blob: c988a28655434063ef7828e1243cddd5a165d04e [file] [log] [blame]
// RUN: iree-run-mlir --Xcompiler,iree-hal-target-backends=llvm-cpu --Xcompiler,iree-llvmcpu-target-cpu-features=host --Xcompiler,iree-codegen-llvm-generic-ops-workgroup-size=2048 %s
//===----------------------------------------------------------------------===//
// Dynamic shape micro-benchmarks.
// Naming convention: '_'.join(
// [dynamic,
// {op-kind])
//
//===----------------------------------------------------------------------===//
func.func @dynamic_matmul() -> tensor<?x?xf32> {
%c0 = arith.constant 0.000000e+00 : f32
%dim0 = util.unfoldable_constant 257 : index
%dim1 = util.unfoldable_constant 513 : index
%dim2 = util.unfoldable_constant 385 : index
%A = flow.tensor.constant dense<1.0> : tensor<513x257xf32> -> tensor<?x?xf32>
%B = flow.tensor.constant dense<2.0> : tensor<257x385xf32> -> tensor<?x?xf32>
%C = flow.tensor.constant dense<0.0> : tensor<513x385xf32> -> tensor<?x?xf32>
%gemm = linalg.matmul
ins(%A, %B : tensor<?x?xf32>, tensor<?x?xf32>)
outs(%C : tensor<?x?xf32>) -> tensor<?x?xf32>
return %gemm : tensor<?x?xf32>
}
func.func @dynamic_elw() -> tensor<?x?xf32> {
%c0 = arith.constant 0.000000e+00 : f32
%A = flow.tensor.constant dense<1.0> : tensor<513x1025xf32> -> tensor<?x?xf32>
%B = flow.tensor.constant dense<2.0> : tensor<513x1025xf32> -> tensor<?x?xf32>
%C = flow.tensor.constant dense<0.0> : tensor<513x1025xf32> -> tensor<?x?xf32>
%gen = linalg.generic {
indexing_maps = [
affine_map<(i, j) -> (i, j)>,
affine_map<(i, j) -> (i, j)>,
affine_map<(i, j) -> (i, j)> ],
iterator_types = ["parallel", "parallel"]
}
ins(%A, %B : tensor<?x?xf32>, tensor<?x?xf32>)
outs(%C : tensor<?x?xf32>) {
^bb0(%a: f32, %b: f32, %c: f32):
%add0 = arith.addf %a, %b : f32
%mul0 = arith.mulf %add0, %add0 : f32
%div_b0 = arith.divf %mul0, %b : f32
%div_a0 = arith.divf %mul0, %a : f32
%sub0 = arith.subf %div_b0, %div_a0 : f32
%res0 = arith.mulf %sub0, %sub0 : f32
%add1 = arith.addf %res0, %b : f32
%mul1 = arith.mulf %add1, %add1 : f32
%div_b1 = arith.divf %mul1, %b : f32
%div_a1 = arith.divf %mul1, %a : f32
%sub1 = arith.subf %div_b1, %div_a1 : f32
%res1 = arith.mulf %sub1, %sub1 : f32
%add2 = arith.addf %res1, %b : f32
%mul2 = arith.mulf %add2, %add2 : f32
%div_b2 = arith.divf %mul2, %b : f32
%div_a2 = arith.divf %mul2, %a : f32
%sub2 = arith.subf %div_b2, %div_a2 : f32
%res2 = arith.mulf %sub2, %sub2 : f32
%add3 = arith.addf %res2, %b : f32
%mul3 = arith.mulf %add3, %add3 : f32
%div_b3 = arith.divf %mul3, %b : f32
%div_a3 = arith.divf %mul3, %a : f32
%sub3 = arith.subf %div_b3, %div_a3 : f32
%res3 = arith.mulf %sub3, %sub3 : f32
%add4 = arith.addf %res3, %b : f32
%mul4 = arith.mulf %add4, %add4 : f32
%div_b4 = arith.divf %mul4, %b : f32
%div_a4 = arith.divf %mul4, %a : f32
%sub4 = arith.subf %div_b4, %div_a4 : f32
%res4 = arith.mulf %sub4, %sub4 : f32
linalg.yield %res4 : f32
} -> tensor<?x?xf32>
return %gen : tensor<?x?xf32>
}