384x512xf32>, tensor<512x128xf32>) -> tensor<384x128xf32>
%4942 = "mhlo.broadcast_in_dim"(%1755) {broadcast_dimensions = dense<1> : tensor<1xi64>} : (tensor<128xf32>) -> tensor<384x128xf32>
%4943 = mhlo.add %4941, %4942 : tensor<384x128xf32>
%4944 = "mhlo.reshape"(%4943) : (tensor<384x128xf32>) -> tensor<1x384x128xf32>
%4945 = mhlo.add %4944, %4933 : tensor<1x384x128xf32>
%4946 = "mhlo.broadcast_in_dim"(%1754) {broadcast_dimensions = dense<2> : tensor<1xi64>} : (tensor<128xf32>) -> tensor<1x384x128xf32>
%4947 = mhlo.multiply %4945, %4946 : tensor<1x384x128xf32>
%4948 = "mhlo.broadcast_in_dim"(%1753) {broadcast_dimensions = dense<2> : tensor<1xi64>} : (tensor<128xf32>) -> tensor<1x384x128xf32>
%4949 = mhlo.add %4947, %4948 : tensor<1x384x128xf32>
%4950 = "mhlo.reshape"(%4949) : (tensor<1x384x128xf32>) -> tensor<384x128xf32>
%4951 = "mhlo.dot"(%4950, %1758) : (tensor<384x128xf32>, tensor<128x512xf32>) -> tensor<384x512xf32>
%4952 = "mhlo.broadcast_in_dim"(%1757) {broadcast_dimensions = dense<1> : tensor<1xi64>} : (tensor<512xf32>) -> tensor<384x512xf32>
%4953 = mhlo.add %4951, %4952 : tensor<384x512xf32>
%4954 = "mhlo.reshape"(%4953) : (tensor<384x512xf32>) -> tensor<1x384x512xf32>
%4955 = mhlo.maximum %4954, %1119 : tensor<1x384x512xf32>
%4956 = "mhlo.reshape"(%4955) : (tensor<1x384x512xf32>) -> tensor<384x512xf32>
%4957 = "mhlo.dot"(%4956, %1762) : (tensor<384x512xf32>, tensor<512x128xf32>) -> tensor<384x128xf32>
%4958 = "mhlo.broadcast_in_dim"(%1761) {broadcast_dimensions = dense<1> : tensor<1xi64>} : (tensor<128xf32>) -> tensor<384x128xf32>
%4959 = mhlo.add %4957, %4958 : tensor<384x128xf32>
%4960 = "mhlo.reshape"(%4959) : (tensor<384x128xf32>) -> tensor<1x384x128xf32>
%4961 = mhlo.add %4960, %4949 : tensor<1x384x128xf32>
%4962 = "mhlo.broadcast_in_dim"(%1760) {broadcast_dimensions = dense<2> : tensor<1xi64>} : (tensor<128xf32>) -> tensor<1x384x128xf32>
%4963 = mhlo.multiply %4961, %4962 : tensor<1x384x128xf32>
%4964 = "mhlo.broadcast_in_dim"(%1759) {broadcast_dimensions = dense<2> : tensor<1xi64>} : (tensor<128xf32>) -> tensor<1x384x128xf32>
%4965 = mhlo.add %4963, %4964 : tensor<1x384x128xf32>
%4966 = "mhlo.reshape"(%4965) : (tensor<1x384x128xf32>) -> tensor<384x128xf32>
%4967 = "mhlo.dot"(%4966, %1764) : (tensor<384x128xf32>, tensor<128x512xf32>) -> tensor<384x512xf32>
%4968 = "mhlo.broadcast_in_dim"(%1763) {broadcast_dimensions = dense<1> : tensor<1xi64>} : (tensor<512xf32>) -> tensor<384x512xf32>
%4969 = mhlo.add %4967, %4968 : tensor<384x512xf32>
%4970 = "mhlo.reshape"(%4969) : (tensor<384x512xf32>) -> tensor<1x384x512xf32>
%4971 = mhlo.maximum %4970, %1119 : tensor<1x384x512xf32>
%4972 = "mhlo.reshape"(%4971) : (tensor<1x384x512xf32>) -> tensor<384x512xf32>
%4973 = "mhlo.dot"(%4972, %1772) : (tensor<384x512xf32>, tensor<512x128xf32>) -> tensor<384x128xf32>
%4974 = "mhlo.broadcast_in_dim"(%1771) {broadcast_dimensions = dense<1> : tensor<1xi64>} : (tensor<128xf32>) -> tensor<384x128xf32>
%4975 = mhlo.add %4973, %4974 : tensor<384x128xf32>
%4976 = "mhlo.reshape"(%4975) : (tensor<384x128xf32>) -> tensor<1x384x128xf32>
%4977 = mhlo.add %4976, %4965 : tensor<1x384x128xf32>
%4978 = "mhlo.broadcast_in_dim"(%1766) {broadcast_dimensions = dense<2> : tensor<1xi64>} : (tensor<128xf32>) -> tensor<1x384x128xf32>
%4979 = mhlo.multiply %4977, %4978 : tensor<1x384x128xf32>
%4980 = "mhlo.broadcast_in_dim"(%1765) {broadcast_dimensions = dense<2> : tensor<1xi64>} : (tensor<128xf32>) -> tensor<1x384x128xf32>
%4981 = mhlo.add %4979, %4980 : tensor<1x384x128xf32>
%4982 = "mhlo.reshape"(%4981) : (tensor<1x384x128xf32>) -> tensor<384x128xf32>
%4983 = "mhlo.dot"(%4982, %1770) : (tensor<384x128xf32>, tensor<128x512xf32>) -> tensor<384x512xf32>
%4984 = "mhlo.broadcast_in_dim"(%1769) {broadcast_dimensions = dense<1> : tensor<1xi64>} : (tensor<512xf32>) -> tensor<384x512xf32>
%4985 = mhlo.add %4983, %4984 : tensor<384x512xf32>
%4986 = "mhlo.reshape"(%4985) : (tensor<384x512xf32>) -> tensor<1x384x512xf32>
%4987 = mhlo.add %4986, %4861 : tensor<1x384x512xf32>
%4988 = "mhlo.broadcast_in_dim"(%1768) {broadcast_dimensions = dense<2> : tensor<1xi64>} : (tensor<512xf32>) -> tensor<1x384x512xf32>
%4989 = mhlo.multiply %4987, %4988 : tensor<1x384x512xf32>
%4990 = "mhlo.broadcast_in_dim"(%1767) {broadcast_dimensions = dense<2> : tensor<1xi64>} : (tensor<512xf32>) -> tensor<1x384x512xf32>
%4991 = mhlo.add %4989, %4990 : tensor<1x384x512xf32>
%4992 = "mhlo.reshape"(%4991) : (tensor<1x384x512xf32>) -> tensor<384x512xf32>
%4993 = "mhlo.dot"(%4992, %1782) : (tensor<384x512xf32>, tensor<512x128xf32>) -> tensor<384x128xf32>
%4994 = "mhlo.broadcast_in_dim"(%1781) {broadcast_dimensions = dense<1> : tensor<1xi64>} : (tensor<128xf32>) -> tensor<384x128xf32>
%4995 = mhlo.add %4993, %4994 : tensor<384x128xf32>
%4996 = "mhlo.reshape"(%4995) : (tensor<384x128xf32>) -> tensor<1x384x4x32xf32>
%4997 = "mhlo.transpose"(%4996) {permutation = dense<[0, 2, 1, 3]> : tensor<4xi64>} : (tensor<1x384x4x32xf32>) -> tensor<1x4x384x32xf32>
%4998 = "mhlo.dot"(%4992, %1786) : (tensor<384x512xf32>, tensor<512x128xf32>) -> tensor<384x128xf32>
%4999 = "mhlo.reshape"(%4998) : (tensor<384x128xf32>) -> tensor<1x384x128xf32>
%5000 = "mhlo.broadcast_in_dim"(%1785) {broadcast_dimensions = dense<2> : tensor<1xi64>} : (tensor<128xf32>) -> tensor<1x384x128xf32>
%5001 = mhlo.add %4999, %5000 : tensor<1x384x128xf32>
%5002 = "mhlo.broadcast_in_dim"(%1784) {broadcast_dimensions = dense<2> : tensor<1xi64>} : (tensor<128xf32>) -> tensor<1x384x128xf32>
%5003 = mhlo.multiply %5001, %5002 : tensor<1x384x128xf32>
%5004 = "mhlo.broadcast_in_dim"(%1783) {broadcast_dimensions = dense<2> : tensor<1xi64>} : (tensor<128xf32>) -> tensor<1x384x128xf32>
%5005 = mhlo.add %5003, %5004 : tensor<1x384x128xf32>
%5006 = "mhlo.reshape"(%5005) : (tensor<1x384x128xf32>) -> tensor<384x128xf32>
%5007 = "mhlo.dot"(%5006, %1778) : (tensor<384x128xf32>, tensor<128x128xf32>) -> tensor<384x128xf32>
%5008 = "mhlo.broadcast_in_dim"(%1777) {broadcast_dimensions = dense<1> : tensor<1xi64>} : (tensor<128xf32>) -> tensor<384x128xf32>
%5009 = mhlo.add %5007, %5008 : tensor<384x128xf32>
%5010 = "mhlo.reshape"(%5009) : (tensor<384x128xf32>) -> tensor<1x384x4x32xf32>
%5011 = "mhlo.transpose"(%5010) {permutation = dense<[0, 2, 1, 3]> : tensor<4xi64>} : (tensor<1x384x4x32xf32>) -> tensor<1x4x384x32xf32>
%5012 = "mhlo.dot"(%5006, %1780) : (tensor<384x128xf32>, tensor<128x128xf32>) -> tensor<384x128xf32>
%5013 = "mhlo.broadcast_in_dim"(%1779) {broadcast_dimensions = dense<1> : tensor<1xi64>} : (tensor<128xf32>) -> tensor<384x128xf32>
%5014 = mhlo.add %5012, %5013 : tensor<384x128xf32>
%5015 = "mhlo.reshape"(%5014) : (tensor<384x128xf32>) -> tensor<1x384x4x32xf32>
%5016 = "mhlo.transpose"(%5015) {permutation = dense<[0, 2, 1, 3]> : tensor<4xi64>} : (tensor<1x384x4x32xf32>) -> tensor<1x4x384x32xf32>
%5017 = "mhlo.dot_general"(%5016, %5011) {dot_dimension_numbers = #mhlo.dot<lhs_batching_dimensions = [0, 1], lhs_contracting_dimensions = [3], rhs_batching_dimensions = [0, 1], rhs_contracting_dimensions = [3]>} : (tensor<1x4x384x32xf32>, tensor<1x4x384x32xf32>) -> tensor<1x4x384x384xf32>
%5018 = mhlo.multiply %5017, %1114 : tensor<1x4x384x384xf32>
%5019 = "mhlo.broadcast_in_dim"(%2254) {broadcast_dimensions = dense<[0, 1, 2, 3]> : tensor<4xi64>} : (tensor<1x1x384x384xf32>) -> tensor<1x4x384x384xf32>
%5020 = mhlo.add %5018, %5019 : tensor<1x4x384x384xf32>
%5021 = "mhlo.reduce"(%5020, %1117) ( {
^bb0(%arg3: tensor<f32>, %arg4: tensor<f32>): // no predecessors
%5393 = mhlo.maximum %arg3, %arg4 : tensor<f32>
"mhlo.return"(%5393) : (tensor<f32>) -> ()
}) {dimensions = dense<3> : tensor<1xi64>} : (tensor<1x4x384x384xf32>, tensor<f32>) -> tensor<1x4x384xf32>
%5022 = "mhlo.broadcast_in_dim"(%5021) {broadcast_dimensions = dense<[0, 1, 2]> : tensor<3xi64>} : (tensor<1x4x384xf32>) -> tensor<1x4x384x384xf32>
%5023 = mhlo.subtract %5020, %5022 : tensor<1x4x384x384xf32>
%5024 = "mhlo.exponential"(%5023) : (tensor<1x4x384x384xf32>) -> tensor<1x4x384x384xf32>
%5025 = "mhlo.reduce"(%5024, %1118) ( {
^bb0(%arg3: tensor<f32>, %arg4: tensor<f32>): // no predecessors
%5393 = mhlo.add %arg3, %arg4 : tensor<f32>
"mhlo.return"(%5393) : (tensor<f32>) -> ()
}) {dimensions = dense<3> : tensor<1xi64>} : (tensor<1x4x384x384xf32>, tensor<f32>) -> tensor<1x4x384xf32>
%5026 = "mhlo.broadcast_in_dim"(%5025) {broadcast_dimensions = dense<[0, 1, 2]> : tensor<3xi64>} : (tensor<1x4x384xf32>) -> tensor<1x4x384x384xf32>
%5027 = mhlo.divide %5024, %5026 : tensor<1x4x384x384xf32>
%5028 = "mhlo.dot_general"(%5027, %4997) {dot_dimension_numbers = #mhlo.dot<lhs_batching_dimensions = [0, 1], lhs_contracting_dimensions = [3], rhs_batching_dimensions = [0, 1], rhs_contracting_dimensions = [2]>} : (tensor<1x4x384x384xf32>, tensor<1x4x384x32xf32>) -> tensor<1x4x384x32xf32>
%5029 = "mhlo.transpose"(%5028) {permutation = dense<[0, 2, 1, 3]> : tensor<4xi64>} : (tensor<1x4x384x32xf32>) -> tensor<1x384x4x32xf32>
%5030 = "mhlo.reshape"(%5029) : (tensor<1x384x4x32xf32>) -> tensor<384x128xf32>
%5031 = "mhlo.dot"(%5030, %1776) : (tensor<384x128xf32>, tensor<128x128xf32>) -> tensor<384x128xf32>
%5032 = "mhlo.broadcast_in_dim"(%1775) {broadcast_dimensions = dense<1> : tensor<1xi64>} : (tensor<128xf32>) -> tensor<384x128xf32>
%5033 = mhlo.add %5031, %5032 : tensor<384x128xf32>
%5034 = "mhlo.reshape"(%5033) : (tensor<384x128xf32>) -> tensor<1x384x128xf32>
%5035 = "mhlo.dot"(%4992, %1790) : (tensor<384x512xf32>, tensor<512x128xf32>) -> tensor<384x128xf32>
%5036 = "mhlo.broadcast_in_dim"(%1789) {broadcast_dimensions = dense<1> : tensor<1xi64>} : (tensor<128xf32>) -> tensor<384x128xf32>
%5037 = mhlo.add %5035, %5036 : tensor<384x128xf32>
%5038 = "mhlo.reshape"(%5037) : (tensor<384x128xf32>) -> tensor<1x384x128xf32>
%5039 = "mhlo.broadcast_in_dim"(%1788) {broadcast_dimensions = dense<2> : tensor<1xi64>} : (tensor<128xf32>) -> tensor<1x384x128xf32>
%5040 = mhlo.multiply %5038, %5039 : tensor<1x384x128xf32>
%5041 = "mhlo.broadcast_in_dim"(%1787) {broadcast_dimensions = dense<2> : tensor<1xi64>} : (tensor<128xf32>) -> tensor<1x384x128xf32>
%5042 = mhlo.add %5040, %5041 : tensor<1x384x128xf32>
%5043 = mhlo.add %5034, %5042 : tensor<1x384x128xf32>
%5044 = "mhlo.broadcast_in_dim"(%1774) {broadcast_dimensions = dense<2> : tensor<1xi64>} : (tensor<128xf32>) -> tensor<1x384x128xf32>
%5045 = mhlo.multiply %5043, %5044 : tensor<1x384x128xf32>
%5046 = "mhlo.broadcast_in_dim"(%1773) {broadcast_dimensions = dense<2> : tensor<1xi64>} : (tensor<128xf32>) -> tensor<1x384x128xf32>
%5047 = mhlo.add %5045, %5046 : tensor<1x384x128xf32>
%5048 = "mhlo.reshape"(%5047) : (tensor<1x384x128xf32>) -> tensor<384x128xf32>
%5049 = "mhlo.dot"(%5048, %1792) : (tensor<384x128xf32>, tensor<128x512xf32>) -> tensor<384x512xf32>
%5050 = "mhlo.broadcast_in_dim"(%1791) {broadcast_dimensions = dense<1> : tensor<1xi64>} : (tensor<512xf32>) -> tensor<384x512xf32>
%5051 = mhlo.add %5049, %5050 : tensor<384x512xf32>
%5052 = "mhlo.reshape"(%5051) : (tensor<384x512xf32>) -> tensor<1x384x512xf32>
%5053 = mhlo.maximum %5052, %1119 : tensor<1x384x512xf32>
%5054 = "mhlo.reshape"(%5053) : (tensor<1x384x512xf32>) -> tensor<384x512xf32>
%5055 = "mhlo.dot"(%5054, %1796) : (tensor<384x512xf32>, tensor<512x128xf32>) -> tensor<384x128xf32>
%5056 = "mhlo.broadcast_in_dim"(%1795) {broadcast_dimensions = dense<1> : tensor<1xi64>} : (tensor<128xf32>) -> tensor<384x128xf32>
%5057 = mhlo.add %5055, %5056 : tensor<384x128xf32>
%5058 = "mhlo.reshape"(%5057) : (tensor<384x128xf32>) -> tensor<1x384x128xf32>
%5059 = mhlo.add %5058, %5047 : tensor<1x384x128xf32>
%5060 = "mhlo.broadcast_in_dim"(%1794) {broadcast_dimensions = dense<2> : tensor<1xi64>} : (tensor<128xf32>) -> tensor<1x384x128xf32>
%5061 = mhlo.multiply %5059, %5060 : tensor<1x384x128xf32>
%5062 = "mhlo.broadcast_in_dim"(%1793) {broadcast_dimensions = dense<2> : tensor<1xi64>} : (tensor<128xf32>) -> tensor<1x384x128xf32>
%5063 = mhlo.add %5061, %5062 : tensor<1x384x128xf32>
%5064 = "mhlo.reshape"(%5063) : (tensor<1x384x128xf32>) -> tensor<384x128xf32>
%5065 = "mhlo.dot"(%5064, %1798) : (tensor<384x128xf32>, tensor<128x512xf32>) -> tensor<384x512xf32>
%5066 = "mhlo.broadcast_in_dim"(%1797) {broadcast_dimensions = dense<1> : tensor<1xi64>} : (tensor<512xf32>) -> tensor<384x512xf32>
%5067 = mhlo.add %5065, %5066 : tensor<384x512xf32>
%5068 = "mhlo.reshape"(%5067) : (tensor<384x512xf32>) -> tensor<1x384x512xf32>
%5069 = mhlo.maximum %5068, %1119 : tensor<1x384x512xf32>
%5070 = "mhlo.reshape"(%5069) : (tensor<1x384x512xf32>) -> tensor<384x512xf32>
%5071 = "mhlo.dot"(%5070, %1802) : (tensor<384x512xf32>, tensor<512x128xf32>) -> tensor<384x128xf32>
%5072 = "mhlo.broadcast_in_dim"(%1801) {broadcast_dimensions = dense<1> : tensor<1xi64>} : (tensor<128xf32>) -> tensor<384x128xf32>
%5073 = mhlo.add %5071, %5072 : tensor<384x128xf32>
%5074 = "mhlo.reshape"(%5073) : (tensor<384x128xf32>) -> tensor<1x384x128xf32>
%5075 = mhlo.add %5074, %5063 : tensor<1x384x128xf32>
%5076 = "mhlo.broadcast_in_dim"(%1800) {broadcast_dimensions = dense<2> : tensor<1xi64>} : (tensor<128xf32>) -> tensor<1x384x128xf32>
%5077 = mhlo.multiply %5075, %5076 : tensor<1x384x128xf32>
%5078 = "mhlo.broadcast_in_dim"(%1799) {broadcast_dimensions = dense<2> : tensor<1xi64>} : (tensor<128xf32>) -> tensor<1x384x128xf32>
%5079 = mhlo.add %5077, %5078 : tensor<1x384x128xf32>
%5080 = "mhlo.reshape"(%5079) : (tensor<1x384x128xf32>) -> tensor<384x128xf32>
%5081 = "mhlo.dot"(%5080, %1804) : (tensor<384x128xf32>, tensor<128x512xf32>) -> tensor<384x512xf32>
%5082 = "mhlo.broadcast_in_dim"(%1803) {broadcast_dimensions = dense<1> : tensor<1xi64>} : (tensor<512xf32>) -> tensor<384x512xf32>
%5083 = mhlo.add %5081, %5082 : tensor<384x512xf32>
%5084 = "mhlo.reshape"(%5083) : (tensor<384x512xf32>) -> tensor<1x384x512xf32>
%5085 = mhlo.maximum %5084, %1119 : tensor<1x384x512xf32>
%5086 = "mhlo.reshape"(%5085) : (tensor<1x384x512xf32>) -> tensor<384x512xf32>
%5087 = "mhlo.dot"(%5086, %1808) : (tensor<384x512xf32>, tensor<512x128xf32>) -> tensor<384x128xf32>
%5088 = "mhlo.broadcast_in_dim"(%1807) {broadcast_dimensions = dense<1> : tensor<1xi64>} : (tensor<128xf32>) -> tensor<384x128xf32>
%5089 = mhlo.add %5087, %5088 : tensor<384x128xf32>
%5090 = "mhlo.reshape"(%5089) : (tensor<384x128xf32>) -> tensor<1x384x128xf32>
%5091 = mhlo.add %5090, %5079 : tensor<1x384x128xf32>
%5092 = "mhlo.broadcast_in_dim"(%1806) {broadcast_dimensions = dense<2> : tensor<1xi64>} : (tensor<128xf32>) -> tensor<1x384x128xf32>
%5093 = mhlo.multiply %5091, %5092 : tensor<1x384x128xf32>
%5094 = "mhlo.broadcast_in_dim"(%1805) {broadcast_dimensions = dense<2> : tensor<1xi64>} : (tensor<128xf32>) -> tensor<1x384x128xf32>
%5095 = mhlo.add %5093, %5094 : tensor<1x384x128xf32>
%5096 = "mhlo.reshape"(%5095) : (tensor<1x384x128xf32>) -> tensor<384x128xf32>
%5097 = "mhlo.dot"(%5096, %1810) : (tensor<384x128xf32>, tensor<128x512xf32>) -> tensor<384x512xf32>
%5098 = "mhlo.broadcast_in_dim"(%1809) {broadcast_dimensions = dense<1> : tensor<1xi64>} : (tensor<512xf32>) -> tensor<384x512xf32>
%5099 = mhlo.add %5097, %5098 : tensor<384x512xf32>
%5100 = "mhlo.reshape"(%5099) : (tensor<384x512xf32>) -> tensor<1x384x512xf32>
%5101 = mhlo.maximum %5100, %1119 : tensor<1x384x512xf32>
%5102 = "mhlo.reshape"(%5101) : (tensor<1x384x512xf32>) -> tensor<384x512xf32>
%5103 = "mhlo.dot"(%5102, %1818) : (tensor<384x512xf32>, tensor<512x128xf32>) -> tensor<384x128xf32>
%5104 = "mhlo.broadcast_in_dim"(%1817) {broadcast_dimensions = dense<1> : tensor<1xi64>} : (tensor<128xf32>) -> tensor<384x128xf32>
%5105 = mhlo.add %5103, %5104 : tensor<384x128xf32>
%5106 = "mhlo.reshape"(%5105) : (tensor<384x128xf32>) -> tensor<1x384x128xf32>
%5107 = mhlo.add %5106, %5095 : tensor<1x384x128xf32>
%5108 = "mhlo.broadcast_in_dim"(%1812) {broadcast_dimensions = dense<2> : tensor<1xi64>} : (tensor<128xf32>) -> tensor<1x384x128xf32>
%5109 = mhlo.multiply %5107, %5108 : tensor<1x384x128xf32>
%5110 = "mhlo.broadcast_in_dim"(%1811) {broadcast_dimensions = dense<2> : tensor<1xi64>} : (tensor<128xf32>) -> tensor<1x384x128xf32>
%5111 = mhlo.add %5109, %5110 : tensor<1x384x128xf32>
%5112 = "mhlo.reshape"(%5111) : (tensor<1x384x128xf32>) -> tensor<384x128xf32>
%5113 = "mhlo.dot"(%5112, %1816) : (tensor<384x128xf32>, tensor<128x512xf32>) -> tensor<384x512xf32>
%5114 = "mhlo.broadcast_in_dim"(%1815) {broadcast_dimensions = dense<1> : tensor<1xi64>} : (tensor<512xf32>) -> tensor<384x512xf32>
%5115 = mhlo.add %5113, %5114 : tensor<384x512xf32>
%5116 = "mhlo.reshape"(%5115) : (tensor<384x512xf32>) -> tensor<1x384x512xf32>
%5117 = mhlo.add %5116, %4991 : tensor<1x384x512xf32>
%5118 = "mhlo.broadcast_in_dim"(%1814) {broadcast_dimensions = dense<2> : tensor<1xi64>} : (tensor<512xf32>) -> tensor<1x384x512xf32>
%5119 = mhlo.multiply %5117, %5118 : tensor<1x384x512xf32>
%5120 = "mhlo.broadcast_in_dim"(%1813) {broadcast_dimensions = dense<2> : tensor<1xi64>} : (tensor<512xf32>) -> tensor<1x384x512xf32>
%5121 = mhlo.add %5119, %5120 : tensor<1x384x512xf32>
%5122 = "mhlo.reshape"(%5121) : (tensor<1x384x512xf32>) -> tensor<384x512xf32>
%5123 = "mhlo.dot"(%5122, %1828) : (tensor<384x512xf32>, tensor<512x128xf32>) -> tensor<384x128xf32>
%5124 = "mhlo.broadcast_in_dim"(%1827) {broadcast_dimensions = dense<1> : tensor<1xi64>} : (tensor<128xf32>) -> tensor<384x128xf32>
%5125 = mhlo.add %5123, %5124 : tensor<384x128xf32>
%5126 = "mhlo.reshape"(%5125) : (tensor<384x128xf32>) -> tensor<1x384x4x32xf32>
%5127 = "mhlo.transpose"(%5126) {permutation = dense<[0, 2, 1, 3]> : tensor<4xi64>} : (tensor<1x384x4x32xf32>) -> tensor<1x4x384x32xf32>
%5128 = "mhlo.dot"(%5122, %1832) : (tensor<384x512xf32>, tensor<512x128xf32>) -> tensor<384x128xf32>
%5129 = "mhlo.reshape"(%5128) : (tensor<384x128xf32>) -> tensor<1x384x128xf32>
%5130 = "mhlo.broadcast_in_dim"(%1831) {broadcast_dimensions = dense<2> : tensor<1xi64>} : (tensor<128xf32>) -> tensor<1x384x128xf32>
%5131 = mhlo.add %5129, %5130 : tensor<1x384x128xf32>
%5132 = "mhlo.broadcast_in_dim"(%1830) {broadcast_dimensions = dense<2> : tensor<1xi64>} : (tensor<128xf32>) -> tensor<1x384x128xf32>
%5133 = mhlo.multiply %5131, %5132 : tensor<1x384x128xf32>
%5134 = "mhlo.broadcast_in_dim"(%1829) {broadcast_dimensions = dense<2> : tensor<1xi64>} : (tensor<128xf32>) -> tensor<1x384x128xf32>
%5135 = mhlo.add %5133, %5134 : tensor<1x384x128xf32>
%5136 = "mhlo.reshape"(%5135) : (tensor<1x384x128xf32>) -> tensor<384x128xf32>
%5137 = "mhlo.dot"(%5136, %1824) : (tensor<384x128xf32>, tensor<128x128xf32>) -> tensor<384x128xf32>
%5138 = "mhlo.broadcast_in_dim"(%1823) {broadcast_dimensions = dense<1> : tensor<1xi64>} : (tensor<128xf32>) -> tensor<384x128xf32>
%5139 = mhlo.add %5137, %5138 : tensor<384x128xf32>
%5140 = "mhlo.reshape"(%5139) : (tensor<384x128xf32>) -> tensor<1x384x4x32xf32>
%5141 = "mhlo.transpose"(%5140) {permutation = dense<[0, 2, 1, 3]> : tensor<4xi64>} : (tensor<1x384x4x32xf32>) -> tensor<1x4x384x32xf32>
%5142 = "mhlo.dot"(%5136, %1826) : (tensor<384x128xf32>, tensor<128x128xf32>) -> tensor<384x128xf32>
%5143 = "mhlo.broadcast_in_dim"(%1825) {broadcast_dimensions = dense<1> : tensor<1xi64>} : (tensor<128xf32>) -> tensor<384x128xf32>
%5144 = mhlo.add %5142, %5143 : tensor<384x128xf32>
%5145 = "mhlo.reshape"(%5144) : (tensor<384x128xf32>) -> tensor<1x384x4x32xf32>
%5146 = "mhlo.transpose"(%5145) {permutation = dense<[0, 2, 1, 3]> : tensor<4xi64>} : (tensor<1x384x4x32xf32>) -> tensor<1x4x384x32xf32>
%5147 = "mhlo.dot_general"(%5146, %5141) {dot_dimension_numbers = #mhlo.dot<lhs_batching_dimensions = [0, 1], lhs_contracting_dimensions = [3], rhs_batching_dimensions = [0, 1], rhs_contracting_dimensions = [3]>} : (tensor<1x4x384x32xf32>, tensor<1x4x384x32xf32>) -> tensor<1x4x384x384xf32>
%5148 = mhlo.multiply %5147, %1114 : tensor<1x4x384x384xf32>
%5149 = "mhlo.broadcast_in_dim"(%2254) {broadcast_dimensions = dense<[0, 1, 2, 3]> : tensor<4xi64>} : (tensor<1x1x384x384xf32>) -> tensor<1x4x384x384xf32>
%5150 = mhlo.add %5148, %5149 : tensor<1x4x384x384xf32>
%5151 = "mhlo.reduce"(%5150, %1117) ( {
^bb0(%arg3: tensor<f32>, %arg4: tensor<f32>): // no predecessors
%5393 = mhlo.maximum %arg3, %arg4 : tensor<f32>
"mhlo.return"(%5393) : (tensor<f32>) -> ()
}) {dimensions = dense<3> : tensor<1xi64>} : (tensor<1x4x384x384xf32>, tensor<f32>) -> tensor<1x4x384xf32>
%5152 = "mhlo.broadcast_in_dim"(%5151) {broadcast_dimensions = dense<[0, 1, 2]> : tensor<3xi64>} : (tensor<1x4x384xf32>) -> tensor<1x4x384x384xf32>
%5153 = mhlo.subtract %5150, %5152 : tensor<1x4x384x384xf32>
%5154 = "mhlo.exponential"(%5153) : (tensor<1x4x384x384xf32>) -> tensor<1x4x384x384xf32>
%5155 = "mhlo.reduce"(%5154, %1118) ( {
^bb0(%arg3: tensor<f32>, %arg4: tensor<f32>): // no predecessors
%5393 = mhlo.add %arg3, %arg4 : tensor<f32>
"mhlo.return"(%5393) : (tensor<f32>) -> ()
}) {dimensions = dense<3> : tensor<1xi64>} : (tensor<1x4x384x384xf32>, tensor<f32>) -> tensor<1x4x384xf32>
%5156 = "mhlo.broadcast_in_dim"(%5155) {broadcast_dimensions = dense<[0, 1, 2]> : tensor<3xi64>} : (tensor<1x4x384xf32>) -> tensor<1x4x384x384xf32>
%5157 = mhlo.divide %5154, %5156 : tensor<1x4x384x384xf32>
%5158 = "mhlo.dot_general"(%5157, %5127) {dot_dimension_numbers = #mhlo.dot<lhs_batching_dimensions = [0, 1], lhs_contracting_dimensions = [3], rhs_batching_dimensions = [0, 1], rhs_contracting_dimensions = [2]>} : (tensor<1x4x384x384xf32>, tensor<1x4x384x32xf32>) -> tensor<1x4x384x32xf32>
%5159 = "mhlo.transpose"(%5158) {permutation = dense<[0, 2, 1, 3]> : tensor<4xi64>} : (tensor<1x4x384x32xf32>) -> tensor<1x384x4x32xf32>
%5160 = "mhlo.reshape"(%5159) : (tensor<1x384x4x32xf32>) -> tensor<384x128xf32>
%5161 = "mhlo.dot"(%5160, %1822) : (tensor<384x128xf32>, tensor<128x128xf32>) -> tensor<384x128xf32>
%5162 = "mhlo.broadcast_in_dim"(%1821) {broadcast_dimensions = dense<1> : tensor<1xi64>} : (tensor<128xf32>) -> tensor<384x128xf32>
%5163 = mhlo.add %5161, %5162 : tensor<384x128xf32>
%5164 = "mhlo.reshape"(%5163) : (tensor<384x128xf32>) -> tensor<1x384x128xf32>
%5165 = "mhlo.dot"(%5122, %1836) : (tensor<384x512xf32>, tensor<512x128xf32>) -> tensor<384x128xf32>
%5166 = "mhlo.broadcast_in_dim"(%1835) {broadcast_dimensions = dense<1> : tensor<1xi64>} : (tensor<128xf32>) -> tensor<384x128xf32>
%5167 = mhlo.add %5165, %5166 : tensor<384x128xf32>
%5168 = "mhlo.reshape"(%5167) : (tensor<384x128xf32>) -> tensor<1x384x128xf32>
%5169 = "mhlo.broadcast_in_dim"(%1834) {broadcast_dimensions = dense<2> : tensor<1xi64>} : (tensor<128xf32>) -> tensor<1x384x128xf32>
%5170 = mhlo.multiply %5168, %5169 : tensor<1x384x128xf32>
%5171 = "mhlo.broadcast_in_dim"(%1833) {broadcast_dimensions = dense<2> : tensor<1xi64>} : (tensor<128xf32>) -> tensor<1x384x128xf32>
%5172 = mhlo.add %5170, %5171 : tensor<1x384x128xf32>
%5173 = mhlo.add %5164, %5172 : tensor<1x384x128xf32>
%5174 = "mhlo.broadcast_in_dim"(%1820) {broadcast_dimensions = dense<2> : tensor<1xi64>} : (tensor<128xf32>) -> tensor<1x384x128xf32>
%5175 = mhlo.multiply %5173, %5174 : tensor<1x384x128xf32>
%5176 = "mhlo.broadcast_in_dim"(%1819) {broadcast_dimensions = dense<2> : tensor<1xi64>} : (tensor<128xf32>) -> tensor<1x384x128xf32>
%5177 = mhlo.add %5175, %5176 : tensor<1x384x128xf32>
%5178 = "mhlo.reshape"(%5177) : (tensor<1x384x128xf32>) -> tensor<384x128xf32>
%5179 = "mhlo.dot"(%5178, %1838) : (tensor<384x128xf32>, tensor<128x512xf32>) -> tensor<384x512xf32>
%5180 = "mhlo.broadcast_in_dim"(%1837) {broadcast_dimensions = dense<1> : tensor<1xi64>} : (tensor<512xf32>) -> tensor<384x512xf32>
%5181 = mhlo.add %5179, %5180 : tensor<384x512xf32>
%5182 = "mhlo.reshape"(%5181) : (tensor<384x512xf32>) -> tensor<1x384x512xf32>
%5183 = mhlo.maximum %5182, %1119 : tensor<1x384x512xf32>
%5184 = "mhlo.reshape"(%5183) : (tensor<1x384x512xf32>) -> tensor<384x512xf32>
%5185 = "mhlo.dot"(%5184, %1842) : (tensor<384x512xf32>, tensor<512x128xf32>) -> tensor<384x128xf32>
%5186 = "mhlo.broadcast_in_dim"(%1841) {broadcast_dimensions = dense<1> : tensor<1xi64>} : (tensor<128xf32>) -> tensor<384x128xf32>
%5187 = mhlo.add %5185, %5186 : tensor<384x128xf32>
%5188 = "mhlo.reshape"(%5187) : (tensor<384x128xf32>) -> tensor<1x384x128xf32>
%5189 = mhlo.add %5188, %5177 : tensor<1x384x128xf32>
%5190 = "mhlo.broadcast_in_dim"(%1840) {broadcast_dimensions = dense<2> : tensor<1xi64>} : (tensor<128xf32>) -> tensor<1x384x128xf32>
%5191 = mhlo.multiply %5189, %5190 : tensor<1x384x128xf32>
%5192 = "mhlo.broadcast_in_dim"(%1839) {broadcast_dimensions = dense<2> : tensor<1xi64>} : (tensor<128xf32>) -> tensor<1x384x128xf32>
%5193 = mhlo.add %5191, %5192 : tensor<1x384x128xf32>
%5194 = "mhlo.reshape"(%5193) : (tensor<1x384x128xf32>) -> tensor<384x128xf32>
%5195 = "mhlo.dot"(%5194, %1844) : (tensor<384x128xf32>, tensor<128x512xf32>) -> tensor<384x512xf32>
%5196 = "mhlo.broadcast_in_dim"(%1843) {broadcast_dimensions = dense<1> : tensor<1xi64>} : (tensor<512xf32>) -> tensor<384x512xf32>
%5197 = mhlo.add %5195, %5196 : tensor<384x512xf32>
%5198 = "mhlo.reshape"(%5197) : (tensor<384x512xf32>) -> tensor<1x384x512xf32>
%5199 = mhlo.maximum %5198, %1119 : tensor<1x384x512xf32>
%5200 = "mhlo.reshape"(%5199) : (tensor<1x384x512xf32>) -> tensor<384x512xf32>
%5201 = "mhlo.dot"(%5200, %1848) : (tensor<384x512xf32>, tensor<512x128xf32>) -> tensor<384x128xf32>
%5202 = "mhlo.broadcast_in_dim"(%1847) {broadcast_dimensions = dense<1> : tensor<1xi64>} : (tensor<128xf32>) -> tensor<384x128xf32>
%5203 = mhlo.add %5201, %5202 : tensor<384x128xf32>
%5204 = "mhlo.reshape"(%5203) : (tensor<384x128xf32>) -> tensor<1x384x128xf32>
%5205 = mhlo.add %5204, %5193 : tensor<1x384x128xf32>
%5206 = "mhlo.broadcast_in_dim"(%1846) {broadcast_dimensions = dense<2> : tensor<1xi64>} : (tensor<128xf32>) -> tensor<1x384x128xf32>
%5207 = mhlo.multiply %5205, %5206 : tensor<1x384x128xf32>
%5208 = "mhlo.broadcast_in_dim"(%1845) {broadcast_dimensions = dense<2> : tensor<1xi64>} : (tensor<128xf32>) -> tensor<1x384x128xf32>
%5209 = mhlo.add %5207, %5208 : tensor<1x384x128xf32>
%5210 = "mhlo.reshape"(%5209) : (tensor<1x384x128xf32>) -> tensor<384x128xf32>
%5211 = "mhlo.dot"(%5210, %1850) : (tensor<384x128xf32>, tensor<128x512xf32>) -> tensor<384x512xf32>
%5212 = "mhlo.broadcast_in_dim"(%1849) {broadcast_dimensions = dense<1> : tensor<1xi64>} : (tensor<512xf32>) -> tensor<384x512xf32>
%5213 = mhlo.add %5211, %5212 : tensor<384x512xf32>
%5214 = "mhlo.reshape"(%5213) : (tensor<384x512xf32>) -> tensor<1x384x512xf32>
%5215 = mhlo.maximum %5214, %1119 : tensor<1x384x512xf32>
%5216 = "mhlo.reshape"(%5215) : (tensor<1x384x512xf32>) -> tensor<384x512xf32>
%5217 = "mhlo.dot"(%5216, %1854) : (tensor<384x512xf32>, tensor<512x128xf32>) -> tensor<384x128xf32>
%5218 = "mhlo.broadcast_in_dim"(%1853) {broadcast_dimensions = dense<1> : tensor<1xi64>} : (tensor<128xf32>) -> tensor<384x128xf32>
%5219 = mhlo.add %5217, %5218 : tensor<384x128xf32>
%5220 = "mhlo.reshape"(%5219) : (tensor<384x128xf32>) -> tensor<1x384x128xf32>
%5221 = mhlo.add %5220, %5209 : tensor<1x384x128xf32>
%5222 = "mhlo.broadcast_in_dim"(%1852) {broadcast_dimensions = dense<2> : tensor<1xi64>} : (tensor<128xf32>) -> tensor<1x384x128xf32>
%5223 = mhlo.multiply %5221, %5222 : tensor<1x384x128xf32>
%5224 = "mhlo.broadcast_in_dim"(%1851) {broadcast_dimensions = dense<2> : tensor<1xi64>} : (tensor<128xf32>) -> tensor<1x384x128xf32>
%5225 = mhlo.add %5223, %5224 : tensor<1x384x128xf32>
%5226 = "mhlo.reshape"(%5225) : (tensor<1x384x128xf32>) -> tensor<384x128xf32>
%5227 = "mhlo.dot"(%5226, %1856) : (tensor<384x128xf32>, tensor<128x512xf32>) -> tensor<384x512xf32>
%5228 = "mhlo.broadcast_in_dim"(%1855) {broadcast_dimensions = dense<1> : tensor<1xi64>} : (tensor<512xf32>) -> tensor<384x512xf32>
%5229 = mhlo.add %5227, %5228 : tensor<384x512xf32>
%5230 = "mhlo.reshape"(%5229) : (tensor<384x512xf32>) -> tensor<1x384x512xf32>
%5231 = mhlo.maximum %5230, %1119 : tensor<1x384x512xf32>
%5232 = "mhlo.reshape"(%5231) : (tensor<1x384x512xf32>) -> tensor<384x512xf32>
%5233 = "mhlo.dot"(%5232, %1864) : (tensor<384x512xf32>, tensor<512x128xf32>) -> tensor<384x128xf32>
%5234 = "mhlo.broadcast_in_dim"(%1863) {broadcast_dimensions = dense<1> : tensor<1xi64>} : (tensor<128xf32>) -> tensor<384x128xf32>
%5235 = mhlo.add %5233, %5234 : tensor<384x128xf32>
%5236 = "mhlo.reshape"(%5235) : (tensor<384x128xf32>) -> tensor<1x384x128xf32>
%5237 = mhlo.add %5236, %5225 : tensor<1x384x128xf32>
%5238 = "mhlo.broadcast_in_dim"(%1858) {broadcast_dimensions = dense<2> : tensor<1xi64>} : (tensor<128xf32>) -> tensor<1x384x128xf32>
%5239 = mhlo.multiply %5237, %5238 : tensor<1x384x128xf32>
%5240 = "mhlo.broadcast_in_dim"(%1857) {broadcast_dimensions = dense<2> : tensor<1xi64>} : (tensor<128xf32>) -> tensor<1x384x128xf32>
%5241 = mhlo.add %5239, %5240 : tensor<1x384x128xf32>
%5242 = "mhlo.reshape"(%5241) : (tensor<1x384x128xf32>) -> tensor<384x128xf32>
%5243 = "mhlo.dot"(%5242, %1862) : (tensor<384x128xf32>, tensor<128x512xf32>) -> tensor<384x512xf32>
%5244 = "mhlo.broadcast_in_dim"(%1861) {broadcast_dimensions = dense<1> : tensor<1xi64>} : (tensor<512xf32>) -> tensor<384x512xf32>
%5245 = mhlo.add %5243, %5244 : tensor<384x512xf32>
%5246 = "mhlo.reshape"(%5245) : (tensor<384x512xf32>) -> tensor<1x384x512xf32>
%5247 = mhlo.add %5246, %5121 : tensor<1x384x512xf32>
%5248 = "mhlo.broadcast_in_dim"(%1860) {broadcast_dimensions = dense<2> : tensor<1xi64>} : (tensor<512xf32>) -> tensor<1x384x512xf32>
%5249 = mhlo.multiply %5247, %5248 : tensor<1x384x512xf32>
%5250 = "mhlo.broadcast_in_dim"(%1859) {broadcast_dimensions = dense<2> : tensor<1xi64>} : (tensor<512xf32>) -> tensor<1x384x512xf32>
%5251 = mhlo.add %5249, %5250 : tensor<1x384x512xf32>
%5252 = "mhlo.reshape"(%5251) : (tensor<1x384x512xf32>) -> tensor<384x512xf32>
%5253 = "mhlo.dot"(%5252, %1874) : (tensor<384x512xf32>, tensor<512x128xf32>) -> tensor<384x128xf32>
%5254 = "mhlo.broadcast_in_dim"(%1873) {broadcast_dimensions = dense<1> : tensor<1xi64>} : (tensor<128xf32>) -> tensor<384x128xf32>
%5255 = mhlo.add %5253, %5254 : tensor<384x128xf32>
%5256 = "mhlo.reshape"(%5255) : (tensor<384x128xf32>) -> tensor<1x384x4x32xf32>
%5257 = "mhlo.transpose"(%5256) {permutation = dense<[0, 2, 1, 3]> : tensor<4xi64>} : (tensor<1x384x4x32xf32>) -> tensor<1x4x384x32xf32>
%5258 = "mhlo.dot"(%5252, %1878) : (tensor<384x512xf32>, tensor<512x128xf32>) -> tensor<384x128xf32>
%5259 = "mhlo.reshape"(%5258) : (tensor<384x128xf32>) -> tensor<1x384x128xf32>
%5260 = "mhlo.broadcast_in_dim"(%1877) {broadcast_dimensions = dense<2> : tensor<1xi64>} : (tensor<128xf32>) -> tensor<1x384x128xf32>
%5261 = mhlo.add %5259, %5260 : tensor<1x384x128xf32>
%5262 = "mhlo.broadcast_in_dim"(%1876) {broadcast_dimensions = dense<2> : tensor<1xi64>} : (tensor<128xf32>) -> tensor<1x384x128xf32>
%5263 = mhlo.multiply %5261, %5262 : tensor<1x384x128xf32>
%5264 = "mhlo.broadcast_in_dim"(%1875) {broadcast_dimensions = dense<2> : tensor<1xi64>} : (tensor<128xf32>) -> tensor<1x384x128xf32>
%5265 = mhlo.add %5263, %5264 : tensor<1x384x128xf32>
%5266 = "mhlo.reshape"(%5265) : (tensor<1x384x128xf32>) -> tensor<384x128xf32>
%5267 = "mhlo.dot"(%5266, %1870) : (tensor<384x128xf32>, tensor<128x128xf32>) -> tensor<384x128xf32>
%5268 = "mhlo.broadcast_in_dim"(%1869) {broadcast_dimensions = dense<1> : tensor<1xi64>} : (tensor<128xf32>) -> tensor<384x128xf32>
%5269 = mhlo.add %5267, %5268 : tensor<384x128xf32>
%5270 = "mhlo.reshape"(%5269) : (tensor<384x128xf32>) -> tensor<1x384x4x32xf32>
%5271 = "mhlo.transpose"(%5270) {permutation = dense<[0, 2, 1, 3]> : tensor<4xi64>} : (tensor<1x384x4x32xf32>) -> tensor<1x4x384x32xf32>
%5272 = "mhlo.dot"(%5266, %1872) : (tensor<384x128xf32>, tensor<128x128xf32>) -> tensor<384x128xf32>
%5273 = "mhlo.broadcast_in_dim"(%1871) {broadcast_dimensions = dense<1> : tensor<1xi64>} : (tensor<128xf32>) -> tensor<384x128xf32>
%5274 = mhlo.add %5272, %5273 : tensor<384x128xf32>
%5275 = "mhlo.reshape"(%5274) : (tensor<384x128xf32>) -> tensor<1x384x4x32xf32>
%5276 = "mhlo.transpose"(%5275) {permutation = dense<[0, 2, 1, 3]> : tensor<4xi64>} : (tensor<1x384x4x32xf32>) -> tensor<1x4x384x32xf32>
%5277 = "mhlo.dot_general"(%5276, %5271) {dot_dimension_numbers = #mhlo.dot<lhs_batching_dimensions = [0, 1], lhs_contracting_dimensions = [3], rhs_batching_dimensions = [0, 1], rhs_contracting_dimensions = [3]>} : (tensor<1x4x384x32xf32>, tensor<1x4x384x32xf32>) -> tensor<1x4x384x384xf32>
%5278 = mhlo.multiply %5277, %1114 : tensor<1x4x384x384xf32>
%5279 = "mhlo.broadcast_in_dim"(%2254) {broadcast_dimensions = dense<[0, 1, 2, 3]> : tensor<4xi64>} : (tensor<1x1x384x384xf32>) -> tensor<1x4x384x384xf32>
%5280 = mhlo.add %5278, %5279 : tensor<1x4x384x384xf32>
%5281 = "mhlo.reduce"(%5280, %1117) ( {
^bb0(%arg3: tensor<f32>, %arg4: tensor<f32>): // no predecessors
%5393 = mhlo.maximum %arg3, %arg4 : tensor<f32>
"mhlo.return"(%5393) : (tensor<f32>) -> ()
}) {dimensions = dense<3> : tensor<1xi64>} : (tensor<1x4x384x384xf32>, tensor<f32>) -> tensor<1x4x384xf32>
%5282 = "mhlo.broadcast_in_dim"(%5281) {broadcast_dimensions = dense<[0, 1, 2]> : tensor<3xi64>} : (tensor<1x4x384xf32>) -> tensor<1x4x384x384xf32>
%5283 = mhlo.subtract %5280, %5282 : tensor<1x4x384x384xf32>
%5284 = "mhlo.exponential"(%5283) : (tensor<1x4x384x384xf32>) -> tensor<1x4x384x384xf32>
%5285 = "mhlo.reduce"(%5284, %1118) ( {
^bb0(%arg3: tensor<f32>, %arg4: tensor<f32>): // no predecessors
%5393 = mhlo.add %arg3, %arg4 : tensor<f32>
"mhlo.return"(%5393) : (tensor<f32>) -> ()
}) {dimensions = dense<3> : tensor<1xi64>} : (tensor<1x4x384x384xf32>, tensor<f32>) -> tensor<1x4x384xf32>
%5286 = "mhlo.broadcast_in_dim"(%5285) {broadcast_dimensions = dense<[0, 1, 2]> : tensor<3xi64>} : (tensor<1x4x384xf32>) -> tensor<1x4x384x384xf32>
%5287 = mhlo.divide %5284, %5286 : tensor<1x4x384x384xf32>
%5288 = "mhlo.dot_general"(%5287, %5257) {dot_dimension_numbers = #mhlo.dot<lhs_batching_dimensions = [0, 1], lhs_contracting_dimensions = [3], rhs_batching_dimensions = [0, 1], rhs_contracting_dimensions = [2]>} : (tensor<1x4x384x384xf32>, tensor<1x4x384x32xf32>) -> tensor<1x4x384x32xf32>
%5289 = "mhlo.transpose"(%5288) {permutation = dense<[0, 2, 1, 3]> : tensor<4xi64>} : (tensor<1x4x384x32xf32>) -> tensor<1x384x4x32xf32>
%5290 = "mhlo.reshape"(%5289) : (tensor<1x384x4x32xf32>) -> tensor<384x128xf32>
%5291 = "mhlo.dot"(%5290, %1868) : (tensor<384x128xf32>, tensor<128x128xf32>) -> tensor<384x128xf32>
%5292 = "mhlo.broadcast_in_dim"(%1867) {broadcast_dimensions = dense<1> : tensor<1xi64>} : (tensor<128xf32>) -> tensor<384x128xf32>
%5293 = mhlo.add %5291, %5292 : tensor<384x128xf32>
%5294 = "mhlo.reshape"(%5293) : (tensor<384x128xf32>) -> tensor<1x384x128xf32>
%5295 = "mhlo.dot"(%5252, %1882) : (tensor<384x512xf32>, tensor<512x128xf32>) -> tensor<384x128xf32>
%5296 = "mhlo.broadcast_in_dim"(%1881) {broadcast_dimensions = dense<1> : tensor<1xi64>} : (tensor<128xf32>) -> tensor<384x128xf32>
%5297 = mhlo.add %5295, %5296 : tensor<384x128xf32>
%5298 = "mhlo.reshape"(%5297) : (tensor<384x128xf32>) -> tensor<1x384x128xf32>
%5299 = "mhlo.broadcast_in_dim"(%1880) {broadcast_dimensions = dense<2> : tensor<1xi64>} : (tensor<128xf32>) -> tensor<1x384x128xf32>
%5300 = mhlo.multiply %5298, %5299 : tensor<1x384x128xf32>
%5301 = "mhlo.broadcast_in_dim"(%1879) {broadcast_dimensions = dense<2> : tensor<1xi64>} : (tensor<128xf32>) -> tensor<1x384x128xf32>
%5302 = mhlo.add %5300, %5301 : tensor<1x384x128xf32>
%5303 = mhlo.add %5294, %5302 : tensor<1x384x128xf32>
%5304 = "mhlo.broadcast_in_dim"(%1866) {broadcast_dimensions = dense<2> : tensor<1xi64>} : (tensor<128xf32>) -> tensor<1x384x128xf32>
%5305 = mhlo.multiply %5303, %5304 : tensor<1x384x128xf32>
%5306 = "mhlo.broadcast_in_dim"(%1865) {broadcast_dimensions = dense<2> : tensor<1xi64>} : (tensor<128xf32>) -> tensor<1x384x128xf32>
%5307 = mhlo.add %5305, %5306 : tensor<1x384x128xf32>
%5308 = "mhlo.reshape"(%5307) : (tensor<1x384x128xf32>) -> tensor<384x128xf32>
%5309 = "mhlo.dot"(%5308, %1884) : (tensor<384x128xf32>, tensor<128x512xf32>) -> tensor<384x512xf32>
%5310 = "mhlo.broadcast_in_dim"(%1883) {broadcast_dimensions = dense<1> : tensor<1xi64>} : (tensor<512xf32>) -> tensor<384x512xf32>
%5311 = mhlo.add %5309, %5310 : tensor<384x512xf32>
%5312 = "mhlo.reshape"(%5311) : (tensor<384x512xf32>) -> tensor<1x384x512xf32>
%5313 = mhlo.maximum %5312, %1119 : tensor<1x384x512xf32>
%5314 = "mhlo.reshape"(%5313) : (tensor<1x384x512xf32>) -> tensor<384x512xf32>
%5315 = "mhlo.dot"(%5314, %1888) : (tensor<384x512xf32>, tensor<512x128xf32>) -> tensor<384x128xf32>
%5316 = "mhlo.broadcast_in_dim"(%1887) {broadcast_dimensions = dense<1> : tensor<1xi64>} : (tensor<128xf32>) -> tensor<384x128xf32>
%5317 = mhlo.add %5315, %5316 : tensor<384x128xf32>
%5318 = "mhlo.reshape"(%5317) : (tensor<384x128xf32>) -> tensor<1x384x128xf32>
%5319 = mhlo.add %5318, %5307 : tensor<1x384x128xf32>
%5320 = "mhlo.broadcast_in_dim"(%1886) {broadcast_dimensions = dense<2> : tensor<1xi64>} : (tensor<128xf32>) -> tensor<1x384x128xf32>
%5321 = mhlo.multiply %5319, %5320 : tensor<1x384x128xf32>
%5322 = "mhlo.broadcast_in_dim"(%1885) {broadcast_dimensions = dense<2> : tensor<1xi64>} : (tensor<128xf32>) -> tensor<1x384x128xf32>
%5323 = mhlo.add %5321, %5322 : tensor<1x384x128xf32>
%5324 = "mhlo.reshape"(%5323) : (tensor<1x384x128xf32>) -> tensor<384x128xf32>
%5325 = "mhlo.dot"(%5324, %1890) : (tensor<384x128xf32>, tensor<128x512xf32>) -> tensor<384x512xf32>
%5326 = "mhlo.broadcast_in_dim"(%1889) {broadcast_dimensions = dense<1> : tensor<1xi64>} : (tensor<512xf32>) -> tensor<384x512xf32>
%5327 = mhlo.add %5325, %5326 : tensor<384x512xf32>
%5328 = "mhlo.reshape"(%5327) : (tensor<384x512xf32>) -> tensor<1x384x512xf32>
%5329 = mhlo.maximum %5328, %1119 : tensor<1x384x512xf32>
%5330 = "mhlo.reshape"(%5329) : (tensor<1x384x512xf32>) -> tensor<384x512xf32>
%5331 = "mhlo.dot"(%5330, %1894) : (tensor<384x512xf32>, tensor<512x128xf32>) -> tensor<384x128xf32>
%5332 = "mhlo.broadcast_in_dim"(%1893) {broadcast_dimensions = dense<1> : tensor<1xi64>} : (tensor<128xf32>) -> tensor<384x128xf32>
%5333 = mhlo.add %5331, %5332 : tensor<384x128xf32>
%5334 = "mhlo.reshape"(%5333) : (tensor<384x128xf32>) -> tensor<1x384x128xf32>
%5335 = mhlo.add %5334, %5323 : tensor<1x384x128xf32>
%5336 = "mhlo.broadcast_in_dim"(%1892) {broadcast_dimensions = dense<2> : tensor<1xi64>} : (tensor<128xf32>) -> tensor<1x384x128xf32>
%5337 = mhlo.multiply %5335, %5336 : tensor<1x384x128xf32>
%5338 = "mhlo.broadcast_in_dim"(%1891) {broadcast_dimensions = dense<2> : tensor<1xi64>} : (tensor<128xf32>) -> tensor<1x384x128xf32>
%5339 = mhlo.add %5337, %5338 : tensor<1x384x128xf32>
%5340 = "mhlo.reshape"(%5339) : (tensor<1x384x128xf32>) -> tensor<384x128xf32>
%5341 = "mhlo.dot"(%5340, %1896) : (tensor<384x128xf32>, tensor<128x512xf32>) -> tensor<384x512xf32>
%5342 = "mhlo.broadcast_in_dim"(%1895) {broadcast_dimensions = dense<1> : tensor<1xi64>} : (tensor<512xf32>) -> tensor<384x512xf32>
%5343 = mhlo.add %5341, %5342 : tensor<384x512xf32>
%5344 = "mhlo.reshape"(%5343) : (tensor<384x512xf32>) -> tensor<1x384x512xf32>
%5345 = mhlo.maximum %5344, %1119 : tensor<1x384x512xf32>
%5346 = "mhlo.reshape"(%5345) : (tensor<1x384x512xf32>) -> tensor<384x512xf32>
%5347 = "mhlo.dot"(%5346, %1900) : (tensor<384x512xf32>, tensor<512x128xf32>) -> tensor<384x128xf32>
%5348 = "mhlo.broadcast_in_dim"(%1899) {broadcast_dimensions = dense<1> : tensor<1xi64>} : (tensor<128xf32>) -> tensor<384x128xf32>
%5349 = mhlo.add %5347, %5348 : tensor<384x128xf32>
%5350 = "mhlo.reshape"(%5349) : (tensor<384x128xf32>) -> tensor<1x384x128xf32>
%5351 = mhlo.add %5350, %5339 : tensor<1x384x128xf32>
%5352 = "mhlo.broadcast_in_dim"(%1898) {broadcast_dimensions = dense<2> : tensor<1xi64>} : (tensor<128xf32>) -> tensor<1x384x128xf32>
%5353 = mhlo.multiply %5351, %5352 : tensor<1x384x128xf32>
%5354 = "mhlo.broadcast_in_dim"(%1897) {broadcast_dimensions = dense<2> : tensor<1xi64>} : (tensor<128xf32>) -> tensor<1x384x128xf32>
%5355 = mhlo.add %5353, %5354 : tensor<1x384x128xf32>
%5356 = "mhlo.reshape"(%5355) : (tensor<1x384x128xf32>) -> tensor<384x128xf32>
%5357 = "mhlo.dot"(%5356, %1902) : (tensor<384x128xf32>, tensor<128x512xf32>) -> tensor<384x512xf32>
%5358 = "mhlo.broadcast_in_dim"(%1901) {broadcast_dimensions = dense<1> : tensor<1xi64>} : (tensor<512xf32>) -> tensor<384x512xf32>
%5359 = mhlo.add %5357, %5358 : tensor<384x512xf32>
%5360 = "mhlo.reshape"(%5359) : (tensor<384x512xf32>) -> tensor<1x384x512xf32>
%5361 = mhlo.maximum %5360, %1119 : tensor<1x384x512xf32>
%5362 = "mhlo.reshape"(%5361) : (tensor<1x384x512xf32>) -> tensor<384x512xf32>
%5363 = "mhlo.dot"(%5362, %1910) : (tensor<384x512xf32>, tensor<512x128xf32>) -> tensor<384x128xf32>
%5364 = "mhlo.broadcast_in_dim"(%1909) {broadcast_dimensions = dense<1> : tensor<1xi64>} : (tensor<128xf32>) -> tensor<384x128xf32>
%5365 = mhlo.add %5363, %5364 : tensor<384x128xf32>
%5366 = "mhlo.reshape"(%5365) : (tensor<384x128xf32>) -> tensor<1x384x128xf32>
%5367 = mhlo.add %5366, %5355 : tensor<1x384x128xf32>
%5368 = "mhlo.broadcast_in_dim"(%1904) {broadcast_dimensions = dense<2> : tensor<1xi64>} : (tensor<128xf32>) -> tensor<1x384x128xf32>
%5369 = mhlo.multiply %5367, %5368 : tensor<1x384x128xf32>
%5370 = "mhlo.broadcast_in_dim"(%1903) {broadcast_dimensions = dense<2> : tensor<1xi64>} : (tensor<128xf32>) -> tensor<1x384x128xf32>
%5371 = mhlo.add %5369, %5370 : tensor<1x384x128xf32>
%5372 = "mhlo.reshape"(%5371) : (tensor<1x384x128xf32>) -> tensor<384x128xf32>
%5373 = "mhlo.dot"(%5372, %1908) : (tensor<384x128xf32>, tensor<128x512xf32>) -> tensor<384x512xf32>
%5374 = "mhlo.broadcast_in_dim"(%1907) {broadcast_dimensions = dense<1> : tensor<1xi64>} : (tensor<512xf32>) -> tensor<384x512xf32>
%5375 = mhlo.add %5373, %5374 : tensor<384x512xf32>
%5376 = "mhlo.reshape"(%5375) : (tensor<384x512xf32>) -> tensor<1x384x512xf32>
%5377 = mhlo.add %5376, %5251 : tensor<1x384x512xf32>
%5378 = "mhlo.broadcast_in_dim"(%1906) {broadcast_dimensions = dense<2> : tensor<1xi64>} : (tensor<512xf32>) -> tensor<1x384x512xf32>
%5379 = mhlo.multiply %5377, %5378 : tensor<1x384x512xf32>
%5380 = "mhlo.broadcast_in_dim"(%1905) {broadcast_dimensions = dense<2> : tensor<1xi64>} : (tensor<512xf32>) -> tensor<1x384x512xf32>
%5381 = mhlo.add %5379, %5380 : tensor<1x384x512xf32>
%5382 = "mhlo.reshape"(%5381) : (tensor<1x384x512xf32>) -> tensor<384x512xf32>
%5383 = "mhlo.transpose"(%2234) {permutation = dense<[1, 0]> : tensor<2xi64>} : (tensor<2x512xf32>) -> tensor<512x2xf32>
%5384 = "mhlo.dot"(%5382, %5383) : (tensor<384x512xf32>, tensor<512x2xf32>) -> tensor<384x2xf32>
%5385 = "mhlo.broadcast_in_dim"(%2233) {broadcast_dimensions = dense<1> : tensor<1xi64>} : (tensor<2xf32>) -> tensor<384x2xf32>
%5386 = mhlo.add %5384, %5385 : tensor<384x2xf32>
%5387 = "mhlo.reshape"(%5386) : (tensor<384x2xf32>) -> tensor<1x384x2xf32>
%5388 = "mhlo.transpose"(%5387) {permutation = dense<[2, 0, 1]> : tensor<3xi64>} : (tensor<1x384x2xf32>) -> tensor<2x1x384xf32>
%5389 = "mhlo.slice"(%5388) {limit_indices = dense<[1, 1, 384]> : tensor<3xi64>, start_indices = dense<0> : tensor<3xi64>, strides = dense<1> : tensor<3xi64>} : (tensor<2x1x384xf32>) -> tensor<1x1x384xf32>
%5390 = "mhlo.reshape"(%5389) : (tensor<1x1x384xf32>) -> tensor<1x384xf32>
%5391 = "mhlo.slice"(%5388) {limit_indices = dense<[2, 1, 384]> : tensor<3xi64>, start_indices = dense<[1, 0, 0]> : tensor<3xi64>, strides = dense<1> : tensor<3xi64>} : (tensor<2x1x384xf32>) -> tensor<1x1x384xf32>
%5392 = "mhlo.reshape"(%5391) : (tensor<1x1x384xf32>) -> tensor<1x384xf32>
check.expect_almost_eq_const(%5390, dense<895.1307> : tensor<1x384xf32>) : tensor<1x384xf32>
check.expect_almost_eq_const(%5392, dense<895.1307> : tensor<1x384xf32>) : tensor<1x384xf32>
return
}
}