blob: 8b56224c5df219be0daa0336f18709b38d3731bb [file] [log] [blame]
#!/usr/bin/env python3
# Copyright 2021 The IREE Authors
#
# Licensed under the Apache License v2.0 with LLVM Exceptions.
# See https://llvm.org/LICENSE.txt for license information.
# SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
"""iree_generated_trace_runner_test generator for e2e matmul tests.
"""
import argparse
import os
import yaml
import re
import enum
import dataclasses
import typing
import itertools
# Data type of matrix entries. The string values must match MLIR data types.
# This is a superset of the values accepted for the --lhs_rhs_types= flag,
# as this also includes accumulator-specific types like i32.
@enum.unique
class MatrixElemTypeId(enum.Enum):
I8 = "i8"
I32 = "i32"
F32 = "f32"
F16 = "f16"
# Enumerates of the collections of shapes that we can generate tests for.
# The values are the accepted values for the --shapes= flag.
@enum.unique
class ShapesId(enum.Enum):
SMALL = "small"
LARGE = "large"
GPU_LARGE = "gpu_large"
GPU_LARGE_ALIGNED = "gpu_large_aligned"
# Enumerates of the collections of compilation info that we can generate tests
# for. The values are the accepted values for the --compilation_info= flag.
@enum.unique
class CompilationInfoId(enum.Enum):
NONE = ""
LLVMGPUMatmulSimt = "LLVMGPUMatmulSimt"
LLVMGPUMatmulTensorCore = "LLVMGPUMatmulTensorCore"
LLVMGPUMatmulTensorCoreMmaSync = "LLVMGPUMatmulTensorCoreMmaSync"
SPIRVVectorizeMali = "SPIRVVectorizeMali"
SPIRVVectorizeNVIDIA = "SPIRVVectorizeNVIDIA"
# Enumerates ways to construct MLIR tensor types.
@enum.unique
class Dynamicity(enum.Enum):
DYNAMIC = "dynamic" # Use '?' everywhere. Example: tensor<?x?xf32>.
STATIC = "static" # Use fixed values everywhere. Example: tensor<4x6xf32>.
MIXED = "mixed" # Randomly mix '?' and values. Example: tensor<?x4xf32>.
# Enumerates ways to initialize matrix buffer contents.
@enum.unique
class MatrixGenerator(enum.Enum):
ZERO = "zero" # Fill with zeros
RANDOM = "random" # Fill with (deterministic) pseudorandom values.
# Describes the shape of a matrix multiplication in the usual convention:
# the LHS is {m}x{k}, the RHS is {k}x{n}, the accumulator/result is {m}x{n}.
# The extra `accumulate` boolean tells whether the matmul is accumulating into
# an existing accumulator (C += A * B) or just overwriting the result
# (C = A * B).
@dataclasses.dataclass
class TestShape:
m: int
k: int
n: int
accumulate: bool
# Describes how to construct compilation info for the testcase.
@dataclasses.dataclass
class CompilationInfo:
# Lowering Config
tile_sizes: typing.List[typing.List[int]]
# Translation Info
dispatch_lowering_pass_pipeline: str
workload_per_wg: typing.List[int]
software_pipeline_depth: int
# Compilation info
workgroup_size: typing.List[int]
# Prints the workgroup size as 'index' types
def workgroup_size_str(self):
return "[" + ", ".join([f"{size} : index" for size in self.workgroup_size
]) + "]"
# Returns the list of TestShape's to use for the collection of shapes
# identified by shapes_id.
def get_test_shapes(shapes_id: ShapesId):
# Notes:
# 1. Be conservative in adding more shapes, as that can increase both the
# build and execution latency of tests. The build latency is nearly the
# same for all shapes, while execution latency grows cubicly i.e.
# linearly with m*k*n.
# 2. Some shapes are commented out: they used to be tested but have been
# disabled to improve the trade-off between test coverage and build
# latency.
if shapes_id == ShapesId.SMALL:
return [
# square matrices. Start by the simplest case of 1x1x1.
TestShape(m=1, k=1, n=1, accumulate=True),
TestShape(m=1, k=1, n=1, accumulate=False),
# test 9x9x9 because as many kernel M0/K0/N0 dims are equal to 8,
# this will often be the smallest value that exercises something above
# the kernel's size.
TestShape(m=9, k=9, n=9, accumulate=True),
# rectangular matrices.
# >= 2x differences between M/N/K dims may exercise tiling corner cases
# not exercised by nearly-square matrices.
TestShape(m=6, k=13, n=3, accumulate=True),
TestShape(m=15, k=37, n=7, accumulate=False),
TestShape(m=81, k=19, n=41, accumulate=True),
# shapes involving vectors (i.e. most rectangular cases)
# This is particularly relevant because we have dedicated kernels for
# the matrix*vector / vector*matrix case.
TestShape(m=1, k=10, n=10, accumulate=True), # vector*matrix
TestShape(m=1, k=10, n=10, accumulate=False), # vector*matrix
TestShape(m=10, k=1, n=10, accumulate=True), # outer-product
TestShape(m=10, k=10, n=1, accumulate=True), # matrix*vector
TestShape(m=10, k=10, n=1, accumulate=False), # matrix*vector
]
if shapes_id == ShapesId.LARGE:
return [
# some random large sizes
TestShape(m=123, k=456, n=789, accumulate=True),
TestShape(m=654, k=321, n=234, accumulate=False),
# shapes involving vectors (i.e. most rectangular cases)
TestShape(m=1, k=1000, n=1000, accumulate=True), # large vector*matrix
TestShape(m=1000, k=1000, n=1, accumulate=True), # large matrix*vector
TestShape(m=1000, k=1000, n=1, accumulate=False), # large matrix*vector
# Be conservative in adding larger shapes. They can result in
# high latency tests. If you have to, consider splitting them
# out in a way that constrains the latency impact, e.g. by
# running on fewer backends/drivers or with fewer generators
# (see get_test_generators).
]
if shapes_id == ShapesId.GPU_LARGE_ALIGNED:
return [
TestShape(m=256, k=128, n=512, accumulate=True),
TestShape(m=256, k=128, n=512, accumulate=False),
]
if shapes_id == ShapesId.GPU_LARGE:
return [
# unaligned cases.
TestShape(m=457, k=330, n=512, accumulate=False),
TestShape(m=457, k=330, n=514, accumulate=False),
TestShape(m=438, k=330, n=514, accumulate=False),
TestShape(m=540, k=332, n=516, accumulate=False),
TestShape(m=1000, k=4, n=512, accumulate=False),
TestShape(m=4, k=1000, n=512, accumulate=False),
TestShape(m=512, k=1000, n=4, accumulate=False),
]
raise ValueError(shapes_id)
# Returns the list of Dynamicity's to use for the collection of shapes
# identified by shapes_id.
def get_dynamicities(shapes_id: ShapesId):
if shapes_id == ShapesId.GPU_LARGE or shapes_id == ShapesId.GPU_LARGE_ALIGNED:
return [
Dynamicity.STATIC,
]
else:
return [
Dynamicity.DYNAMIC,
Dynamicity.STATIC,
]
raise ValueError(shapes_id)
@dataclasses.dataclass
class TileWorkgroupSizePair:
tile_size: typing.List[typing.List[int]]
workgroup_size: typing.List[int]
# Constructs a TileWorkgroupSizePair for SPIRV Targets enforcing the constraints between
# the workgroup_size and tile size
def get_spirv_tile_workgroup_size_pair(workgroup_size,
t_tile_k,
t_tile_m=4,
t_tile_n=4):
x, y, z = workgroup_size
wg_tile_m = y * t_tile_m
wg_tile_n = x * t_tile_n
return TileWorkgroupSizePair(
[[wg_tile_m, wg_tile_n], [t_tile_m, t_tile_n], [0, 0, t_tile_k]],
workgroup_size)
# Returns all the TileWorkgroupSizePairs for a given SPIRV Target
def get_all_spirv_tile_workgroup_size_pairs(t_tile_k):
tile_workgroup_size_pairs = [
get_spirv_tile_workgroup_size_pair([32, 8, 1], t_tile_k),
get_spirv_tile_workgroup_size_pair([16, 8, 1], t_tile_k),
get_spirv_tile_workgroup_size_pair([64, 2, 1], t_tile_k),
get_spirv_tile_workgroup_size_pair([8, 8, 1], t_tile_k),
get_spirv_tile_workgroup_size_pair([32, 1, 1], t_tile_k),
get_spirv_tile_workgroup_size_pair([16, 2, 1], t_tile_k),
get_spirv_tile_workgroup_size_pair([32, 1, 1], t_tile_k),
]
return tile_workgroup_size_pairs
# Returns the list of CompilationInfo's to use for the CompilationInfoId.
def get_test_compilation_infos(
compilation_info_id: CompilationInfoId, lhs_rhs_type: MatrixElemTypeId
) -> typing.List[typing.Optional[CompilationInfo]]:
if compilation_info_id == CompilationInfoId.NONE:
return [None]
if compilation_info_id == CompilationInfoId.LLVMGPUMatmulSimt:
tile_workgroup_size_pairs = [
TileWorkgroupSizePair([[32, 128, 32]], [32, 8, 1]),
TileWorkgroupSizePair([[128, 64, 8]], [16, 8, 1]),
TileWorkgroupSizePair([[16, 256, 32]], [64, 2, 1]),
TileWorkgroupSizePair([[8, 32, 32]], [8, 8, 1]),
TileWorkgroupSizePair([[8, 128, 4]], [32, 1, 1]),
TileWorkgroupSizePair([[16, 64, 4]], [16, 2, 1]),
TileWorkgroupSizePair([[1, 128, 8]], [32, 1, 1]),
]
elif compilation_info_id == CompilationInfoId.SPIRVVectorizeNVIDIA:
tile_workgroup_size_pairs = get_all_spirv_tile_workgroup_size_pairs(32)
elif compilation_info_id == CompilationInfoId.SPIRVVectorizeMali:
tile_workgroup_size_pairs = get_all_spirv_tile_workgroup_size_pairs(4)
elif compilation_info_id == CompilationInfoId.LLVMGPUMatmulTensorCore or compilation_info_id == CompilationInfoId.LLVMGPUMatmulTensorCoreMmaSync:
tile_workgroup_size_pairs = []
## WarpShape = 2x2
tile_workgroup_size_pairs.append(
TileWorkgroupSizePair([[32, 32, 16]], [64, 2, 1]))
tile_workgroup_size_pairs.append(
TileWorkgroupSizePair([[64, 64, 64]], [64, 2, 1]))
## WarpShape = 4x1
tile_workgroup_size_pairs.append(
TileWorkgroupSizePair([[32, 32, 32]], [64, 1, 1]))
## WarpShape = 2x2 with large tiles using larger Shared Memory capacity.
if lhs_rhs_type == MatrixElemTypeId.F16:
tile_workgroup_size_pairs.append(
TileWorkgroupSizePair([[128, 128, 64]], [64, 2, 1]))
elif lhs_rhs_type == MatrixElemTypeId.F32:
tile_workgroup_size_pairs.append(
TileWorkgroupSizePair([[128, 128, 16]], [64, 2, 1]))
compilation_infos = []
for tile_workgroup_size_pair in tile_workgroup_size_pairs:
compilation_infos.append(
CompilationInfo(
tile_sizes=tile_workgroup_size_pair.tile_size,
dispatch_lowering_pass_pipeline=compilation_info_id.value,
workload_per_wg=[
a for a in reversed(tile_workgroup_size_pair.tile_size[0:2])
],
workgroup_size=tile_workgroup_size_pair.workgroup_size,
software_pipeline_depth=3))
return compilation_infos
# Intentionally fixed seed! We want full reproducibility here, both across runs
# and across machines.
# Intentionally not shared with pseudorandom_generator_seed to limit the ways
# in which shuffling testcases changes which random values are generated.
local_pseudorandom_state = 1
# A shape dimension value, i.e. a size value that could appear in a MLIR type
# such as 'tensor<?x4xf32>'. None means a dynamic size, similar to '?' in MLIR.
@dataclasses.dataclass
class DimSize:
value: typing.Optional[int]
# Generates a compile-time MLIR size value, i.e. either a fixed positive integer
# or None (which maps to MLIR '?') depending on dynamicity.
def shape_dim(x: int, dynamicity: Dynamicity):
if dynamicity == Dynamicity.DYNAMIC:
return DimSize(None)
elif dynamicity == Dynamicity.STATIC:
return DimSize(x)
else:
raise ValueError(dynamicity)
# Stringification used for generating MLIR types, e.g. tensor<?x?xf32>.
def int_or_question_mark(s: DimSize):
return s.value or "?"
# Stringification used for generating alphanumeric identifiers, e.g.
# func.func @somefunction_DYNxDYNxf32, where we can't use "?" characters.
def int_or_DYN(s: DimSize):
return s.value or "DYN"
# Describes the fully resolved shape dimensions of all 3 input matrices,
# LHS, RHS, and Accumulator, in a testcase.
# Each value is a string, which may either represent a positive integer such as "123",
# or a "?" string, meaning a dynamic dimension as in MLIR.
# These string values are used to generate MLIR function names and tensor shapes.
@dataclasses.dataclass
class TestInputMatricesShapes:
lhs_rows: DimSize
lhs_cols: DimSize
rhs_rows: DimSize
rhs_cols: DimSize
acc_rows: DimSize
acc_cols: DimSize
# Helper for generate_function. Generates TestInputMatricesShapes, i.e.
# converts from the runtime shape dimensions in TestShape and given dynamicity to
# the set of shapes to be used in a test function's input tensors.
def generate_shapes(shape: TestShape, dynamicity: Dynamicity):
shapes = TestInputMatricesShapes(
lhs_rows=shape_dim(shape.m, dynamicity),
lhs_cols=shape_dim(shape.k, dynamicity),
rhs_rows=shape_dim(shape.k, dynamicity),
rhs_cols=shape_dim(shape.n, dynamicity),
acc_rows=shape_dim(shape.m, dynamicity),
acc_cols=shape_dim(shape.n, dynamicity),
)
return shapes
# Helper for generate_function.
# Generates a name for a test function in the generated MLIR code.
def generate_function_name(
lhs_rhs_type: MatrixElemTypeId,
acc_type: MatrixElemTypeId,
shapes: TestInputMatricesShapes,
accumulate: bool,
compilation_info: typing.Optional[CompilationInfo] = None):
input_t = lhs_rhs_type.value
acc_t = acc_type.value
lhs_m = int_or_DYN(shapes.lhs_rows)
lhs_k = int_or_DYN(shapes.lhs_cols)
rhs_k = int_or_DYN(shapes.rhs_rows)
rhs_n = int_or_DYN(shapes.rhs_cols)
acc_m = int_or_DYN(shapes.acc_rows)
acc_n = int_or_DYN(shapes.acc_cols)
info = ""
if compilation_info:
tile_sizes = list(itertools.chain(*compilation_info.tile_sizes))
tile_workgroup_key = "_".join([
str(a) for a in tile_sizes
]) + "_" + "_".join([str(a) for a in compilation_info.workgroup_size])
info = f"_for_{compilation_info.dispatch_lowering_pass_pipeline}_{tile_workgroup_key}"
matmul_kind = "matmul_accumulate" if accumulate else "matmul"
return f"{matmul_kind}_{lhs_m}x{lhs_k}x{input_t}_times_{rhs_k}x{rhs_n}x{input_t}_into_{acc_m}x{acc_n}x{acc_t}{info}"
# Represents a generated test function.
@dataclasses.dataclass
class MLIRFunction:
name: str
definition: str
# Generates a test function in the generated MLIR code.
# The generated function will take the same arguments as linalg.matmul and
# will just call linalg.matmul with them, returning its result.
def generate_function(
lhs_rhs_type: MatrixElemTypeId,
acc_type: MatrixElemTypeId,
shape: TestShape,
dynamicity: Dynamicity,
compilation_info: typing.Optional[CompilationInfo] = None):
shapes = generate_shapes(shape, dynamicity)
func_name = generate_function_name(lhs_rhs_type, acc_type, shapes,
shape.accumulate, compilation_info)
lhs_m = int_or_question_mark(shapes.lhs_rows)
lhs_k = int_or_question_mark(shapes.lhs_cols)
rhs_k = int_or_question_mark(shapes.rhs_rows)
rhs_n = int_or_question_mark(shapes.rhs_cols)
acc_m = int_or_question_mark(shapes.acc_rows)
acc_n = int_or_question_mark(shapes.acc_cols)
lhs_tensor_type = f"tensor<{lhs_m}x{lhs_k}x{lhs_rhs_type.value}>"
rhs_tensor_type = f"tensor<{rhs_k}x{rhs_n}x{lhs_rhs_type.value}>"
acc_tensor_type = f"tensor<{acc_m}x{acc_n}x{acc_type.value}>"
# Compilation info is optional; prints empty string by default.
func_definition = ""
compilation_info_attr = ""
if compilation_info:
if "SPIRV" in compilation_info.dispatch_lowering_pass_pipeline == "SPIRVVectorizeMali":
dispatch_lowering_pass_pipeline = "SPIRVBaseVectorize"
elif compilation_info.dispatch_lowering_pass_pipeline == "SPIRVVectorizeNVIDIA":
# TODO: change to test SPIRVMatmulPromoteVectorize too
dispatch_lowering_pass_pipeline = "SPIRVBaseVectorize"
else:
dispatch_lowering_pass_pipeline = compilation_info.dispatch_lowering_pass_pipeline
compilation_info_string = (
f"#compilation{generate_function.compilation_index} = #iree_codegen.compilation_info<\n"
f" lowering_config = <tile_sizes = {compilation_info.tile_sizes}>,\n"
f" translation_info = <{dispatch_lowering_pass_pipeline}\n"
f" pipeline_depth = {compilation_info.software_pipeline_depth}>,\n"
f" workgroup_size = {compilation_info.workgroup_size_str()}>\n")
compilation_info_attr = f"{{compilation_info = #compilation{generate_function.compilation_index}}} "
func_definition = func_definition + compilation_info_string
generate_function.compilation_index += 1
if shape.accumulate:
func_definition = func_definition + (
f"func.func @{func_name}(%lhs: {lhs_tensor_type}, %rhs: {rhs_tensor_type}, %acc: {acc_tensor_type}) -> {acc_tensor_type} {{\n"
f" %result = linalg.matmul {compilation_info_attr}ins(%lhs, %rhs: {lhs_tensor_type}, {rhs_tensor_type}) outs(%acc: {acc_tensor_type}) -> {acc_tensor_type}\n"
f" return %result: {acc_tensor_type}\n"
f"}}\n")
else:
literal_zero_for_acc_type = "0.0" if "f" in acc_type.value else "0"
acc_dyn_sizes = []
if acc_m == "?":
func_definition = func_definition + (
f"func.func @{func_name}(%lhs: {lhs_tensor_type}, %rhs: {rhs_tensor_type}) -> {acc_tensor_type} {{\n"
f" %c0 = arith.constant 0 : index\n"
f" %c1 = arith.constant 1 : index\n"
f" %acc_dim0 = tensor.dim %lhs, %c0 : {lhs_tensor_type}\n"
f" %acc_dim1 = tensor.dim %rhs, %c1 : {rhs_tensor_type}\n"
f" %init_acc = tensor.empty(%acc_dim0, %acc_dim1) : {acc_tensor_type}\n"
f" %c0_acc_type = arith.constant {literal_zero_for_acc_type}: {acc_type.value}\n"
f" %acc = linalg.fill ins(%c0_acc_type : {acc_type.value}) outs(%init_acc : {acc_tensor_type}) -> {acc_tensor_type}\n"
f" %result = linalg.matmul {compilation_info_attr}ins(%lhs, %rhs: {lhs_tensor_type}, {rhs_tensor_type}) outs(%acc: {acc_tensor_type}) -> {acc_tensor_type}\n"
f" return %result: {acc_tensor_type}\n"
f"}}\n")
else:
func_definition = func_definition + (
f"func.func @{func_name}(%lhs: {lhs_tensor_type}, %rhs: {rhs_tensor_type}) -> {acc_tensor_type} {{\n"
f" %init_acc = tensor.empty() : {acc_tensor_type}\n"
f" %c0_acc_type = arith.constant {literal_zero_for_acc_type}: {acc_type.value}\n"
f" %acc = linalg.fill ins(%c0_acc_type : {acc_type.value}) outs(%init_acc : {acc_tensor_type}) -> {acc_tensor_type}\n"
f" %result = linalg.matmul {compilation_info_attr}ins(%lhs, %rhs: {lhs_tensor_type}, {rhs_tensor_type}) outs(%acc: {acc_tensor_type}) -> {acc_tensor_type}\n"
f" return %result: {acc_tensor_type}\n"
f"}}\n")
return MLIRFunction(
name=func_name,
definition=func_definition,
)
# Counter for producing unique compilation info attrs
generate_function.compilation_index = 0
# Intentionally fixed seed! We want full reproducibility here, both across runs
# and across machines.
# Intentionally not shared with local_pseudorandom_state to limit the ways
# in which shuffling testcases changes which random values are generated.
pseudorandom_generator_seed = 1
def contents_generator_tag(generator: MatrixGenerator):
if generator == MatrixGenerator.ZERO:
return ""
elif generator == MatrixGenerator.RANDOM:
global pseudorandom_generator_seed
pseudorandom_generator_seed = pseudorandom_generator_seed + 1
return f"!tag:iree:fully_specified_pseudorandom {pseudorandom_generator_seed}"
else:
raise ValueError(generator)
# Generate a matrix function argument in the output trace, as a dictionary
# to be passed to yaml.dump.
def generate_trace_matrix_arg(matrix_shape: list,
element_type: MatrixElemTypeId,
generator: MatrixGenerator):
result = {
"type": "hal.buffer_view",
"shape": matrix_shape,
"element_type": element_type.value,
}
generator_tag = contents_generator_tag(generator)
if generator_tag:
result["contents_generator"] = generator_tag
return result
# Generates the output trace for a testcase i.e. a single test function call,
# as a dictionary to be passed to yaml.dump.
def generate_trace(func_name: str, lhs_rhs_type: MatrixElemTypeId,
acc_type: MatrixElemTypeId, shape: TestShape):
args = [
generate_trace_matrix_arg([shape.m, shape.k], lhs_rhs_type,
MatrixGenerator.RANDOM),
generate_trace_matrix_arg([shape.k, shape.n], lhs_rhs_type,
MatrixGenerator.RANDOM),
]
if shape.accumulate:
args.append(
generate_trace_matrix_arg([shape.m, shape.n], acc_type,
MatrixGenerator.RANDOM))
result = generate_trace_matrix_arg([shape.m, shape.n], acc_type,
MatrixGenerator.ZERO)
return {
"type": "call",
"function": "module." + func_name,
"args": args,
"results": [result],
}
# Generates all output files' contents as strings.
def generate(lhs_rhs_type: MatrixElemTypeId, acc_type: MatrixElemTypeId,
shapes_id: ShapesId, compilation_info_id: CompilationInfoId):
function_definitions = {}
traces = []
for compilation_info in get_test_compilation_infos(compilation_info_id,
lhs_rhs_type):
for shape in get_test_shapes(shapes_id):
for dynamicity in get_dynamicities(shapes_id):
function = generate_function(lhs_rhs_type, acc_type, shape, dynamicity,
compilation_info)
# Different testcases may differ only by runtime parameters but
# share the same code. For example, dynamic-shapes testcases
# share the same code involing tensor<?x?xf32> even though the runtime
# value in the trace are different. That's why we append conditionally
# to traces, but unconditionally to function_definitions.
if function.name not in function_definitions:
function_definitions[function.name] = function.definition
traces.append(
generate_trace(function.name, lhs_rhs_type, acc_type, shape))
return (function_definitions, traces)
def parse_arguments():
parser = argparse.ArgumentParser(description="Generator of e2e matmul tests")
parser.add_argument("--output_code",
type=str,
help="Path of output .mlir file",
required=True)
parser.add_argument("--output_trace",
type=str,
help="Path of output .yaml trace file",
required=True)
parser.add_argument("--lhs_rhs_type",
type=str,
choices=["i8", "f32", "f16"],
help="Numeric type of input matrices",
required=True)
parser.add_argument("--shapes",
type=str,
choices=[s.value for s in ShapesId],
help="Collection of matrix shapes to test",
required=True)
parser.add_argument("--compilation_info",
type=str,
choices=[i.value for i in CompilationInfoId],
help="Collection of compilation info setups to test",
default="",
required=False)
parser.add_argument(
"--module_path",
type=str,
help=
"Module path (typically .vmfb) to be referenced in the output trace. Should match the output path of the iree-compile command generating the module.",
required=True)
parser.add_argument(
"--requirements",
type=str,
help=
"Target requirements for this module. Comma-separated. As in -iree-llvmcpu-target-cpu-features. If the target device does not meet all of the requirements, the test will be skipped.",
required=False)
return parser.parse_args()
def write_code_file(function_definitions, filename):
with open(filename, "w") as file:
for funcname in function_definitions:
file.write(function_definitions[funcname] + "\n")
def write_trace_file(traces, filename, module_path, requirements):
yaml_documents = [
{
"type": "context_load",
},
{
"type": "module_load",
"module": {
"name": "hal",
"type": "builtin",
}
},
{
"type": "module_load",
"module": {
"name": "module",
"type": "bytecode",
"path": os.path.relpath(module_path, os.path.dirname(filename))
}
},
]
if requirements:
yaml_documents.append({
"type": "requirements",
"target_features": [req.lstrip("+") for req in requirements.split(",")],
})
for trace in traces:
yaml_documents.append(trace)
dumped_yaml = yaml.dump_all(yaml_documents)
# TODO: This regex substitution is a hack as I couldn't figure how to have
# PyYAML dump our custom contents_generator into the desired format, e.g.
# contents_generator: !tag:iree:fully_specified_pseudorandom 368
# Someone with better knowledge of YAML is welcome to fix this, possibly by
# changing that format if that's appropriate! So long as the e2e_matmul tests
# pass.
processed_yaml = re.sub(r"'(![^']*)'", "\\1", dumped_yaml)
with open(filename, "w") as file:
file.write(processed_yaml)
# For now, the accumulator type can always be inferred from the input LHS/RHS
# type, so we do that. That is temporary: eventually there will be cases
# where the same input types are used with different accumulator types, e.g.
# f16 inputs with both f16 and f32 accumulator.
def infer_acc_type(lhs_rhs_type: MatrixElemTypeId):
if lhs_rhs_type == MatrixElemTypeId.I8:
return MatrixElemTypeId.I32
else:
return lhs_rhs_type
def main(args):
lhs_rhs_type = MatrixElemTypeId(args.lhs_rhs_type)
acc_type = infer_acc_type(lhs_rhs_type)
shapes_id = ShapesId(args.shapes)
compilation_info_id = CompilationInfoId(args.compilation_info)
(function_definitions, traces) = generate(lhs_rhs_type, acc_type, shapes_id,
compilation_info_id)
write_code_file(function_definitions, args.output_code)
write_trace_file(traces, args.output_trace, args.module_path,
args.requirements)
if __name__ == "__main__":
main(parse_arguments())