|  | // This file contains a file that compiles down to VM dialect. | 
|  | // | 
|  | // The contents of this file do not matter, it is simply used to show the | 
|  | // reduction in the size of the test case. The assumed bug in this file is that | 
|  | // when the file is lowered to VM dialect, it produces the operation "vm.add", | 
|  | // which is assumed to have a bug. The interesting.py script simply greps for | 
|  | // "vm.add" in the output of the compilation. | 
|  | // | 
|  | // The expected reduced test case output can be seen in output.mlir file. | 
|  |  | 
|  | !tmp_tensor_t = tensor<16x128xf32> | 
|  | !in_tensor_t = tensor<16x128x128xf32> | 
|  | !out_tensor_t = tensor<16x128x128xf32> | 
|  |  | 
|  | func.func @func(%input : !out_tensor_t) -> !out_tensor_t { | 
|  | %cst_0 = arith.constant 0.0 : f32 | 
|  | %cst_1 = arith.constant 1.0 : f32 | 
|  | %cst_min = arith.constant -3.40282347E+38 : f32 | 
|  |  | 
|  | %input_max_empty = tensor.empty() : !tmp_tensor_t | 
|  | %input_max_filled = linalg.fill ins(%cst_min : f32) | 
|  | outs(%input_max_empty : !tmp_tensor_t) -> !tmp_tensor_t | 
|  | %input_max = linalg.generic | 
|  | {indexing_maps = [affine_map<(d0, d1, d2) -> (d0, d1, d2)>, | 
|  | affine_map<(d0, d1, d2) -> (d0, d1)>], | 
|  | iterator_types = ["parallel", "parallel", "reduction"]} | 
|  | ins(%input : !in_tensor_t) | 
|  | outs(%input_max_filled : !tmp_tensor_t) { | 
|  | ^bb0(%arg0: f32, %arg1: f32): | 
|  | %max = arith.maximumf %arg0, %arg1 : f32 | 
|  | linalg.yield %max : f32 | 
|  | } -> !tmp_tensor_t | 
|  |  | 
|  | %exps_empty = tensor.empty() : !out_tensor_t | 
|  | %exps_sum_empty = tensor.empty() : !tmp_tensor_t | 
|  | %exps_sum_filled = linalg.fill ins(%cst_0 : f32) | 
|  | outs(%exps_sum_empty : !tmp_tensor_t) -> !tmp_tensor_t | 
|  | %exps = linalg.generic | 
|  | {indexing_maps = [affine_map<(d0, d1, d2) -> (d0, d1, d2)>, | 
|  | affine_map<(d0, d1, d2) -> (d0, d1)>, | 
|  | affine_map<(d0, d1, d2) -> (d0, d1, d2)>], | 
|  | iterator_types = ["parallel", "parallel", "parallel"]} | 
|  | ins(%input, %input_max : !in_tensor_t, !tmp_tensor_t) | 
|  | outs(%exps_empty : !out_tensor_t) { | 
|  | ^bb0(%arg0: f32, %arg1: f32, %arg2: f32): | 
|  | %sub = arith.subf %arg0, %arg1 : f32 | 
|  | %exp = math.exp %sub : f32 | 
|  | linalg.yield %exp: f32 | 
|  | } -> (!out_tensor_t) | 
|  |  | 
|  | %exps_sum = linalg.generic | 
|  | {indexing_maps = [affine_map<(d0, d1, d2) -> (d0, d1, d2)>, | 
|  | affine_map<(d0, d1, d2) -> (d0, d1)>], | 
|  | iterator_types = ["parallel", "parallel", "reduction"]} | 
|  | ins(%exps : !out_tensor_t) | 
|  | outs(%exps_sum_filled : !tmp_tensor_t) { | 
|  | ^bb0(%exp: f32, %acc: f32): | 
|  | %add = arith.addf %exp, %acc : f32 | 
|  | linalg.yield %add : f32 | 
|  | } -> (!tmp_tensor_t) | 
|  |  | 
|  | %res_empty = tensor.empty() : !out_tensor_t | 
|  | %res = linalg.generic | 
|  | {indexing_maps = [affine_map<(d0, d1, d2) -> (d0, d1, d2)>, | 
|  | affine_map<(d0, d1, d2) -> (d0, d1)>, | 
|  | affine_map<(d0, d1, d2) -> (d0, d1, d2)>], | 
|  | iterator_types = ["parallel", "parallel", "parallel"]} | 
|  | ins(%exps, %exps_sum : !out_tensor_t, !tmp_tensor_t) | 
|  | outs(%res_empty : !out_tensor_t) { | 
|  | ^bb0(%arg0: f32, %arg1: f32, %arg2: f32): | 
|  | %div = arith.addf %arg0, %arg1 : f32 | 
|  | linalg.yield %div : f32 | 
|  | } -> !out_tensor_t | 
|  |  | 
|  | return %res: !out_tensor_t | 
|  | } |