blob: 50cb8ec545e5a95d4b36e670e7808c045f6630ad [file] [log] [blame]
// Copyright 2019 Google LLC
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// https://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
//===- XLAIndexPropagation.cpp ---------------------------------*- C++//-*-===//
//
// For an IREE dispatch function in XLA-HLO dialect, compute the indices of all
// tensors needed to produce the value of the result tensors at a particlar
// index.
//
//===----------------------------------------------------------------------===//
#include "iree/compiler/Translation/SPIRV/XLAIndexPropagation.h"
namespace mlir {
namespace iree_compiler {
//===----------------------------------------------------------------------===//
// BroadcastInDimOp
//===----------------------------------------------------------------------===//
LogicalResult XLABroadcastInDimOpIndexPropagation::propagateIndexMap(
Operation *operation, AffineMap resultIndex,
SmallVectorImpl<AffineMap> &indexMap) const {
auto broadcastOp = cast<xla_hlo::BroadcastInDimOp>(operation);
auto broadcastDim = broadcastOp.broadcast_dimensions();
Builder builder(operation->getContext());
if (!broadcastDim) {
// This is a scalar. So all indices map to the same element.
AffineMap scalarMap =
AffineMap::get(resultIndex.getNumDims(), resultIndex.getNumSymbols(),
builder.getAffineConstantExpr(0));
indexMap.push_back(scalarMap);
return success();
}
// Handle non-scalar cases.
auto dimensions = broadcastDim->getValues<int64_t>();
SmallVector<AffineExpr, 4> exprs;
for (auto resultExpr : enumerate(resultIndex.getResults())) {
if (llvm::any_of(dimensions, [&resultExpr](int64_t dim) {
return dim == resultExpr.index();
})) {
exprs.push_back(resultExpr.value());
}
}
auto operandMap = AffineMap::get(resultIndex.getNumDims(),
resultIndex.getNumSymbols(), exprs);
indexMap.push_back(operandMap);
return success();
}
//===----------------------------------------------------------------------===//
// BroadcastOp
//===----------------------------------------------------------------------===//
// For broadcast op, just drop the first N expressions of the resultIndex, where
// N is the number of elements in broadcast_sizes attribute.
LogicalResult XLABroadcastOpIndexPropagation::propagateIndexMap(
Operation *operation, AffineMap resultIndex,
SmallVectorImpl<AffineMap> &indexMap) const {
auto broadcastOp = cast<xla_hlo::BroadcastOp>(operation);
auto broadcastDim = broadcastOp.broadcast_sizes();
SmallVector<AffineExpr, 4> exprs;
for (auto i : llvm::seq<size_t>(
broadcastDim.getType().getShape()[0],
operation->getResult(0)->getType().cast<ShapedType>().getRank())) {
exprs.push_back(resultIndex.getResult(i));
}
Builder builder(operation->getContext());
if (exprs.empty()) {
// The result is a scalar. Just add a constant expr 0.
exprs.push_back(builder.getAffineConstantExpr(0));
}
auto operandMap = AffineMap::get(resultIndex.getNumDims(),
resultIndex.getNumSymbols(), exprs);
indexMap.push_back(operandMap);
return success();
}
//===----------------------------------------------------------------------===//
// ReverseOp
//===----------------------------------------------------------------------===//
LogicalResult XLAReverseOpIndexPropagation::propagateIndexMap(
Operation *op, AffineMap resultIndex,
SmallVectorImpl<AffineMap> &indexMap) const {
auto reverseOp = cast<xla_hlo::ReverseOp>(op);
DenseSet<unsigned> dimensions;
for (auto index : reverseOp.dimensions()) {
dimensions.insert(index.getZExtValue());
}
return propagateIndexMapImpl(op, dimensions, resultIndex, indexMap);
}
//===----------------------------------------------------------------------===//
// TransposeOp
//===----------------------------------------------------------------------===//
LogicalResult XLATransposeOpIndexPropagation::propagateIndexMap(
Operation *op, AffineMap resultIndex,
SmallVectorImpl<AffineMap> &indexMap) const {
auto transposeOp = cast<xla_hlo::TransposeOp>(op);
// Compute the affine map that represents the permutation.
SmallVector<unsigned, 4> permutation;
for (auto index : transposeOp.permutation()) {
permutation.push_back(index.getZExtValue());
}
return propagateIndexMapImpl(op, permutation, resultIndex, indexMap);
}
} // namespace iree_compiler
} // namespace mlir