blob: d37d9f1a1bd54c3b9a0323891300f39d928e2100 [file] [log] [blame]
#!/usr/bin/env python3
# Copyright 2021 The IREE Authors
#
# Licensed under the Apache License v2.0 with LLVM Exceptions.
# See https://llvm.org/LICENSE.txt for license information.
# SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
"""iree_generated_trace_runner_test generator for e2e matmul tests.
"""
import argparse
import os
import yaml
import re
import enum
import dataclasses
import typing
# Data type of matrix entries. The string values must match MLIR data types.
# This is a superset of the values accepted for the --lhs_rhs_types= flag,
# as this also includes accumulator-specific types like i32.
@enum.unique
class MatrixElemTypeId(enum.Enum):
I8 = "i8"
I32 = "i32"
F32 = "f32"
# Enumerates of the collections of shapes that we can generate tests for.
# The values are the accepted values for the --shapes= flag.
@enum.unique
class ShapesId(enum.Enum):
SMALL = "small"
LARGE = "large"
# Enumerates ways to construct MLIR tensor types.
@enum.unique
class Dynamicity(enum.Enum):
DYNAMIC = "dynamic" # Use '?' everywhere. Example: tensor<?x?xf32>.
STATIC = "static" # Use fixed values everywhere. Example: tensor<4x6xf32>.
MIXED = "mixed" # Randomly mix '?' and values. Example: tensor<?x4xf32>.
# Enumerates ways to initialize matrix buffer contents.
@enum.unique
class MatrixGenerator(enum.Enum):
ZERO = "zero" # Fill with zeros
IDENTITY = "identity" # Make an identity matrix (generalized to any shape).
RANDOM = "random" # Fill with (deterministic) pseudorandom values.
# Describes the shape of a matrix multiplication in the usual convention:
# the LHS is {m}x{k}, the RHS is {k}x{n}, the accumulator/result is {m}x{n}.
@dataclasses.dataclass
class TestShape:
m: int
k: int
n: int
# Describes how to construct MLIR tensor types and how to initialize buffer
# contents for a test case (for an already given TestShape, and already given
# matrix element data types).
@dataclasses.dataclass
class TestGenerator:
lhs: MatrixGenerator
rhs: MatrixGenerator
acc: MatrixGenerator
dynamicity: Dynamicity
# Returns the list of TestShape's to use for the collection of shapes
# identified by shapes_id.
def get_test_shapes(shapes_id: ShapesId):
# Notes:
# 1. Be conservative in adding more shapes, as that can include both the
# build and execution latency of tests. The build latency is nearly the
# same for all shapes, while execution latency grows cubicly i.e.
# linearly with m*k*n.
# 2. Some shapes are commented out: they used to be tested but have been
# disabled to improve the trade-off between test coverage and build
# latency.
if shapes_id == ShapesId.SMALL:
return [ # Small sizes, square matrices
# was range(1, 40) before trimming. The choice of 18 is so that we
# exercise a case just above 16, as 16 will be a common kernel width.
TestShape(m=x, k=x, n=x) for x in range(1, 18)
] + [
# Small sizes, slightly rectangular matrices
TestShape(m=2, k=3, n=4),
#TestShape(m=8, k=7, n=6),
#TestShape(m=15, k=16, n=17),
TestShape(m=14, k=19, n=23),
#TestShape(m=31, k=33, n=32),
TestShape(m=25, k=41, n=35),
# Small sizes, involving vectors (i.e. most rectangular cases)
TestShape(m=10, k=1, n=1),
TestShape(m=1, k=10, n=1),
TestShape(m=1, k=1, n=10),
#TestShape(m=1, k=10, n=10),
#TestShape(m=10, k=1, n=10),
#TestShape(m=10, k=10, n=1),
# Small sizes, involving other very small dimensions just above 1
TestShape(m=13, k=14, n=2),
TestShape(m=3, k=17, n=12),
TestShape(m=21, k=4, n=18),
# Medium sizes, square matrices
#TestShape(m=100, k=100, n=100),
# Medium sizes, slightly rectangular matrices
TestShape(m=101, k=102, n=103),
# Medium sizes, involving vectors (i.e. most rectangular cases)
TestShape(m=10000, k=1, n=1),
TestShape(m=1, k=10000, n=1),
TestShape(m=1, k=1, n=10000),
#TestShape(m=1, k=1000, n=1000),
#TestShape(m=1000, k=1, n=1000),
#TestShape(m=1000, k=1000, n=1),
# Medium sizes, involving other very small dimensions just above 1
TestShape(m=1300, k=1300, n=2),
#TestShape(m=1300, k=1300, n=3),
#TestShape(m=1300, k=1300, n=4),
]
if shapes_id == ShapesId.LARGE:
return [
# Large sizes, powers of two
TestShape(m=256, k=256, n=512),
#TestShape(m=512, k=512, n=128),
#TestShape(m=1024, k=512, n=512),
#TestShape(m=512, k=1024, n=512),
# Large sizes, powers of two minus one
TestShape(m=127, k=63, n=511),
# Large sizes, powers of two plus one
TestShape(m=129, k=65, n=513),
# Large sizes, misc.
#TestShape(m=200, k=300, n=400),
TestShape(m=123, k=456, n=789),
#TestShape(m=500, k=500, n=50),
# Be conservative in adding larger shapes. They can result in
# high latency tests. If you have to, consider splitting them
# out in a way that constrains the latency impact, e.g. by
# running on fewer backends/drivers or with fewer generators
# (see get_test_generators).
]
raise ValueError(shapes_id)
# Returns the list of TestGenerator's to use for the collection of shapes
# identified by shapes_id.
def get_test_generators(shapes_id: ShapesId):
if shapes_id == ShapesId.SMALL:
return [
# Generators using simple matrices for ease of numerical debugging.
# They don't add significant test coverage (all bugs are hit by
# tests using random matrices anyway). They are only here to make
# the bulk of our debugging easier.
TestGenerator(lhs=MatrixGenerator.IDENTITY,
rhs=MatrixGenerator.IDENTITY,
acc=MatrixGenerator.ZERO,
dynamicity=Dynamicity.DYNAMIC),
TestGenerator(lhs=MatrixGenerator.RANDOM,
rhs=MatrixGenerator.IDENTITY,
acc=MatrixGenerator.ZERO,
dynamicity=Dynamicity.DYNAMIC),
TestGenerator(lhs=MatrixGenerator.IDENTITY,
rhs=MatrixGenerator.RANDOM,
acc=MatrixGenerator.ZERO,
dynamicity=Dynamicity.DYNAMIC),
TestGenerator(lhs=MatrixGenerator.IDENTITY,
rhs=MatrixGenerator.IDENTITY,
acc=MatrixGenerator.RANDOM,
dynamicity=Dynamicity.DYNAMIC),
# Generators using general random matrices
TestGenerator(lhs=MatrixGenerator.RANDOM,
rhs=MatrixGenerator.RANDOM,
acc=MatrixGenerator.RANDOM,
dynamicity=Dynamicity.DYNAMIC),
TestGenerator(lhs=MatrixGenerator.RANDOM,
rhs=MatrixGenerator.RANDOM,
acc=MatrixGenerator.RANDOM,
dynamicity=Dynamicity.STATIC),
TestGenerator(lhs=MatrixGenerator.RANDOM,
rhs=MatrixGenerator.RANDOM,
acc=MatrixGenerator.RANDOM,
dynamicity=Dynamicity.MIXED),
]
if shapes_id == ShapesId.LARGE:
return [
# Fewer generators are used for large shapes, to limit the
# latency impact. Most bugs are going to be caught on small
# shapes anyway.
TestGenerator(lhs=MatrixGenerator.RANDOM,
rhs=MatrixGenerator.RANDOM,
acc=MatrixGenerator.RANDOM,
dynamicity=Dynamicity.DYNAMIC),
TestGenerator(lhs=MatrixGenerator.RANDOM,
rhs=MatrixGenerator.RANDOM,
acc=MatrixGenerator.RANDOM,
dynamicity=Dynamicity.STATIC),
]
raise ValueError(shapes_id)
# Intentionally fixed seed! We want full reproducibility here, both across runs
# and across machines.
# Intentionally not shared with pseudorandom_generator_seed to limit the ways
# in which shuffling testcases changes which random values are generated.
local_pseudorandom_state = 1
# A static size value, i.e. a size value that could appear in a MLIR type
# such as 'tensor<?x4xf32>'. None means a dynamic size, similar to '?' in MLIR.
@dataclasses.dataclass
class DimSize:
value: typing.Optional[int]
# Generates a compile-time MLIR size value, i.e. either a fixed positive integer
# or None (which maps to MLIR '?') depending on dynamicity.
def static_size(x: int, dynamicity: Dynamicity):
if dynamicity == Dynamicity.DYNAMIC:
return DimSize(None)
elif dynamicity == Dynamicity.STATIC:
return DimSize(x)
elif dynamicity == Dynamicity.MIXED:
global local_pseudorandom_state
# Same as C++ std::minstd_rand.
# Using a local pseudorandom generator implementation ensures that it's
# completely reproducible, across runs and across machines.
local_pseudorandom_state = (local_pseudorandom_state * 48271) % 2147483647
return DimSize(x if local_pseudorandom_state > 1073741824 else None)
else:
raise ValueError(dynamicity)
# Stringification used for generating MLIR types, e.g. tensor<?x?xf32>.
def int_or_question_mark(s: DimSize):
return s.value or "?"
# Stringification used for generating alphanumeric identifiers, e.g.
# func @somefunction_DYNxDYNxf32, where we can't use "?" characters.
def int_or_DYN(s: DimSize):
return s.value or "DYN"
# Describes the fully resolved static dimensions of all 3 input matrices,
# LHS, RHS, and Accumulator, in a testcase.
# Each value is a string, which may either represent a positive integer such as "123",
# or a "?" string, meaning a dynamic dimension as in MLIR.
# These string values are used to generate MLIR function names and tensor shapes.
@dataclasses.dataclass
class TestInputMatricesStaticShapes:
lhs_rows: DimSize
lhs_cols: DimSize
rhs_rows: DimSize
rhs_cols: DimSize
acc_rows: DimSize
acc_cols: DimSize
# Helper for generate_function. Generates TestInputMatricesStaticShapes, i.e.
# converts from the runtime shape dimensions in TestShape and given dynamicity to
# the set of static shapes to be used in a test function's input tensors.
def generate_static_shapes(shape: TestShape, dynamicity: Dynamicity):
return TestInputMatricesStaticShapes(
lhs_rows=static_size(shape.m, dynamicity),
lhs_cols=static_size(shape.k, dynamicity),
rhs_rows=static_size(shape.k, dynamicity),
rhs_cols=static_size(shape.n, dynamicity),
acc_rows=static_size(shape.m, dynamicity),
acc_cols=static_size(shape.n, dynamicity),
)
# Helper for generate_function.
# Generates a name for a test function in the generated MLIR code.
def generate_function_name(lhs_rhs_type: MatrixElemTypeId,
acc_type: MatrixElemTypeId,
static_shapes: TestInputMatricesStaticShapes):
input_t = lhs_rhs_type.value
acc_t = acc_type.value
lhs_m = int_or_DYN(static_shapes.lhs_rows)
lhs_k = int_or_DYN(static_shapes.lhs_cols)
rhs_k = int_or_DYN(static_shapes.rhs_rows)
rhs_n = int_or_DYN(static_shapes.rhs_cols)
acc_m = int_or_DYN(static_shapes.acc_rows)
acc_n = int_or_DYN(static_shapes.acc_cols)
return f"matmul_{lhs_m}x{lhs_k}x{input_t}_times_{rhs_k}x{rhs_n}x{input_t}_into_{acc_m}x{acc_n}x{acc_t}"
# Represents a generated test function.
@dataclasses.dataclass
class MLIRFunction:
name: str
definition: str
# Generates a test function in the generated MLIR code.
# The generated function will take the same arguments as linalg.matmul and
# will just call linalg.matmul with them, returning its result.
def generate_function(lhs_rhs_type: MatrixElemTypeId,
acc_type: MatrixElemTypeId, shape: TestShape,
dynamicity: Dynamicity):
static_shapes = generate_static_shapes(shape, dynamicity)
func_name = generate_function_name(lhs_rhs_type, acc_type, static_shapes)
lhs_m = int_or_question_mark(static_shapes.lhs_rows)
lhs_k = int_or_question_mark(static_shapes.lhs_cols)
rhs_k = int_or_question_mark(static_shapes.rhs_rows)
rhs_n = int_or_question_mark(static_shapes.rhs_cols)
acc_m = int_or_question_mark(static_shapes.acc_rows)
acc_n = int_or_question_mark(static_shapes.acc_cols)
lhs_tensor_type = f"tensor<{lhs_m}x{lhs_k}x{lhs_rhs_type.value}>"
rhs_tensor_type = f"tensor<{rhs_k}x{rhs_n}x{lhs_rhs_type.value}>"
acc_tensor_type = f"tensor<{acc_m}x{acc_n}x{acc_type.value}>"
func_definition = (
f"func @{func_name}(%lhs: {lhs_tensor_type}, %rhs: {rhs_tensor_type}, %acc: {acc_tensor_type}) -> {acc_tensor_type} {{\n"
f" %result = linalg.matmul ins(%lhs, %rhs: {lhs_tensor_type}, {rhs_tensor_type}) outs(%acc: {acc_tensor_type}) -> {acc_tensor_type}\n"
f" return %result: {acc_tensor_type}\n"
f"}}\n")
return MLIRFunction(
name=func_name,
definition=func_definition,
)
# Intentionally fixed seed! We want full reproducibility here, both across runs
# and across machines.
# Intentionally not shared with local_pseudorandom_state to limit the ways
# in which shuffling testcases changes which random values are generated.
pseudorandom_generator_seed = 1
# Generates a contents_generator tag to use in the output trace.
def contents_generator_tag(generator: MatrixGenerator):
if generator == MatrixGenerator.ZERO:
return ""
elif generator == MatrixGenerator.IDENTITY:
return "!tag:iree:identity_matrix"
elif generator == MatrixGenerator.RANDOM:
global pseudorandom_generator_seed
pseudorandom_generator_seed = pseudorandom_generator_seed + 1
return f"!tag:iree:fully_specified_pseudorandom {pseudorandom_generator_seed}"
else:
raise ValueError(generator)
# Generate a matrix function argument in the output trace, as a dictionary
# to be passed to yaml.dump.
def generate_trace_matrix_arg(matrix_shape: list,
element_type: MatrixElemTypeId,
generator: MatrixGenerator):
result = {
"type": "hal.buffer_view",
"shape": matrix_shape,
"element_type": element_type.value,
}
generator_tag = contents_generator_tag(generator)
if generator_tag:
result["contents_generator"] = generator_tag
return result
# Generates the output trace for a testcase i.e. a single test function call,
# as a dictionary to be passed to yaml.dump.
def generate_trace(func_name: str, lhs_rhs_type: MatrixElemTypeId,
acc_type: MatrixElemTypeId, shape: TestShape,
gen: TestGenerator):
lhs_arg = generate_trace_matrix_arg([shape.m, shape.k], lhs_rhs_type, gen.lhs)
rhs_arg = generate_trace_matrix_arg([shape.k, shape.n], lhs_rhs_type, gen.rhs)
acc_arg = generate_trace_matrix_arg([shape.m, shape.n], acc_type, gen.acc)
result_arg = generate_trace_matrix_arg([shape.m, shape.n], acc_type,
MatrixGenerator.ZERO)
return {
"type": "call",
"function": "module." + func_name,
"args": [
lhs_arg,
rhs_arg,
acc_arg,
],
"results": [result_arg,],
}
# Generates all output files' contents as strings.
def generate(lhs_rhs_type: MatrixElemTypeId, acc_type: MatrixElemTypeId,
shapes_id: ShapesId):
function_definitions = {}
traces = []
for shape in get_test_shapes(shapes_id):
for gen in get_test_generators(shapes_id):
function = generate_function(lhs_rhs_type, acc_type, shape,
gen.dynamicity)
# Different testcases may differ only by runtime parameters but
# share the same code. For example, dynamic-shapes testcases
# share the same code involing tensor<?x?xf32> even though the runtime
# value in the trace are different. That's why we call
# generate_function conditionally, and generate_trace unconditionally.
if function.name not in function_definitions:
function_definitions[function.name] = function.definition
traces.append(
generate_trace(function.name, lhs_rhs_type, acc_type, shape, gen))
return (function_definitions, traces)
def parse_arguments():
parser = argparse.ArgumentParser(description="Generator of e2e matmul tests")
parser.add_argument("--output_code",
type=str,
help="Path of output .mlir file",
required=True)
parser.add_argument("--output_trace",
type=str,
help="Path of output .yaml trace file",
required=True)
parser.add_argument("--lhs_rhs_type",
type=str,
choices=["i8", "f32"],
help="Numeric type of input matrices",
required=True)
parser.add_argument("--shapes",
type=str,
choices=[s.value for s in ShapesId],
help="Collection of matrix shapes to test",
required=True)
parser.add_argument(
"--module_path",
type=str,
help=
"Module path (typically .vmfb) to be referenced in the output trace. Should match the output path of the iree-translate command generating the module.",
required=True)
return parser.parse_args()
def write_code_file(function_definitions, filename):
with open(filename, "w") as file:
for funcname in function_definitions:
file.write(function_definitions[funcname] + "\n")
def write_trace_file(traces, filename, module_path):
yaml_documents = [
{
"type": "context_load",
},
{
"type": "module_load",
"module": {
"name": "hal",
"type": "builtin",
}
},
{
"type": "module_load",
"module": {
"name": "module",
"type": "bytecode",
"path": os.path.relpath(module_path, os.path.dirname(filename))
}
},
]
for trace in traces:
yaml_documents.append(trace)
dumped_yaml = yaml.dump_all(yaml_documents, sort_keys=False)
processed_yaml = re.sub(r"'(![^']*)'", "\\1", dumped_yaml)
with open(filename, "w") as file:
file.write(processed_yaml)
# For now, the accumulator type can always be inferred from the input LHS/RHS
# type, so we do that. That is temporary: eventually there will be cases
# where the same input types are used with different accumulator types, e.g.
# f16 inputs with both f16 and f32 accumulator.
def infer_acc_type(lhs_rhs_type: MatrixElemTypeId):
if lhs_rhs_type == MatrixElemTypeId.I8:
return MatrixElemTypeId.I32
else:
return lhs_rhs_type
def main(args):
lhs_rhs_type = MatrixElemTypeId(args.lhs_rhs_type)
acc_type = infer_acc_type(lhs_rhs_type)
shapes_id = ShapesId(args.shapes)
(function_definitions, traces) = generate(lhs_rhs_type, acc_type, shapes_id)
write_code_file(function_definitions, args.output_code)
write_trace_file(traces, args.output_trace, args.module_path)
if __name__ == "__main__":
main(parse_arguments())