|  | // RUN: iree-compile %s \ | 
|  | // RUN:     --iree-hal-executable-object-search-path=$IREE_BINARY_DIR | \ | 
|  | // RUN: iree-run-module \ | 
|  | // RUN:     --device=local-sync \ | 
|  | // RUN:     --module=- \ | 
|  | // RUN:     --function=mixed_invocation \ | 
|  | // RUN:     --input=8xf32=2 \ | 
|  | // RUN:     --input=8xf32=4 | \ | 
|  | // RUN: FileCheck %s | 
|  |  | 
|  | // This example demonstrates authoring and dispatching retargetable executables | 
|  | // from the IREE `stream` dialect layer. This allows for much more optimization | 
|  | // opportunity as bindings and operands can be mutated by the compiler unlike | 
|  | // approaches targeting the `hal` layer. | 
|  | // | 
|  | // In the future with improvements to lowerings into LLVM we should be able to | 
|  | // do this from the `flow` layer as well and thus connect all the way to | 
|  | // frontends. Currently memrefs are blocking the ability to define useful | 
|  | // external functions at the higher layers. | 
|  | // | 
|  | // By enabling this from higher levels of the stack it's possible for users to | 
|  | // hand-author what they need and have that get whole-program optimized, | 
|  | // multi-device scheduled, and portably deployed with (nearly) all the features | 
|  | // of IREE-generated workloads. | 
|  |  | 
|  | // The configurations used for executable compilation. | 
|  | // This lets the compiler and runtime know the format and requirements of the | 
|  | // executable binaries produced and multiple variants with differing formats | 
|  | // and compilation options (architectures, etc) can be embedded for runtime | 
|  | // selection. By fully specifying the targets here we can target multiple | 
|  | // architectures and it's always possible to embed these instead of using the | 
|  | // coarse command line compiler flags that only set single targets. | 
|  | #arm_64_target = #hal.executable.target<"llvm-cpu", "embedded-elf-arm_64", { | 
|  | data_layout = "e-m:e-p270:32:32-p271:32:32-p272:64:64-i64:64-f80:128-n8:16:32:64-S128", | 
|  | native_vector_size = 16 : index, | 
|  | target_triple = "aarch64-none-elf" | 
|  | }> | 
|  | #x86_64_target = #hal.executable.target<"llvm-cpu", "embedded-elf-x86_64", { | 
|  | data_layout = "e-m:e-p270:32:32-p271:32:32-p272:64:64-i64:64-f80:128-n8:16:32:64-S128", | 
|  | native_vector_size = 32 : index, | 
|  | target_triple = "x86_64-none-elf" | 
|  | }> | 
|  |  | 
|  | // The target devices that the program will run on. | 
|  | // These can come from compiler flags and multiple targets can be supported | 
|  | // It's possible, for example, to support targeting multiple devices in the same | 
|  | // compiled binary (CPU + Vulkan, etc). | 
|  | #cpu_target = #hal.device.target<"llvm-cpu", { | 
|  | executable_targets = [ | 
|  | #arm_64_target, | 
|  | #x86_64_target | 
|  | ] | 
|  | }> | 
|  |  | 
|  | module @example attributes {hal.device.targets = [#cpu_target]} { | 
|  |  | 
|  | // Executable containing exported shims and calls to external functions. | 
|  | // Each executable can contain multiple exported functions and variants for | 
|  | // different architectures or even devices. It's also possible to mix hand- | 
|  | // authored functions with code generated ones even for the same functions | 
|  | // such that code generation is used as a fallback when the hand-authored | 
|  | // kernels aren't supported at runtime. | 
|  | stream.executable private @executable attributes { | 
|  | // Object files linked into the executable. | 
|  | // These object files are linked into the dynamic library and must meet | 
|  | // the requirements for embedded ELF linkage (no TLS, no globals, no | 
|  | // syscalls, no libc, etc). Each compilation target can have its own unique | 
|  | // set of objects to link in and the target keys can be generic. This allows | 
|  | // for an object file to be linked in based only on the target triple while | 
|  | // allowing for more specialized ones requiring certain CPU features to be | 
|  | // only included when building those. For this example we just use the | 
|  | // fully-specified targets. | 
|  | hal.executable.objects = #hal.executable.objects<{ | 
|  | #arm_64_target = [ | 
|  | #hal.executable.object<{ | 
|  | // Referencing a file path on disk but could also have the data | 
|  | // embedded in order to make the MLIR file hermetic/portable across | 
|  | // compilation pipelines. In the future we'll likely use MLIR's | 
|  | // external resource functionality for this. By allowing for the | 
|  | // objects to be embedded we can support JIT scenarios where some | 
|  | // layer higher or lower may be emitting the objects to link in as | 
|  | // part of the overall compilation. | 
|  | path = "samples/custom_dispatch/cpu/embedded/functions_arm_64.o" | 
|  | }> | 
|  | ], | 
|  | #x86_64_target = [ | 
|  | #hal.executable.object<{ | 
|  | path = "samples/custom_dispatch/cpu/embedded/functions_x86_64.o" | 
|  | }> | 
|  | ] | 
|  | }> | 
|  | } { | 
|  | stream.executable.export public @simple_mul workgroups(%workload: index) -> (index, index, index) { | 
|  | // This host function is used to compute the XYZ workgroup count | 
|  | // dispatched at runtime. It can query the %device for capabilities | 
|  | // and limits (last-level cache sizes, etc). The other arguments are the | 
|  | // values passed in the dispatch operation (usually things like root | 
|  | // output op tensor dimensions and other abstract values). | 
|  | %x = affine.apply affine_map<()[s0] -> (s0 ceildiv 64)>()[%workload] | 
|  | %c1 = arith.constant 1 : index | 
|  | stream.return %x, %c1, %c1 : index, index, index | 
|  | } | 
|  |  | 
|  | // Similar to the above but in-place by using a read/write binding. | 
|  | stream.executable.export public @simple_mul_inplace workgroups(%workload: index) -> (index, index, index) { | 
|  | %x = affine.apply affine_map<()[s0] -> (s0 ceildiv 64)>()[%workload] | 
|  | %c1 = arith.constant 1 : index | 
|  | hal.return %x, %c1, %c1 : index, index, index | 
|  | } | 
|  |  | 
|  | builtin.module { | 
|  | // External function declaration using a user-chosen calling convention. | 
|  | func.func private @simple_mul_workgroup(%binding0: memref<?xf32>, %binding1: memref<?xf32>, %binding2: memref<?xf32>, %dim: index, %tid: index) attributes { | 
|  | // Ensures that we try to statically link this external function and | 
|  | // pull it in from the object file. | 
|  | hal.import.static | 
|  | } | 
|  |  | 
|  | // IREE exported function using stream bindings and operands. | 
|  | // Compiler passes will be able to optimize across this interface and | 
|  | // deduplicate bindings/operands, convert/pack operands, and inline | 
|  | // constants operands. | 
|  | func.func @simple_mul( | 
|  | %binding0: !stream.binding, | 
|  | %binding1: !stream.binding, | 
|  | %binding2: !stream.binding, | 
|  | %dim: index) { | 
|  | %c0 = arith.constant 0 : index | 
|  |  | 
|  | // This function is invoked once per workgroup so determine where this | 
|  | // particular workgroup is in the grid. In this example we use a | 
|  | // workgroup size of 64x1x1 (which is exceedingly small for CPUs but | 
|  | // useful for demonstration). | 
|  | %workgroup_id_x = flow.dispatch.workgroup.id[0] : index | 
|  | %tid = affine.apply affine_map<()[s0] -> (s0 * 64)>()[%workgroup_id_x] | 
|  |  | 
|  | // Bindings are accessed by reference. | 
|  | %memref0 = stream.binding.subspan %binding0[%c0] : !stream.binding -> memref<?xf32>{%dim} | 
|  | %memref1 = stream.binding.subspan %binding1[%c0] : !stream.binding -> memref<?xf32>{%dim} | 
|  | %memref2 = stream.binding.subspan %binding2[%c0] : !stream.binding -> memref<?xf32>{%dim} | 
|  |  | 
|  | // Call the externally defined C function with an (almost) plain C | 
|  | // calling convention (see above for details about the mess memrefs | 
|  | // turn into). | 
|  | // | 
|  | // TODO: there are ways of accessing CPU information here such as | 
|  | // active architecture and feature bits but it is not yet exposed to | 
|  | // the stream level. | 
|  | func.call @simple_mul_workgroup(%memref0, %memref1, %memref2, %dim, %tid) : (memref<?xf32>, memref<?xf32>, memref<?xf32>, index, index) -> () | 
|  |  | 
|  | // NOTE: this is code generated as normal - other MLIR ops can be used | 
|  | // here for looping/control flow, vector operations, linalg, etc. | 
|  | // This simple sample is just calling out to the external function but | 
|  | // microkernels fused with other code are possible. | 
|  |  | 
|  | return | 
|  | } | 
|  |  | 
|  | func.func private @simple_mul_inplace_workgroup(%binding0: memref<?xf32>, %binding1: memref<?xf32>, %dim: index, %tid: index) attributes { | 
|  | hal.import.static | 
|  | } | 
|  | func.func @simple_mul_inplace( | 
|  | %binding0: !stream.binding, | 
|  | %binding1: !stream.binding, | 
|  | %dim: index) { | 
|  | %c0 = arith.constant 0 : index | 
|  |  | 
|  | %workgroup_id_x = flow.dispatch.workgroup.id[0] : index | 
|  | %tid = affine.apply affine_map<()[s0] -> (s0 * 64)>()[%workgroup_id_x] | 
|  |  | 
|  | // Same as above but note that we're treating %binding1 as read/write. | 
|  | %memref0 = stream.binding.subspan %binding0[%c0] : !stream.binding -> memref<?xf32>{%dim} | 
|  | %memref1 = stream.binding.subspan %binding1[%c0] : !stream.binding -> memref<?xf32>{%dim} | 
|  |  | 
|  | func.call @simple_mul_inplace_workgroup(%memref0, %memref1, %dim, %tid) : (memref<?xf32>, memref<?xf32>, index, index) -> () | 
|  |  | 
|  | return | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | // Function demonstrating a few hand-authored dispatches mixed with codegen. | 
|  | // Invoke with: | 
|  | //  --device=local-sync | 
|  | //  --function=mixed_invocation | 
|  | //  --input=8xf32=2 | 
|  | //  --input=8xf32=4 | 
|  | // CHECK-LABEL: EXEC @mixed_invocation | 
|  | func.func @mixed_invocation(%arg0: tensor<?xf32>, %arg1: tensor<?xf32>) -> tensor<?xf32> { | 
|  | // The only externally available metadata in the dispatch are the values | 
|  | // passed in as operands. Here we pass in the dynamic dimension. | 
|  | %c0 = arith.constant 0 : index | 
|  | %dim = tensor.dim %arg0, %c0 : tensor<?xf32> | 
|  |  | 
|  | // Dispatch a basic `ret = lhs * rhs` using an external function. | 
|  | // This form (@executable::@export) allows for automatic variant selection | 
|  | // when multi-targeting. | 
|  | %0 = flow.dispatch @executable::@simple_mul[%dim](%arg0, %arg1, %dim) : (tensor<?xf32>{%dim}, tensor<?xf32>{%dim}, index) -> tensor<?xf32>{%dim} | 
|  |  | 
|  | // Code gen some other ops - these will interleave with the hand-authored | 
|  | // ones but naturally won't be able to fuse with them. | 
|  | %1 = arith.addf %0, %arg1 : tensor<?xf32> | 
|  |  | 
|  | // Dispatch an in-place `rhs *= lhs` using an external function. | 
|  | %2 = flow.dispatch @executable::@simple_mul_inplace[%dim](%0, %1, %dim) : (tensor<?xf32>{%dim}, tensor<?xf32>{%dim}, index) -> %1{%dim} | 
|  |  | 
|  | // CHECK: 8xf32=96 96 96 96 96 96 96 96 | 
|  | return %2 : tensor<?xf32> | 
|  | } | 
|  |  | 
|  | }  // module |