| # Lint as: python3 |
| # Copyright 2019 Google LLC |
| # |
| # Licensed under the Apache License, Version 2.0 (the "License"); |
| # you may not use this file except in compliance with the License. |
| # You may obtain a copy of the License at |
| # |
| # https://www.apache.org/licenses/LICENSE-2.0 |
| # |
| # Unless required by applicable law or agreed to in writing, software |
| # distributed under the License is distributed on an "AS IS" BASIS, |
| # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
| # See the License for the specific language governing permissions and |
| # limitations under the License. |
| """Tests explicitly specifying a backend in Python.""" |
| |
| import numpy as np |
| from pyiree.tf.support import tf_test_utils |
| import tensorflow.compat.v2 as tf |
| |
| |
| class SimpleArithmeticModule(tf.Module): |
| |
| @tf.function(input_signature=[ |
| tf.TensorSpec([4], tf.float32), |
| tf.TensorSpec([4], tf.float32) |
| ]) |
| def simple_mul(self, a, b): |
| return a * b |
| |
| |
| @tf_test_utils.compile_module(SimpleArithmeticModule) |
| class ExplicitBackendTest(tf_test_utils.SavedModelTestCase): |
| |
| def test_explicit(self): |
| a = np.array([1., 2., 3., 4.], dtype=np.float32) |
| b = np.array([400., 5., 6., 7.], dtype=np.float32) |
| |
| # Demonstrates simple, one by one invocation of functions against |
| # different explicit backends. Individual backends can be accessed off of |
| # the module by name ('tf', 'iree_vmla' below). |
| tf_c = self.compiled_modules.tf.simple_mul(a, b) |
| print("TF Result:", tf_c) |
| iree_c = self.compiled_modules.iree_vmla.simple_mul(a, b) |
| print("IREE Result:", iree_c) |
| self.assertAllClose(tf_c, iree_c) |
| |
| def test_multi(self): |
| a = np.array([1., 2., 3., 4.], dtype=np.float32) |
| b = np.array([400., 5., 6., 7.], dtype=np.float32) |
| |
| # Evaluating against multiple backends can be done with the multi() method, |
| # which takes a regex string matching backend names. This also returns a |
| # MultiResults tuple with actual results keyed by backend name. These also |
| # have convenience methods like print() and assert_all_close(). |
| vmod = self.compiled_modules.multi("tf|iree") |
| r = vmod.simple_mul(a, b) |
| r.print().assert_all_close() |
| |
| def test_get_module(self): |
| a = np.array([1., 2., 3., 4.], dtype=np.float32) |
| b = np.array([400., 5., 6., 7.], dtype=np.float32) |
| |
| # Evaluating against all backends can be done with self.get_module(). This |
| # also returns a MultiResults tuple with actual results keyed by backend |
| # name. |
| r = self.get_module().simple_mul(a, b) |
| r.print().assert_all_close() |
| |
| |
| if __name__ == "__main__": |
| if hasattr(tf, "enable_v2_behavior"): |
| tf.enable_v2_behavior() |
| tf.test.main() |