| # Lint as: python3 |
| # Copyright 2020 Google LLC |
| # |
| # Licensed under the Apache License, Version 2.0 (the "License"); |
| # you may not use this file except in compliance with the License. |
| # You may obtain a copy of the License at |
| # |
| # https://www.apache.org/licenses/LICENSE-2.0 |
| # |
| # Unless required by applicable law or agreed to in writing, software |
| # distributed under the License is distributed on an "AS IS" BASIS, |
| # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
| # See the License for the specific language governing permissions and |
| # limitations under the License. |
| """Test concat op.""" |
| |
| from pyiree.tf.support import tf_test_utils |
| from pyiree.tf.support import tf_utils |
| import tensorflow.compat.v2 as tf |
| |
| |
| class ConcatOpsModule(tf.Module): |
| |
| @tf.function(input_signature=[ |
| tf.TensorSpec([1, 5, 0], tf.float32), |
| tf.TensorSpec([1, 5, 1], tf.float32), |
| ]) |
| def concat_zero_dim(self, a, b): |
| return tf.concat([a, b], axis=2) |
| |
| @tf.function(input_signature=[ |
| tf.TensorSpec([1, 5, 1], tf.float32), |
| tf.TensorSpec([1, 5, 1], tf.float32), |
| ]) |
| def concat0axis(self, a, b): |
| return tf.concat([a, b], axis=0) |
| |
| @tf.function(input_signature=[ |
| tf.TensorSpec([1, 5, 1], tf.float32), |
| tf.TensorSpec([1, 5, 1], tf.float32), |
| ]) |
| def concat1axis(self, a, b): |
| return tf.concat([a, b], axis=1) |
| |
| @tf.function(input_signature=[ |
| tf.TensorSpec([1, 5, 1], tf.float32), |
| tf.TensorSpec([1, 5, 1], tf.float32), |
| ]) |
| def concat2axis(self, a, b): |
| return tf.concat([a, b], axis=2) |
| |
| |
| @tf_test_utils.compile_module(ConcatOpsModule) |
| class ConcatOpsTest(tf_test_utils.SavedModelTestCase): |
| |
| def test_concat_zero_dim(self): |
| tf_utils.set_random_seed() |
| m = self.get_module() |
| a = tf.random.uniform([1, 5, 0], dtype=tf.float32) |
| b = tf.random.uniform([1, 5, 1], dtype=tf.float32) |
| dst = m.concat_zero_dim(a, b) |
| dst.assert_all_close() |
| |
| def concat0axis(self): |
| tf_utils.set_random_seed() |
| m = self.get_module() |
| a = tf.random.uniform([1, 5, 1], dtype=tf.float32) |
| b = tf.random.uniform([1, 5, 1], dtype=tf.float32) |
| dst = m.concat_zero_dim(a, b) |
| dst.assert_all_close() |
| |
| def concat1axis(self): |
| tf_utils.set_random_seed() |
| m = self.get_module() |
| a = tf.random.uniform([1, 5, 1], dtype=tf.float32) |
| b = tf.random.uniform([1, 5, 1], dtype=tf.float32) |
| dst = m.concat_zero_dim(a, b) |
| dst.assert_all_close() |
| |
| def concat2axis(self): |
| tf_utils.set_random_seed() |
| m = self.get_module() |
| a = tf.random.uniform([1, 5, 1], dtype=tf.float32) |
| b = tf.random.uniform([1, 5, 1], dtype=tf.float32) |
| dst = m.concat_zero_dim(a, b) |
| dst.assert_all_close() |
| |
| |
| if __name__ == "__main__": |
| if hasattr(tf, "enable_v2_behavior"): |
| tf.enable_v2_behavior() |
| tf.test.main() |