|  | # Lint as: python3 | 
|  | # Copyright 2020 Google LLC | 
|  | # | 
|  | # Licensed under the Apache License, Version 2.0 (the "License"); | 
|  | # you may not use this file except in compliance with the License. | 
|  | # You may obtain a copy of the License at | 
|  | # | 
|  | #      https://www.apache.org/licenses/LICENSE-2.0 | 
|  | # | 
|  | # Unless required by applicable law or agreed to in writing, software | 
|  | # distributed under the License is distributed on an "AS IS" BASIS, | 
|  | # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | 
|  | # See the License for the specific language governing permissions and | 
|  | # limitations under the License. | 
|  | """Test concat op.""" | 
|  |  | 
|  | from pyiree.tf.support import tf_test_utils | 
|  | import tensorflow.compat.v2 as tf | 
|  |  | 
|  |  | 
|  | class ConcatOpsModule(tf.Module): | 
|  |  | 
|  | @tf.function(input_signature=[ | 
|  | tf.TensorSpec([1, 5, 0], tf.float32), | 
|  | tf.TensorSpec([1, 5, 1], tf.float32), | 
|  | ]) | 
|  | def concat_zero_dim(self, a, b): | 
|  | return tf.concat([a, b], axis=2) | 
|  |  | 
|  | @tf.function(input_signature=[ | 
|  | tf.TensorSpec([1, 5, 1], tf.float32), | 
|  | tf.TensorSpec([1, 5, 1], tf.float32), | 
|  | ]) | 
|  | def concat0axis(self, a, b): | 
|  | return tf.concat([a, b], axis=0) | 
|  |  | 
|  | @tf.function(input_signature=[ | 
|  | tf.TensorSpec([1, 5, 1], tf.float32), | 
|  | tf.TensorSpec([1, 5, 1], tf.float32), | 
|  | ]) | 
|  | def concat1axis(self, a, b): | 
|  | return tf.concat([a, b], axis=1) | 
|  |  | 
|  | @tf.function(input_signature=[ | 
|  | tf.TensorSpec([1, 5, 1], tf.float32), | 
|  | tf.TensorSpec([1, 5, 1], tf.float32), | 
|  | ]) | 
|  | def concat2axis(self, a, b): | 
|  | return tf.concat([a, b], axis=2) | 
|  |  | 
|  |  | 
|  | @tf_test_utils.compile_modules(mat=ConcatOpsModule) | 
|  | class ConcatOpsTest(tf_test_utils.SavedModelTestCase): | 
|  |  | 
|  | def test_concat_zero_dim(self): | 
|  | tf_test_utils.set_random_seed() | 
|  | m = self.modules.mat.all | 
|  | a = tf.random.uniform([1, 5, 0], dtype=tf.float32) | 
|  | b = tf.random.uniform([1, 5, 1], dtype=tf.float32) | 
|  | dst = m.concat_zero_dim(a, b) | 
|  | dst.assert_all_close() | 
|  |  | 
|  | def concat0axis(self): | 
|  | tf_test_utils.set_random_seed() | 
|  | m = self.modules.mat.all | 
|  | a = tf.random.uniform([1, 5, 1], dtype=tf.float32) | 
|  | b = tf.random.uniform([1, 5, 1], dtype=tf.float32) | 
|  | dst = m.concat_zero_dim(a, b) | 
|  | dst.assert_all_close() | 
|  |  | 
|  | def concat1axis(self): | 
|  | tf_test_utils.set_random_seed() | 
|  | m = self.modules.mat.all | 
|  | a = tf.random.uniform([1, 5, 1], dtype=tf.float32) | 
|  | b = tf.random.uniform([1, 5, 1], dtype=tf.float32) | 
|  | dst = m.concat_zero_dim(a, b) | 
|  | dst.assert_all_close() | 
|  |  | 
|  | def concat2axis(self): | 
|  | tf_test_utils.set_random_seed() | 
|  | m = self.modules.mat.all | 
|  | a = tf.random.uniform([1, 5, 1], dtype=tf.float32) | 
|  | b = tf.random.uniform([1, 5, 1], dtype=tf.float32) | 
|  | dst = m.concat_zero_dim(a, b) | 
|  | dst.assert_all_close() | 
|  |  | 
|  |  | 
|  | if __name__ == "__main__": | 
|  | if hasattr(tf, "enable_v2_behavior"): | 
|  | tf.enable_v2_behavior() | 
|  | tf.test.main() |