| |
| // Preprocessing with generalized packing. |
| // |
| // RUN: iree-opt %s --iree-transform-dialect-interpreter --transform-dialect-drop-schedule | \ |
| // RUN: iree-opt --iree-hal-target-backends=llvm-cpu \ |
| // RUN: --iree-abi-transformation-pipeline \ |
| // RUN: --iree-flow-transformation-pipeline \ |
| // RUN: --iree-stream-transformation-pipeline \ |
| // RUN: --iree-hal-configuration-pipeline | \ |
| // RUN: FileCheck %s |
| |
| !a_tensor_t = tensor<1234x567xf32> |
| !b_tensor_t = tensor<567x890xf32> |
| !c_tensor_t = tensor<1234x890xf32> |
| |
| // Note: the normalization in these maps is gone due to InterchangeGenericOps. |
| // When using generalized packing, it would be better to drop that pass. |
| |
| // CHECK-DAG: #[[$map_lhs:.*]] = affine_map<(d0, d1, d2, d3, d4, d5) -> (d0, d4, d2, d5)> |
| // CHECK-DAG: #[[$map_rhs:.*]] = affine_map<(d0, d1, d2, d3, d4, d5) -> (d4, d1, d3, d5)> |
| // CHECK-DAG: #[[$map_res:.*]] = affine_map<(d0, d1, d2, d3, d4, d5) -> (d0, d1, d2, d3)> |
| |
| // CHECK-LABEL: func.func @matmul_dispatch_0 |
| // CHECK: tensor.empty() : tensor<155x18x8x32xf32> |
| // CHECK: tensor.pack |
| |
| // CHECK-LABEL: func.func @matmul_dispatch_1 |
| // CHECK: tensor.empty() : tensor<18x56x16x32xf32> |
| // CHECK: tensor.pack |
| |
| // CHECK-LABEL: func.func @matmul_dispatch_2 |
| // CHECK: tensor.empty() : tensor<155x56x8x16xf32> |
| // CHECK: tensor.pack |
| |
| // CHECK-LABEL: func.func @matmul_dispatch_3 |
| func.func @matmul(%arg0: !a_tensor_t, %arg2: !c_tensor_t) -> !c_tensor_t { |
| %rhs = arith.constant dense<0.1> : !b_tensor_t |
| %c0 = util.optimization_barrier %rhs : !b_tensor_t |
| // CHECK-NOT: pack |
| // CHECK: linalg.generic {indexing_maps = [#[[$map_lhs]], #[[$map_rhs]], #[[$map_res]]], |
| // CHECK-SAME: iterator_types = ["parallel", "parallel", "parallel", "parallel", "reduction", "reduction"]} |
| // CHECK-SAME: ins(%{{.*}} : tensor<155x18x8x32xf32>, tensor<18x56x16x32xf32>) |
| // CHECK-SAME: outs(%{{.*}} : tensor<155x56x8x16xf32>) |
| |
| %0 = linalg.matmul |
| ins(%arg0, %c0: !a_tensor_t, !b_tensor_t) |
| outs(%arg2: !c_tensor_t) -> !c_tensor_t |
| return %0 : !c_tensor_t |
| } |
| |
| // CHECK-LABEL: func.func @matmul_dispatch_4 |
| // CHECK: tensor.unpack |
| module attributes { transform.with_named_sequence } { |
| transform.named_sequence @__transform_main(%module_op: !transform.any_op {transform.readonly}) { |
| %matmul = transform.structured.match interface{LinalgOp} in %module_op |
| : (!transform.any_op) -> (!transform.any_op) |
| |
| transform.structured.pack_greedily %matmul |
| matmul_packed_sizes = [8, 16, 32] |
| matmul_inner_dims_order = [0, 1, 2] |
| : (!transform.any_op) -> !transform.op<"linalg.generic"> |
| transform.yield |
| } |
| } // module |