| # Lint as: python3 |
| # Copyright 2020 The IREE Authors |
| # |
| # Licensed under the Apache License v2.0 with LLVM Exceptions. |
| # See https://llvm.org/LICENSE.txt for license information. |
| # SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
| |
| from absl import app |
| from iree.tf.support import tf_test_utils |
| from iree.tf.support import tf_utils |
| import numpy as np |
| import tensorflow.compat.v2 as tf |
| |
| HIDDEN_1_DIM = 256 |
| HIDDEN_2_DIM = 256 |
| INPUT_DIM = 728 # 28 * 28 |
| CLASSES = 10 |
| |
| |
| class DynamicMlpModule(tf.Module): |
| |
| def __init__(self, |
| hidden_1_dim=256, |
| hidden_2_dim=256, |
| input_dim=28 * 28, |
| classes=10): |
| super().__init__() |
| tf_utils.set_random_seed() |
| self.hidden_1_dim = hidden_1_dim |
| self.hidden_2_dim = hidden_2_dim |
| self.input_dim = input_dim |
| self.classes = classes |
| self.h1_weights = tf.Variable(tf.random.normal([input_dim, hidden_1_dim])) |
| self.h2_weights = tf.Variable(tf.random.normal([hidden_1_dim, |
| hidden_2_dim])) |
| self.out_weights = tf.Variable(tf.random.normal([hidden_2_dim, classes])) |
| self.h1_bias = tf.Variable(tf.random.normal([hidden_1_dim])) |
| self.h2_bias = tf.Variable(tf.random.normal([hidden_2_dim])) |
| self.out_bias = tf.Variable(tf.random.normal([classes])) |
| |
| # Compile with dynamic batch dim. |
| self.predict = tf.function( |
| input_signature=[tf.TensorSpec([None, self.input_dim])])(self.predict) |
| |
| def mlp(self, x): |
| layer_1 = tf.sigmoid(tf.add(tf.matmul(x, self.h1_weights), self.h1_bias)) |
| layer_2 = tf.sigmoid( |
| tf.add(tf.matmul(layer_1, self.h2_weights), self.h2_bias)) |
| return tf.sigmoid( |
| tf.add(tf.matmul(layer_2, self.out_weights), self.out_bias)) |
| |
| def predict(self, x): |
| return tf.nn.softmax(self.mlp(x)) |
| |
| |
| class DynamicMlpTest(tf_test_utils.TracedModuleTestCase): |
| |
| def __init__(self, *args, **kwargs): |
| super().__init__(*args, **kwargs) |
| self._modules = tf_test_utils.compile_tf_module(DynamicMlpModule, |
| exported_names=["predict"]) |
| |
| def test_dynamic_batch(self): |
| |
| def dynamic_batch(module): |
| x = tf_utils.uniform([3, 28 * 28]) * 1e-3 |
| module.predict(x) |
| |
| self.compare_backends(dynamic_batch, self._modules) |
| |
| |
| def main(argv): |
| del argv # Unused |
| if hasattr(tf, 'enable_v2_behavior'): |
| tf.enable_v2_behavior() |
| tf.test.main() |
| |
| |
| if __name__ == '__main__': |
| app.run(main) |