blob: a9f975923ed886b2f8b000eb8991d3167dfde206 [file] [log] [blame]
# Lint as: python3
# Copyright 2020 Google LLC
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# https://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Test concat op."""
from pyiree.tf.support import tf_test_utils
from pyiree.tf.support import tf_utils
import tensorflow.compat.v2 as tf
class ConcatOpsModule(tf.Module):
@tf.function(input_signature=[
tf.TensorSpec([1, 5, 0], tf.float32),
tf.TensorSpec([1, 5, 1], tf.float32),
])
def concat_zero_dim(self, a, b):
return tf.concat([a, b], axis=2)
@tf.function(input_signature=[
tf.TensorSpec([1, 5, 1], tf.float32),
tf.TensorSpec([1, 5, 1], tf.float32),
])
def concat0axis(self, a, b):
return tf.concat([a, b], axis=0)
@tf.function(input_signature=[
tf.TensorSpec([1, 5, 1], tf.float32),
tf.TensorSpec([1, 5, 1], tf.float32),
])
def concat1axis(self, a, b):
return tf.concat([a, b], axis=1)
@tf.function(input_signature=[
tf.TensorSpec([1, 5, 1], tf.float32),
tf.TensorSpec([1, 5, 1], tf.float32),
])
def concat2axis(self, a, b):
return tf.concat([a, b], axis=2)
@tf_test_utils.compile_module(ConcatOpsModule)
class ConcatOpsTest(tf_test_utils.SavedModelTestCase):
def test_concat_zero_dim(self):
tf_utils.set_random_seed()
m = self.get_module()
a = tf.random.uniform([1, 5, 0], dtype=tf.float32)
b = tf.random.uniform([1, 5, 1], dtype=tf.float32)
dst = m.concat_zero_dim(a, b)
dst.assert_all_close()
def concat0axis(self):
tf_utils.set_random_seed()
m = self.get_module()
a = tf.random.uniform([1, 5, 1], dtype=tf.float32)
b = tf.random.uniform([1, 5, 1], dtype=tf.float32)
dst = m.concat_zero_dim(a, b)
dst.assert_all_close()
def concat1axis(self):
tf_utils.set_random_seed()
m = self.get_module()
a = tf.random.uniform([1, 5, 1], dtype=tf.float32)
b = tf.random.uniform([1, 5, 1], dtype=tf.float32)
dst = m.concat_zero_dim(a, b)
dst.assert_all_close()
def concat2axis(self):
tf_utils.set_random_seed()
m = self.get_module()
a = tf.random.uniform([1, 5, 1], dtype=tf.float32)
b = tf.random.uniform([1, 5, 1], dtype=tf.float32)
dst = m.concat_zero_dim(a, b)
dst.assert_all_close()
if __name__ == "__main__":
if hasattr(tf, "enable_v2_behavior"):
tf.enable_v2_behavior()
tf.test.main()