blob: 903b34c3ea26204a82061657a44f3c0d87da605e [file] [log] [blame]
# Lint as: python3
# Copyright 2019 Google LLC
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# https://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Tests explicitly specifying a backend in Python."""
import numpy as np
from pyiree.tf.support import tf_test_utils
import tensorflow.compat.v2 as tf
class SimpleArithmeticModule(tf.Module):
@tf.function(input_signature=[
tf.TensorSpec([4], tf.float32),
tf.TensorSpec([4], tf.float32)
])
def simple_mul(self, a, b):
return a * b
@tf_test_utils.compile_module(SimpleArithmeticModule)
class ExplicitBackendTest(tf_test_utils.SavedModelTestCase):
def test_explicit(self):
a = np.array([1., 2., 3., 4.], dtype=np.float32)
b = np.array([400., 5., 6., 7.], dtype=np.float32)
# Demonstrates simple, one by one invocation of functions against
# different explicit backends. Individual backends can be accessed off of
# the module by name ('tf', 'iree_vmla' below).
tf_c = self.compiled_modules.tf.simple_mul(a, b)
print("TF Result:", tf_c)
iree_c = self.compiled_modules.iree_vmla.simple_mul(a, b)
print("IREE Result:", iree_c)
self.assertAllClose(tf_c, iree_c)
def test_multi(self):
a = np.array([1., 2., 3., 4.], dtype=np.float32)
b = np.array([400., 5., 6., 7.], dtype=np.float32)
# Evaluating against multiple backends can be done with the multi() method,
# which takes a regex string matching backend names. This also returns a
# MultiResults tuple with actual results keyed by backend name. These also
# have convenience methods like print() and assert_all_close().
vmod = self.compiled_modules.multi("tf|iree")
r = vmod.simple_mul(a, b)
r.print().assert_all_close()
def test_get_module(self):
a = np.array([1., 2., 3., 4.], dtype=np.float32)
b = np.array([400., 5., 6., 7.], dtype=np.float32)
# Evaluating against all backends can be done with self.get_module(). This
# also returns a MultiResults tuple with actual results keyed by backend
# name.
r = self.get_module().simple_mul(a, b)
r.print().assert_all_close()
if __name__ == "__main__":
if hasattr(tf, "enable_v2_behavior"):
tf.enable_v2_behavior()
tf.test.main()