| # Lint as: python3 |
| # Copyright 2019 Google LLC |
| # |
| # Licensed under the Apache License, Version 2.0 (the "License"); |
| # you may not use this file except in compliance with the License. |
| # You may obtain a copy of the License at |
| # |
| # https://www.apache.org/licenses/LICENSE-2.0 |
| # |
| # Unless required by applicable law or agreed to in writing, software |
| # distributed under the License is distributed on an "AS IS" BASIS, |
| # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
| # See the License for the specific language governing permissions and |
| # limitations under the License. |
| |
| import numpy as np |
| from pyiree.tf.support import tf_test_utils |
| import tensorflow.compat.v2 as tf |
| |
| |
| class Conv2dModule(tf.Module): |
| |
| @tf.function(input_signature=[ |
| tf.TensorSpec([1, 4, 5, 1], tf.float32), |
| tf.TensorSpec([1, 1, 1, 1], tf.float32), |
| ]) |
| def conv2d_1451x1111_valid(self, img, kernel): |
| return tf.nn.conv2d(img, kernel, [1, 1, 1, 1], "VALID", name="result") |
| |
| @tf.function(input_signature=[ |
| tf.TensorSpec([2, 4, 5, 1], tf.float32), |
| tf.TensorSpec([1, 1, 1, 1], tf.float32), |
| ]) |
| def conv2d_2451x1111_valid(self, img, kernel): |
| return tf.nn.conv2d(img, kernel, [1, 1, 1, 1], "VALID", name="result") |
| |
| @tf.function(input_signature=[ |
| tf.TensorSpec([1, 4, 5, 1], tf.float32), |
| tf.TensorSpec([2, 3, 1, 1], tf.float32), |
| ]) |
| def conv2d_1451x2311_valid(self, img, kernel): |
| return tf.nn.conv2d(img, kernel, [1, 1, 1, 1], "VALID", name="result") |
| |
| @tf.function(input_signature=[ |
| tf.TensorSpec([1, 4, 5, 1], tf.float32), |
| tf.TensorSpec([2, 3, 1, 1], tf.float32), |
| ]) |
| def conv2d_1451x2311_same(self, img, kernel): |
| return tf.nn.conv2d(img, kernel, [1, 1, 1, 1], "SAME", name="result") |
| |
| @tf.function(input_signature=[ |
| tf.TensorSpec([2, 4, 5, 1], tf.float32), |
| tf.TensorSpec([2, 3, 1, 1], tf.float32), |
| ]) |
| def conv2d_2451x2311_same(self, img, kernel): |
| return tf.nn.conv2d(img, kernel, [1, 1, 1, 1], "SAME", name="result") |
| |
| @tf.function(input_signature=[ |
| tf.TensorSpec([1, 4, 5, 2], tf.float32), |
| tf.TensorSpec([3, 2, 2, 1], tf.float32), |
| ]) |
| def conv2d_1452x3221_same(self, img, kernel): |
| return tf.nn.conv2d(img, kernel, [1, 1, 1, 1], "SAME", name="result") |
| |
| @tf.function(input_signature=[ |
| tf.TensorSpec([1, 4, 5, 1], tf.float32), |
| tf.TensorSpec([1, 1, 1, 2], tf.float32), |
| ]) |
| def conv2d_1451x1112_same(self, img, kernel): |
| return tf.nn.conv2d(img, kernel, [1, 1, 1, 1], "SAME", name="result") |
| |
| @tf.function(input_signature=[ |
| tf.TensorSpec([1, 4, 5, 2], tf.float32), |
| tf.TensorSpec([1, 1, 2, 2], tf.float32), |
| ]) |
| def conv2d_1452x1122_same(self, img, kernel): |
| return tf.nn.conv2d(img, kernel, [1, 1, 1, 1], "SAME", name="result") |
| |
| @tf.function(input_signature=[ |
| tf.TensorSpec([1, 4, 5, 2], tf.float32), |
| tf.TensorSpec([2, 2, 2, 3], tf.float32), |
| ]) |
| def conv2d_1452x2223_same(self, img, kernel): |
| return tf.nn.conv2d(img, kernel, [1, 1, 1, 1], "SAME", name="result") |
| |
| @tf.function(input_signature=[ |
| tf.TensorSpec([1, 4, 5, 2], tf.float32), |
| tf.TensorSpec([2, 2, 2, 3], tf.float32), |
| ]) |
| def conv2d_1452x2223_valid(self, img, kernel): |
| return tf.nn.conv2d(img, kernel, [1, 1, 1, 1], "VALID", name="result") |
| |
| @tf.function(input_signature=[ |
| tf.TensorSpec([2, 4, 5, 2], tf.float32), |
| tf.TensorSpec([2, 2, 2, 3], tf.float32), |
| ]) |
| def conv2d_2452x2223_valid(self, img, kernel): |
| return tf.nn.conv2d(img, kernel, [1, 1, 1, 1], "VALID", name="result") |
| |
| |
| @tf_test_utils.compile_modules( |
| backends=[ |
| # TODO(laurenzo): Enable for all backends once vmla reference |
| # and Linalg vulkan impl lands. |
| # "iree_vulkan", |
| "tf", |
| ], |
| conv2d=Conv2dModule) |
| class ConvTest(tf_test_utils.SavedModelTestCase): |
| |
| def test_id_batch_size_1(self): |
| i = np.arange(20, dtype=np.float32).reshape([1, 4, 5, 1]) |
| k = np.ones([1, 1, 1, 1], dtype=np.float32) |
| r = self.modules.conv2d.all.conv2d_1451x1111_valid(i, k) |
| r.print().assert_all_close() |
| |
| def test_id_batch_size_2(self): |
| i = np.arange(40, dtype=np.float32).reshape([2, 4, 5, 1]) |
| k = np.ones([1, 1, 1, 1], dtype=np.float32) |
| r = self.modules.conv2d.all.conv2d_2451x1111_valid(i, k) |
| r.print().assert_all_close() |
| |
| def test_asym_kernel(self): |
| i = np.arange(20, dtype=np.float32).reshape([1, 4, 5, 1]) |
| k = np.array([[1, 4, 2], [-2, 0, 1]], dtype=np.float32).reshape(2, 3, 1, 1) |
| r = self.modules.conv2d.all.conv2d_1451x2311_valid(i, k) |
| r.print().assert_all_close() |
| |
| def test_padding(self): |
| i = np.arange(20, dtype=np.float32).reshape([1, 4, 5, 1]) |
| k = np.array([[1, 4, 2], [-2, 0, 1]], dtype=np.float32).reshape(2, 3, 1, 1) |
| r = self.modules.conv2d.all.conv2d_1451x2311_same(i, k) |
| r.print().assert_all_close() |
| |
| def test_batched_padding(self): |
| i = np.arange(40, dtype=np.float32).reshape([2, 4, 5, 1]) |
| k = np.array([[1, 4, 2], [-2, 0, 1]], dtype=np.float32).reshape(2, 3, 1, 1) |
| r = self.modules.conv2d.all.conv2d_2451x2311_same(i, k) |
| r.print().assert_all_close() |
| |
| def test_feature_reduce(self): |
| i = np.arange(40, dtype=np.float32).reshape([1, 4, 5, 2]) |
| k = np.ones([3, 2, 2, 1], dtype=np.float32) |
| r = self.modules.conv2d.all.conv2d_1452x3221_same(i, k) |
| r.print().assert_all_close() |
| |
| def test_feature_inflate(self): |
| i = np.arange(20, dtype=np.float32).reshape([1, 4, 5, 1]) |
| k = np.arange(2, dtype=np.float32).reshape([1, 1, 1, 2]) |
| r = self.modules.conv2d.all.conv2d_1451x1112_same(i, k) |
| r.print().assert_all_close() |
| |
| def test_feature_mix(self): |
| i = np.arange(40, dtype=np.float32).reshape([1, 4, 5, 2]) |
| k = np.arange(4, dtype=np.float32).reshape([1, 1, 2, 2]) |
| r = self.modules.conv2d.all.conv2d_1452x1122_same(i, k) |
| r.print().assert_all_close() |
| |
| def test_feature_padded(self): |
| i = np.arange(40, dtype=np.float32).reshape([1, 4, 5, 2]) |
| k = np.arange(24, dtype=np.float32).reshape([2, 2, 2, 3]) |
| r = self.modules.conv2d.all.conv2d_1452x2223_same(i, k) |
| r.print().assert_all_close() |
| |
| def test_feature_unpadded(self): |
| i = np.arange(40, dtype=np.float32).reshape([1, 4, 5, 2]) |
| k = np.arange(24, dtype=np.float32).reshape([2, 2, 2, 3]) |
| r = self.modules.conv2d.all.conv2d_1452x2223_valid(i, k) |
| r.print().assert_all_close() |
| |
| def test_batched_feature_unpadded(self): |
| i = np.arange(80, dtype=np.float32).reshape([2, 4, 5, 2]) |
| k = np.arange(24, dtype=np.float32).reshape([2, 2, 2, 3]) |
| r = self.modules.conv2d.all.conv2d_2452x2223_valid(i, k) |
| r.print().assert_all_close() |
| |
| |
| if __name__ == "__main__": |
| if hasattr(tf, "enable_v2_behavior"): |
| tf.enable_v2_behavior() |
| tf.test.main() |