| // RUN: (iree-compile --iree-execution-model=async-external --iree-hal-target-backends=vmvx %p/module_a.mlir -o=%t.module_a.vmfb && \ |
| // RUN: iree-compile --iree-execution-model=async-external --iree-hal-target-backends=vmvx %p/module_b.mlir -o=%t.module_b.vmfb && \ |
| // RUN: iree-compile --iree-execution-model=async-external --iree-hal-target-backends=vmvx %s | \ |
| // RUN: iree-run-module \ |
| // RUN: --device=local-task \ |
| // RUN: --module=%t.module_a.vmfb \ |
| // RUN: --module=%t.module_b.vmfb \ |
| // RUN: --module=- --function=run \ |
| // RUN: --input=4096xf32=-2.0 \ |
| // RUN: --expected_output=4096xf32=4.0) | \ |
| // RUN: FileCheck %s |
| // CHECK: [SUCCESS] |
| |
| // Functions declared in external modules - note `module_name.func_name`. |
| // `abs` will allocate transient memory to pass back the result. |
| // `mul` will use the provided output memory to produce the result in-place. |
| // Note that though the returned SSA tensor value shares its storage with the |
| // `%output` arg the returned value *must* be used to reference the produced |
| // version of its contents. |
| // |
| // In this asynchronous example both functions follow the "coarse-fences" ABI |
| // model where the compiler inserts a wait and signal fence pair on each call. |
| // To enable this the modules must compiled with the |
| // `--iree-execution-model=async-external` and the external declarations must |
| // be annotated with the `iree.abi.model` attribute so that the compiler knows |
| // the calls have the fences. Note that it's possible to have any combination of |
| // asynchronous and synchronous modules and calls in the same program. |
| func.func private @module_a.abs(%input: tensor<4096xf32>) -> tensor<4096xf32> attributes { |
| iree.abi.model = "coarse-fences" |
| } |
| func.func private @module_b.mul(%lhs: tensor<4096xf32>, %rhs: tensor<4096xf32>, %output: tensor<4096xf32> {iree.abi.output = 0 : index}) -> tensor<4096xf32> attributes { |
| iree.abi.model = "coarse-fences" |
| } |
| |
| // Top-level pipeline invoked by the command line tool. |
| // Since this is compiled with `--iree-execution-model=async-external` this |
| // export will have a wait and signal fence pair that allows the hosting |
| // application to execute the entire pipeline asynchronously. |
| func.func @run(%input: tensor<4096xf32>) -> tensor<4096xf32> { |
| // Make a simple call that produces a transient result tensor. |
| // Since the call is asynchronous the result is not ready upon return to this |
| // function and it'll be passed with the fence down to the consumer call. |
| %input_abs = call @module_a.abs(%input) : (tensor<4096xf32>) -> tensor<4096xf32> |
| |
| // Allocate output storage for the next call. This isn't needed here and |
| // functionally equivalent to `abs` above allocating its own transient memory |
| // but demonstrates how in-place operations can be performed across module |
| // boundaries. The allocation is asynchronous and will be passed with a fence |
| // indicating when it's ready to the consumer call. |
| %result_storage = tensor.empty() : tensor<4096xf32> |
| |
| // Make a call that produces its output in the given `%result_storage`. |
| // The inputs and result storage are passed with their respective fences and |
| // no guarantee that they are available at the time the call is made. The |
| // `mul` implementation will chain its work with the fences and only signal |
| // its fence when all transitive dependencies and its own execution has |
| // completed. |
| %result = call @module_b.mul(%input_abs, %input_abs, %result_storage) : (tensor<4096xf32>, tensor<4096xf32>, tensor<4096xf32>) -> tensor<4096xf32> |
| |
| // Return the final result value - note that we pass back the result of the |
| // `mul` call that aliases the `%result_storage` representing the computed |
| // value and not just `%result_storage`. This is required as the `%result` has |
| // an associated fence indicating when it is available for use and using |
| // `%result_storage` would just wait for the storage to be allocated and not |
| // for the contents to have been populated by `mul`. |
| return %result : tensor<4096xf32> |
| } |