| { |
| "nbformat": 4, |
| "nbformat_minor": 0, |
| "metadata": { |
| "colab": { |
| "name": "tensorflow_hub_import.ipynb", |
| "provenance": [], |
| "collapsed_sections": [ |
| "-V0X0E7LkEa4", |
| "FH3IRpYTta2v" |
| ] |
| }, |
| "kernelspec": { |
| "name": "python3", |
| "display_name": "Python 3" |
| }, |
| "language_info": { |
| "name": "python" |
| } |
| }, |
| "cells": [ |
| { |
| "cell_type": "markdown", |
| "metadata": { |
| "id": "FH3IRpYTta2v" |
| }, |
| "source": [ |
| "##### Copyright 2021 The IREE Authors" |
| ] |
| }, |
| { |
| "cell_type": "code", |
| "metadata": { |
| "id": "mWGa71_Ct2ug", |
| "cellView": "form" |
| }, |
| "source": [ |
| "#@title Licensed under the Apache License v2.0 with LLVM Exceptions.\n", |
| "# See https://llvm.org/LICENSE.txt for license information.\n", |
| "# SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception" |
| ], |
| "execution_count": 10, |
| "outputs": [] |
| }, |
| { |
| "cell_type": "markdown", |
| "metadata": { |
| "id": "Qb3S0mSjpK7J" |
| }, |
| "source": [ |
| "# IREE TensorFlow Hub Import\n", |
| "\n", |
| "This notebook demonstrates how to download, import, and compile models from [TensorFlow Hub](https://tfhub.dev/). It covers:\n", |
| "\n", |
| "* Downloading a model from TensorFlow Hub\n", |
| "* Ensuring the model has serving signatures needed for import\n", |
| "* Importing and compiling the model with IREE\n", |
| "\n", |
| "At the end of the notebook, the compilation artifacts are compressed into a .zip file for you to download and use in an application.\n", |
| "\n", |
| "See also https://iree.dev/guides/ml-frameworks/tensorflow/." |
| ] |
| }, |
| { |
| "cell_type": "markdown", |
| "metadata": { |
| "id": "9rNAJKNVkKOr" |
| }, |
| "source": [ |
| "## Setup" |
| ] |
| }, |
| { |
| "cell_type": "code", |
| "metadata": { |
| "id": "RdVc4TbOkHM2" |
| }, |
| "source": [ |
| "%%capture\n", |
| "!python -m pip install --pre iree-base-compiler iree-base-runtime iree-tools-tf -f https://iree.dev/pip-release-links.html" |
| ], |
| "execution_count": 11, |
| "outputs": [] |
| }, |
| { |
| "cell_type": "code", |
| "metadata": { |
| "id": "qRwv3qI_l5O_", |
| "colab": { |
| "base_uri": "https://localhost:8080/" |
| }, |
| "outputId": "8d3bf1f1-1843-4fe9-80e0-a9fc5b194778" |
| }, |
| "source": [ |
| "import os\n", |
| "import tensorflow as tf\n", |
| "import tensorflow_hub as hub\n", |
| "import tempfile\n", |
| "from IPython.display import clear_output\n", |
| "\n", |
| "from iree.compiler import tf as tfc\n", |
| "\n", |
| "# Print version information for future notebook users to reference.\n", |
| "print(\"TensorFlow version: \", tf.__version__)\n", |
| "\n", |
| "ARTIFACTS_DIR = os.path.join(tempfile.gettempdir(), \"iree\", \"colab_artifacts\")\n", |
| "os.makedirs(ARTIFACTS_DIR, exist_ok=True)\n", |
| "print(f\"Using artifacts directory '{ARTIFACTS_DIR}'\")" |
| ], |
| "execution_count": 12, |
| "outputs": [ |
| { |
| "output_type": "stream", |
| "name": "stdout", |
| "text": [ |
| "TensorFlow version: 2.12.0\n", |
| "Using artifacts directory '/tmp/iree/colab_artifacts'\n" |
| ] |
| } |
| ] |
| }, |
| { |
| "cell_type": "markdown", |
| "metadata": { |
| "id": "ZZAobcAhocFE" |
| }, |
| "source": [ |
| "## Import pretrained [`mobilenet_v2`](https://tfhub.dev/google/tf2-preview/mobilenet_v2/classification/4) model\n", |
| "\n", |
| "IREE supports importing TensorFlow 2 models exported in the [SavedModel](https://www.tensorflow.org/guide/saved_model) format. This model we'll be importing is published in that format already, while other models may need to be converted first.\n", |
| "\n", |
| "MobileNet V2 is a family of neural network architectures for efficient on-device image classification and related tasks. This TensorFlow Hub module contains a trained instance of one particular network architecture packaged to perform image classification." |
| ] |
| }, |
| { |
| "cell_type": "code", |
| "metadata": { |
| "colab": { |
| "base_uri": "https://localhost:8080/" |
| }, |
| "id": "7fd0vmnloZo9", |
| "outputId": "dabea3a2-d312-4729-c947-b24216a6c25b" |
| }, |
| "source": [ |
| "#@title Download the pretrained model\n", |
| "\n", |
| "# Use the `hub` library to download the pretrained model to the local disk\n", |
| "# https://www.tensorflow.org/hub/api_docs/python/hub\n", |
| "HUB_PATH = \"https://tfhub.dev/google/tf2-preview/mobilenet_v2/classification/4\"\n", |
| "model_path = hub.resolve(HUB_PATH)\n", |
| "print(f\"Downloaded model from tfhub to path: '{model_path}'\")" |
| ], |
| "execution_count": 13, |
| "outputs": [ |
| { |
| "output_type": "stream", |
| "name": "stdout", |
| "text": [ |
| "Downloaded model from tfhub to path: '/tmp/tfhub_modules/426589ad685896ab7954855255a52db3442cb38d'\n" |
| ] |
| } |
| ] |
| }, |
| { |
| "cell_type": "markdown", |
| "metadata": { |
| "id": "CedNRSQTOE7C" |
| }, |
| "source": [ |
| "### Check for serving signatures and re-export as needed\n", |
| "\n", |
| "IREE's compiler tools, like TensorFlow's `saved_model_cli` and other tools, require \"serving signatures\" to be defined in SavedModels.\n", |
| "\n", |
| "More references:\n", |
| "\n", |
| "* https://www.tensorflow.org/tfx/serving/signature_defs\n", |
| "* https://blog.tensorflow.org/2021/03/a-tour-of-savedmodel-signatures.html" |
| ] |
| }, |
| { |
| "cell_type": "code", |
| "metadata": { |
| "colab": { |
| "base_uri": "https://localhost:8080/" |
| }, |
| "id": "qiO66oEYQmsd", |
| "outputId": "91f724db-01cd-4dd3-c55c-ba4431233cfa" |
| }, |
| "source": [ |
| "#@title Check for serving signatures\n", |
| "\n", |
| "# Load the SavedModel from the local disk and check if it has serving signatures\n", |
| "# https://www.tensorflow.org/guide/saved_model#loading_and_using_a_custom_model\n", |
| "loaded_model = tf.saved_model.load(model_path)\n", |
| "serving_signatures = list(loaded_model.signatures.keys())\n", |
| "print(f\"Loaded SavedModel from '{model_path}'\")\n", |
| "print(f\"Serving signatures: {serving_signatures}\")\n", |
| "\n", |
| "# Also check with the saved_model_cli:\n", |
| "print(\"\\n---\\n\")\n", |
| "print(\"Checking for signature_defs using saved_model_cli:\\n\")\n", |
| "!saved_model_cli show --dir {model_path} --tag_set serve --signature_def serving_default" |
| ], |
| "execution_count": 14, |
| "outputs": [ |
| { |
| "output_type": "stream", |
| "name": "stdout", |
| "text": [ |
| "Loaded SavedModel from '/tmp/tfhub_modules/426589ad685896ab7954855255a52db3442cb38d'\n", |
| "Serving signatures: []\n", |
| "\n", |
| "---\n", |
| "\n", |
| "Checking for signature_defs using saved_model_cli:\n", |
| "\n", |
| "2023-04-26 17:12:32.367522: W tensorflow/compiler/tf2tensorrt/utils/py_utils.cc:38] TF-TRT Warning: Could not find TensorRT\n", |
| "Traceback (most recent call last):\n", |
| " File \"/usr/local/bin/saved_model_cli\", line 8, in <module>\n", |
| " sys.exit(main())\n", |
| " File \"/usr/local/lib/python3.9/dist-packages/tensorflow/python/tools/saved_model_cli.py\", line 1284, in main\n", |
| " app.run(smcli_main)\n", |
| " File \"/usr/local/lib/python3.9/dist-packages/absl/app.py\", line 308, in run\n", |
| " _run_main(main, args)\n", |
| " File \"/usr/local/lib/python3.9/dist-packages/absl/app.py\", line 254, in _run_main\n", |
| " sys.exit(main(argv))\n", |
| " File \"/usr/local/lib/python3.9/dist-packages/tensorflow/python/tools/saved_model_cli.py\", line 1282, in smcli_main\n", |
| " args.func()\n", |
| " File \"/usr/local/lib/python3.9/dist-packages/tensorflow/python/tools/saved_model_cli.py\", line 961, in show\n", |
| " _show_inputs_outputs(\n", |
| " File \"/usr/local/lib/python3.9/dist-packages/tensorflow/python/tools/saved_model_cli.py\", line 345, in _show_inputs_outputs\n", |
| " inputs_tensor_info = _get_inputs_tensor_info_from_meta_graph_def(\n", |
| " File \"/usr/local/lib/python3.9/dist-packages/tensorflow/python/tools/saved_model_cli.py\", line 306, in _get_inputs_tensor_info_from_meta_graph_def\n", |
| " raise ValueError(\n", |
| "ValueError: Could not find signature \"serving_default\". Please choose from: __saved_model_init_op\n" |
| ] |
| } |
| ] |
| }, |
| { |
| "cell_type": "markdown", |
| "metadata": { |
| "id": "kKqqX2LsReNz" |
| }, |
| "source": [ |
| "Since the model we downloaded did not include any serving signatures, we'll re-export it with serving signatures defined.\n", |
| "\n", |
| "* https://www.tensorflow.org/guide/saved_model#specifying_signatures_during_export" |
| ] |
| }, |
| { |
| "cell_type": "code", |
| "metadata": { |
| "colab": { |
| "base_uri": "https://localhost:8080/" |
| }, |
| "id": "OlDG2OuqOBGC", |
| "outputId": "c25d0e59-3a42-4f43-804c-c607eb9fc84c" |
| }, |
| "source": [ |
| "#@title Look up input signatures to use when exporting\n", |
| "\n", |
| "# To save serving signatures we need to specify a `ConcreteFunction` with a\n", |
| "# TensorSpec signature. We can determine what this signature should be by\n", |
| "# looking at any documentation for the model or running the saved_model_cli.\n", |
| "\n", |
| "!saved_model_cli show --dir {model_path} --all \\\n", |
| " 2> /dev/null | grep \"inputs: TensorSpec\" | tail -n 1" |
| ], |
| "execution_count": 15, |
| "outputs": [ |
| { |
| "output_type": "stream", |
| "name": "stdout", |
| "text": [ |
| " inputs: TensorSpec(shape=(None, 224, 224, 3), dtype=tf.float32, name='inputs')\n" |
| ] |
| } |
| ] |
| }, |
| { |
| "cell_type": "code", |
| "metadata": { |
| "colab": { |
| "base_uri": "https://localhost:8080/" |
| }, |
| "id": "gnb4HhMmkgiT", |
| "outputId": "d5ff3d4a-0483-476e-af6e-0b3c827d4938" |
| }, |
| "source": [ |
| "#@title Re-export the model using the known signature\n", |
| "\n", |
| "# Get a concrete function using the signature we found above.\n", |
| "# \n", |
| "# The first element of the shape is a dynamic batch size. We'll be running\n", |
| "# inference on a single image at a time, so set it to `1`. The rest of the\n", |
| "# shape is the fixed image dimensions [width=224, height=224, channels=3].\n", |
| "call = loaded_model.__call__.get_concrete_function(tf.TensorSpec([1, 224, 224, 3], tf.float32))\n", |
| "\n", |
| "# Save the model, setting the concrete function as a serving signature.\n", |
| "# https://www.tensorflow.org/guide/saved_model#saving_a_custom_model\n", |
| "resaved_model_path = '/tmp/resaved_model'\n", |
| "tf.saved_model.save(loaded_model, resaved_model_path, signatures=call)\n", |
| "clear_output() # Skip over TensorFlow's output.\n", |
| "print(f\"Saved model with serving signatures to '{resaved_model_path}'\")\n", |
| "\n", |
| "# Load the model back into memory and check that it has serving signatures now\n", |
| "reloaded_model = tf.saved_model.load(resaved_model_path)\n", |
| "reloaded_serving_signatures = list(reloaded_model.signatures.keys())\n", |
| "print(f\"\\nReloaded SavedModel from '{resaved_model_path}'\")\n", |
| "print(f\"Serving signatures: {reloaded_serving_signatures}\")\n", |
| "\n", |
| "# Also check with the saved_model_cli:\n", |
| "print(\"\\n---\\n\")\n", |
| "print(\"Checking for signature_defs using saved_model_cli:\\n\")\n", |
| "!saved_model_cli show --dir {resaved_model_path} --tag_set serve --signature_def serving_default" |
| ], |
| "execution_count": 16, |
| "outputs": [ |
| { |
| "output_type": "stream", |
| "name": "stdout", |
| "text": [ |
| "Saved model with serving signatures to '/tmp/resaved_model'\n", |
| "\n", |
| "Reloaded SavedModel from '/tmp/resaved_model'\n", |
| "Serving signatures: ['serving_default']\n", |
| "\n", |
| "---\n", |
| "\n", |
| "Checking for signature_defs using saved_model_cli:\n", |
| "\n", |
| "2023-04-26 17:13:06.873761: W tensorflow/compiler/tf2tensorrt/utils/py_utils.cc:38] TF-TRT Warning: Could not find TensorRT\n", |
| "The given SavedModel SignatureDef contains the following input(s):\n", |
| " inputs['inputs'] tensor_info:\n", |
| " dtype: DT_FLOAT\n", |
| " shape: (1, 224, 224, 3)\n", |
| " name: serving_default_inputs:0\n", |
| "The given SavedModel SignatureDef contains the following output(s):\n", |
| " outputs['output_0'] tensor_info:\n", |
| " dtype: DT_FLOAT\n", |
| " shape: (1, 1001)\n", |
| " name: StatefulPartitionedCall:0\n", |
| "Method name is: tensorflow/serving/predict\n" |
| ] |
| } |
| ] |
| }, |
| { |
| "cell_type": "markdown", |
| "metadata": { |
| "id": "YdmgASzwanSz" |
| }, |
| "source": [ |
| "### Import and compile the SavedModel with IREE" |
| ] |
| }, |
| { |
| "cell_type": "code", |
| "metadata": { |
| "colab": { |
| "base_uri": "https://localhost:8080/" |
| }, |
| "id": "GLkjlHE5mdmg", |
| "outputId": "c67419f8-94de-4335-ddbc-f062b7d2e48a" |
| }, |
| "source": [ |
| "#@title Import from SavedModel\n", |
| "\n", |
| "# The main output file from compilation is a .vmfb \"VM FlatBuffer\". This file\n", |
| "# can used to run the compiled model with IREE's runtime.\n", |
| "output_file = os.path.join(ARTIFACTS_DIR, \"mobilenet_v2.vmfb\")\n", |
| "# As compilation runs, dump an intermediate .mlir file for future inspection.\n", |
| "iree_input = os.path.join(ARTIFACTS_DIR, \"mobilenet_v2_iree_input.mlir\")\n", |
| "\n", |
| "# Since our SavedModel uses signature defs, we use `saved_model_tags` with\n", |
| "# `import_type=\"SIGNATURE_DEF\"`. If the SavedModel used an object graph, we\n", |
| "# would use `exported_names` with `import_type=\"OBJECT_GRAPH\"` instead.\n", |
| "\n", |
| "# We'll set `target_backends=[\"vmvx\"]` to use IREE's reference CPU backend.\n", |
| "# We could instead use different backends here, or set `import_only=True` then\n", |
| "# download the imported .mlir file for compilation using native tools directly.\n", |
| "\n", |
| "tfc.compile_saved_model(\n", |
| " resaved_model_path,\n", |
| " output_file=output_file,\n", |
| " save_temp_iree_input=iree_input,\n", |
| " import_type=\"SIGNATURE_DEF\",\n", |
| " saved_model_tags=set([\"serve\"]),\n", |
| " target_backends=[\"vmvx\"])\n", |
| "clear_output() # Skip over TensorFlow's output.\n", |
| "\n", |
| "print(f\"Saved compiled output to '{output_file}'\")\n", |
| "print(f\"Saved iree_input to '{iree_input}'\")" |
| ], |
| "execution_count": 17, |
| "outputs": [ |
| { |
| "output_type": "stream", |
| "name": "stdout", |
| "text": [ |
| "Saved compiled output to '/tmp/iree/colab_artifacts/mobilenet_v2.vmfb'\n", |
| "Saved iree_input to '/tmp/iree/colab_artifacts/mobilenet_v2_iree_input.mlir'\n" |
| ] |
| } |
| ] |
| }, |
| { |
| "cell_type": "code", |
| "metadata": { |
| "colab": { |
| "base_uri": "https://localhost:8080/", |
| "height": 86 |
| }, |
| "id": "IEJAzOb5qASI", |
| "outputId": "9a29aa51-b99d-4acd-dae8-0d97cf9786e6" |
| }, |
| "source": [ |
| "#@title Download compilation artifacts\n", |
| "\n", |
| "ARTIFACTS_ZIP = \"/tmp/mobilenet_colab_artifacts.zip\"\n", |
| "\n", |
| "print(f\"Zipping '{ARTIFACTS_DIR}' to '{ARTIFACTS_ZIP}' for download...\")\n", |
| "!cd {ARTIFACTS_DIR} && zip -r {ARTIFACTS_ZIP} .\n", |
| "\n", |
| "# Note: you can also download files using the file explorer on the left\n", |
| "try:\n", |
| " from google.colab import files\n", |
| " print(\"Downloading the artifacts zip file...\")\n", |
| " files.download(ARTIFACTS_ZIP)\n", |
| "except ImportError:\n", |
| " print(\"Missing google_colab Python package, can't download files\")" |
| ], |
| "execution_count": 18, |
| "outputs": [ |
| { |
| "output_type": "stream", |
| "name": "stdout", |
| "text": [ |
| "Zipping '/tmp/iree/colab_artifacts' to '/tmp/mobilenet_colab_artifacts.zip' for download...\n", |
| " adding: mobilenet_v2.vmfb (deflated 8%)\n", |
| " adding: mobilenet_v2_iree_input.mlir (deflated 46%)\n", |
| "Downloading the artifacts zip file...\n" |
| ] |
| }, |
| { |
| "output_type": "display_data", |
| "data": { |
| "text/plain": [ |
| "<IPython.core.display.Javascript object>" |
| ], |
| "application/javascript": [ |
| "\n", |
| " async function download(id, filename, size) {\n", |
| " if (!google.colab.kernel.accessAllowed) {\n", |
| " return;\n", |
| " }\n", |
| " const div = document.createElement('div');\n", |
| " const label = document.createElement('label');\n", |
| " label.textContent = `Downloading \"${filename}\": `;\n", |
| " div.appendChild(label);\n", |
| " const progress = document.createElement('progress');\n", |
| " progress.max = size;\n", |
| " div.appendChild(progress);\n", |
| " document.body.appendChild(div);\n", |
| "\n", |
| " const buffers = [];\n", |
| " let downloaded = 0;\n", |
| "\n", |
| " const channel = await google.colab.kernel.comms.open(id);\n", |
| " // Send a message to notify the kernel that we're ready.\n", |
| " channel.send({})\n", |
| "\n", |
| " for await (const message of channel.messages) {\n", |
| " // Send a message to notify the kernel that we're ready.\n", |
| " channel.send({})\n", |
| " if (message.buffers) {\n", |
| " for (const buffer of message.buffers) {\n", |
| " buffers.push(buffer);\n", |
| " downloaded += buffer.byteLength;\n", |
| " progress.value = downloaded;\n", |
| " }\n", |
| " }\n", |
| " }\n", |
| " const blob = new Blob(buffers, {type: 'application/binary'});\n", |
| " const a = document.createElement('a');\n", |
| " a.href = window.URL.createObjectURL(blob);\n", |
| " a.download = filename;\n", |
| " div.appendChild(a);\n", |
| " a.click();\n", |
| " div.remove();\n", |
| " }\n", |
| " " |
| ] |
| }, |
| "metadata": {} |
| }, |
| { |
| "output_type": "display_data", |
| "data": { |
| "text/plain": [ |
| "<IPython.core.display.Javascript object>" |
| ], |
| "application/javascript": [ |
| "download(\"download_18545900-47df-4250-9a14-8453ca4b6fc2\", \"mobilenet_colab_artifacts.zip\", 41434352)" |
| ] |
| }, |
| "metadata": {} |
| } |
| ] |
| } |
| ] |
| } |