blob: 06ab2bcb532204daba38bdeb77d02c8d96bc8ee2 [file] [log] [blame]
!in_tensor_t = tensor<8x64xf32>
!out_tensor_t = tensor<8xf32>
func.func @reduce(%arg : !in_tensor_t) -> (!out_tensor_t) {
%cst = arith.constant -0.000000e+00 : f32
%0 = tensor.empty() : !out_tensor_t
%1 = linalg.fill ins(%cst : f32) outs(%0 : !out_tensor_t) -> !out_tensor_t
%5 = linalg.generic {
indexing_maps = [affine_map<(d0, d1) -> (d0, d1)>,
affine_map<(d0, d1) -> (d0)>],
iterator_types = ["parallel", "reduction"]}
ins(%arg : !in_tensor_t) outs(%1 : !out_tensor_t) {
^bb0(%arg3: f32, %arg4: f32):
%4 = arith.addf %arg3, %arg4 : f32
linalg.yield %4 : f32
} -> !out_tensor_t
%6 = tensor.empty() : !out_tensor_t
%7 = linalg.generic {
indexing_maps = [affine_map<(d0) -> (d0)>,
affine_map<(d0) -> (d0)>],
iterator_types = ["parallel"]}
ins(%5 : !out_tensor_t) outs(%6 : !out_tensor_t) {
^bb0(%arg3: f32, %arg4: f32):
%4 = math.sqrt %arg3 : f32
linalg.yield %4 : f32
} -> !out_tensor_t
return %7 : !out_tensor_t
}
// RUN: iree-opt %s --iree-hal-target-backends=cuda \
// RUN: --iree-abi-transformation-pipeline \
// RUN: --iree-flow-transformation-pipeline \
// RUN: --iree-stream-transformation-pipeline \
// RUN: --iree-hal-configuration-pipeline | \
// RUN: iree-opt --pass-pipeline='builtin.module(hal.executable(hal.executable.variant(iree-llvmgpu-lower-executable-target)))' \
// RUN: --iree-codegen-llvmgpu-enable-transform-dialect-jit=false \
// RUN: --iree-codegen-llvmgpu-use-transform-dialect=%p/reduction_eltwise_codegen_spec.mlir | \
// RUN: FileCheck %s --check-prefix=CHECK
// RUN: iree-compile %s --iree-hal-target-backends=cuda \
// RUN: --iree-codegen-llvmgpu-enable-transform-dialect-jit=false \
// RUN: --iree-codegen-llvmgpu-use-transform-dialect=%p/reduction_eltwise_codegen_spec.mlir | \
// RUN: iree-run-module --module=- --function=reduce --device=cuda --input="8x64xf32=1" |\
// RUN: FileCheck %s --check-prefix=EXEC
/// Note: the current --iree-codegen-llvmgpu-enable-transform-dialect-jit only works for exactly this reduction atm.
// RUN: iree-compile %s --iree-hal-target-backends=cuda | \
// RUN: iree-run-module --module=- --function=reduce --device=cuda --input="8x64xf32=1" |\
// RUN: FileCheck %s --check-prefix=EXEC
// CHECK-DAG: %[[C0:.*]] = arith.constant 0 : index
// CHECK-DAG: %[[C1:.*]] = arith.constant 1 : index
// CHECK-DAG: %[[workgroup_id_x:.*]] = hal.interface.workgroup.id[0] : index
// CHECK-DAG: %[[SHMEM_ALLOC:.*]] = memref.alloc() {alignment = 64 : i64} : memref<1x2xf32, #gpu.address_space<workgroup>>
// CHECK-DAG: %[[TIDX:.]] = gpu.thread_id x
// CHECK-DAG: %[[TIDY:.]] = gpu.thread_id y
// CHECK-DAG: %[[CONDXIS0:.*]] = arith.cmpi eq, %[[TIDX]], %[[C0]] : index
// Distributed reduction: everyone loads then 5 xor + addf expected
// CHECK: vector.transfer_read %{{.*}}[%[[workgroup_id_x]], %[[TIDY]], %[[TIDX]]]
// CHECK-COUNT-5: gpu.shuffle xor{{.*}}{{[[:space:]].*}}{{.*}} arith.addf
// CHECK: %[[RES:.*]] = arith.addf %{{.*}}
// CHECK: %[[RES_VEC:.*]] = vector.broadcast %[[RES]] : f32 to vector<f32>
// CHECK: scf.if %[[CONDXIS0]]
// CHECK: vector.transfer_write %[[RES_VEC]], %[[SHMEM_ALLOC]][%[[C0]], %[[TIDY]]]
// CHECK: gpu.barrier
// Last part is not distributed atm and is only ran by threadIdx.x == 0 and threadIdx.y == 0.
// It should contain the fused elementwise operation.
// CHECK: %[[CONDYIS0:.*]] = arith.cmpi ult, %[[TIDY]], %[[C1]] : index
// TODO: cond eq 0 and cond ult 1 do not CSE atm.
// CHECK: %[[CONXANDYARE0:.*]] = arith.andi %{{.*}}, %[[CONDYIS0]] : i1
// CHECK: scf.if %[[CONXANDYARE0]] {
// CHECK: vector.transfer_read
// CHECK: vector.reduction <add>
// CHECK: math.sqrt
// CHECK: vector.transfer_write
// CHECK: gpu.barrier
// EXEC: result[0]: hal.buffer_view
// EXEC-NEXT: 8xf32=8 8 8 8 8 8 8 8